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Abstract 

The KulmanJilter is a very eficient optimal$ltel; how- 
ever it has the precondition that the noises of the process 
and of the measurement are Gaussian. In this paper we 
introduce ‘The General Distribution Filter’ which is an op- 
timal jilter that can be used even where the distributions 
are not Gaussian. An eficient practical implementation of 
theJilter is possible where the distributions are discrete and 
compact or can be approximated as such. 

The problem is that when the measurement is not a Gaus- 
sian distribution, the Kalman filter cannot be used. This 
was the motivation to develop the general distribution fil- 
ter which can be used for any distribution function. As we 
will see, although the filter is defined for any probability 
distribution of the measurement, an efficient computer im- 
plementation of this filter is possible when the probability 
distribution of the measurement is discrete or can be ap- 
proximated as such. 

1. Definition of the problem 

The notion of filtering is connected with that of a pro- 
cess. The process state at time t is described by a vector, 
which is unknown and must be computed. An example of 
such a process is a moving vehicle, where the state is the 
vehicle’s position and speed. The information about the 
process comes from measurements, where the connection 
between the process and the measurement is known. Usu- 
ally there is noise in the system, so that the measurement is 
described by its probability distribution. 

We will demonstrate a tracking application where the 
distributions cannot be approximated as Gaussian, and the 
Kalman filter cannot be used. As a better alternative, the 
measurement’s distribution is represented as a probability 
matrix, and the filtering is achieved using the general distri- 
bution filter. 

In the appendix we show that the Kalman filter is a spe- 
cial case of the general distribution filter. 

1.1. Definitions 

l Given a process P. xt is a random vector that de- 
scribes its state at a discrete time t. Let the probabil- 
ity distribution function of xt be Px, (). 

In order to estimate the process’s current state, the last 
measurement is not enough, because the measurement is 
not exact and the information that can be extracted from it is 
limited. If the process’s evolution in time, that is, the con- 
nection between its past and current states is also known, 
the estimation of the past states can be used to improve the 
current one. This combining of information is filtering. The 
optimal filter uses all the data available from past measure- 
ments and information about the process’s evolution in time 
to compute the best possible estimation of the process’ cur- 
rent state. 

l The state transition from state t to t+l is given by 
the equation: 

xt+l = @(t,t+l)(xt) + nt 

where 

The prevalent optimal filter is the Kalman filter which 
can be used when the measurement noise and the process 
state transition noise are Gaussian. The main advantage of 
this filter is its small computation and storage complexity. 

@~~,~+i)(x~) is the transition function. From now on, 
we will refer to it as just @(xt). 
nt is the process noise with probability distribution 
pru o> 
where nt is independent of all nj , j < t. 

l yt 1s the measurement vector observed at time t. 
The connection between the measurement and the 
state is given as: 

P(Yt I Xt) 
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i.e. the probability of obtaining the observed mea- 
surement vector yt for any possible xt. P(yt 1 x1) 
should be independent of all nj , j < t and of yi, j < 
t. nl should be independent of yj, j < t. 

1.2. The filter equations 

State propagation: Propagation from state t to t+l: Ig- 
noring the propagation noise, let 

I 
x1+1 = @‘(x1) (1) 

Let Cp-’ (u) be the region of all the vectors that are mapped 
toubycP: 

@-l(u) = {v 1 Q(v) = u} 

The probability distribution of xi+i is: 

K;+,(u) = ec,(@-lu) (2) 

where P&+l is the state’s probability distribution at t + 1, 
ignoring the process noise effect. 

The process noise random vector is added to xi+i to get 
the process state at t+l: 

XT+1 = xi+1 + nt 

and the probability distribution of this sum is: 

p;,, = Pzd f-t1 c3 p nt (3) 

Here we use the fact that xi+i and nt are independent. 
This is a consequence of the requirement that nt is indepen- 
dantofyj,j < t andofnj,j <t 
Filtering: In the state propagation stage we computed the 
apriori process state probability distribution Px;+~ (v). The 
next stage is to take the measurement and use it to update 
the process state estimation. This will give the aposteriori 
process state probability distribution. 

Applying Bayes theorem gives: 

pxst+l (u> = P(Yt+1 I x1+1 = u> P:+Ju) 

P(Ytt1) 
(4) 

where PI&+~ is the apriori state distribution, and P(yt+l) 
is the probability of measuring yt+i : 

P(Yt+1) = J P(Ytt1 I xt+1 = v> p;*+I(v) dv 
” 

1.3. The working point 

The equations for the filter gives the probability distri- 
bution PX,(u) of the process state x1 at time t. In many 
practical cases it is necessary to choose one value from the 

probability distribution that will be the ‘best’ representive 
for xt . We call this chosen value ‘the working point’ . 

There are several options to define what is the ‘best’ 
working point for xt. Here we describe three methods for 
choosing the working point. The first two methods are com- 
monly used in estimation theory [ 11, while the third is new. 
We will first define the three working points and then dis- 
cuss the meaning of each working point, choosing the best 
depending on our needs. 

The maximum likelihood criterion 
Choose the point with the highest probability: 

Xml = {u 1 Px,(u) = mazimum} 

This gives the maximum iikelihood choice for x1. 

The least squared error criterion 
Choose the point that minimizes the expected squared 
error: 

Xls = {u 1 Z(x) = minimum} 

where 
Z(x) = J P(v) [Iv - xl12dv ” 

Z(x) is the least square error expected, i.e. the error 
variance. 

Optimization criteria 
We define the region S: 

s = {s 1 Px*(S)/P,,(X,l) 2 t} 

whereO<E< 1. 
The region S is the set of all the points with probabil- 
ity (relative to the best probability) above a threshold 
c. 
This region represents the probable choices for xt. 
The working point is found by imposing an external 
optimization scheme on this region. In the tracking 
system (Section 3), we minimize Is - V] which is the 
distance of s from the vector v, so that: 

xopt = ~w65 Is - VI 
If E = 1 then the region S will be only one point, 
which is the maximum likelihood point. Therefore 
xopt + x,~ when E -+ 1. On the other hand, if 
E -+ 0, then x+ is more affected by the optimiza- 
tion. When E -+ 0, the valid region is all the space 
including the origin, and xopt -+ v. 

The optimization factor described here is the one that 
fits our needs. In other cases different optimization 
schemes can be defined and used to choose the work- 
ing point. 
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1.4. Comparing the three working points 

The maximum likelihood working point x,~ is easy to 
find, but is vulnerable to noise. When the probability distri- 
bution is relatively smooth, the maximum likelihood point 
is not much larger than the other points, and any small noise 
can cause the x,~ location to change. So even if the real 
process state is constant over time, we can get a totally dif- 
ferent value of x,~ for every t. 

The least squared error working point xls tends to be 
more stable, since it depends on the whole distribution 
rather than just a specific point like x,~. For this reason the 
error influence tends to be smoothed. The problem is that 
this point usually does not give the true value of the process, 
and it is sensitive to outliers. This working point is mean- 
ingful only in symmetrical distributions where x,~ = xls. 

xopt is the most practical value to choose in the general 
distribution case. In this method, we first look at the sub- 
space of the probability distribution with all the possible 
choices for x. Then an external optimization scheme is ap- 
plied, and the working point is chosen. xopt is much more 
stable than xls, and if a good optimization scheme can be 
imposed, there is a good chance that x,,pt will be the correct 
process state. The proper value for E depends mainly on the 
noise level. If it is small, we choose a value close to 1, so 
that x+ will be more affected by the maximum likelihood 
location. On the other hand, if the noise level is higher, we 
choose for E a value close to 0. In this case, xopt will be 
more affected by the optimization. 

1.5. Adaptive filtering 

In order to use the filter, the state transition function 
Qt,t+l(x) must be known. In many cases, it is impossible 
to know the exact function. Instead, @t,t+l can be approxi- 
mated as a simple function for short time intervals. For ex- 
ample, consider tracking a car on a road. We cannot know 
the exact function that describes the car motion. But we can 
assume that the car travels with a constant velocity for short 
time intervals. So the function Q,t,t+l(x) is constant, where 
the process x is the velocity. In these cases, the dynamics 
of the filter is not valid for long time intervals, because of 
the changes in the process. These changes in the process 
dynamics are usually slow, so that for a short time, the filter 
is still useful. In order for the filter to be used for longer 
periods, it must be adaptive. The essential meaning of the 
adaptivity is that less weight is given to old measurements 
than new ones or in other words, weakening the filtering ef- 
fect. This way, the filter adapts itself to the changes in the 
process. 

We will now describe two implementations for the fil- 
ter’s adaptivity: 

l Control over the filter adaptivity can be achieved by 

choosing the process noise probability distribution 
function P,, . A function like P,,(u) = S(u) means 
that the process has no noise, and will cause the filter 
to be not adaptive at all. On the other hand, choosing 
a constant function like P,,(u) = Ii’ will cause the 
filter to forget all the old measurements, and we will 
totally lose the filtering effect. What is needed is a 
function whose shape is between these two extremes. 
As the function becomes broader, the filter is more 
adaptive and the filtering effect weaker. The exact fil- 
ter shape should be fitted for every case individually. 

Another possibility is determining the adaptivity rate 
directly. This can be done by updating the process 
probability distribution Pxt+l (v) before taking the 
new measurement: 

Pi*(V) = P,,(v)ll” 

for Ic > 1. The factor k directly controls the adap- 
tivity of the filter by giving exponentially less weight 
to previous measurements. For example, letting k=2 
gives a weight of 1 to the current measurement, l/2 
to the last one, l/4, l/S, l/16... to the preceding ones, 
and so on. 1 
After updating the probability distribution, it should 
be normalized so that the sum over the probability 
space is 1. 

1.6. Resetting the filter 

Another common situation is an abrupt change in the 
process dynamics. For example, a body is falling with a 
constant acceleration and stops abruptly on the floor. Usu- 
ally the filter adaptivity is not enough to overcome this. 
For such quick changes, the needed adaptivity factor would 
have to be so large that the filter would lose its effect. A 
better approach is a detector that checks if each new mea- 
surement is feasible under the current process state. If it is, 
the measurement is accepted, if not, we reset the filter, be- 
cause the process is not valid any more. The description of 
this detector follows: 2 
In order to determine if the measurement is feasible, we 
compare the expected probability to see the measurement 
when P(x,) is known, to the probability to see the mea- 
surement where no apriori information is available (i.e. as- 
suming equal distribution of XT): 

y = ~~p(ytlm = P(YtIU> P(x, = u) du 
P(Yt) s P(Yt Iu) I( du 

(5) 

1 This adaptivity method is known and used in Kalman filter and Au- 
toregressive filters as in [2] and is adapted and expanded here for our gen- 
eral filter. 

‘This general idea is usually used in Kalman filter to reject wrong mea- 
surements (see [3]). 
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where K is such that sUEU Ii du = 1 
if y > 1 the probability to see the current measurement 
is higher, given the current state distribution P(x,), and 
so we accept the process as valid. On the other hand, if 
y < 1, the possibility to see the current measurement is 
less probable given the state distribution matrix P(x,), so 
we assume that the process is not valid any more and the 
process history should be reset. In cases where no changes 
in the process’s dynamic are expected, instead of resetting 
the filter, the current measurement should be ignored. 

2. The practical implementation of the general 
distribution filter 

The filter was derived for the case of general probabil- 
ity distribution function. A computer implementations of 
the filter are usually practical only for discrete distributions. 
However, even a continuous distribution can be approxi- 
mated by a discrete distribution. In many times, the dis- 
cretization can be a much better approximation than the 
Gaussian. The problem is that for a real-time implemen- 
tation, the matrix should be relatively small. When the state 
vector and the measurement are 2-dimensional, the prob- 
ability distribution can be described as matrices. But for 
higher-order cases the matrix become cubes or a hyper- 
cubes. The memory size needed for the implementation 
grows and the process is more time consuming. This is the 
main drawback of this filter, as compared with the Kalman 
filter, which is more compact and practical for larger state 
vectors. In the next chapter we demonstrate the implemen- 
tation of the filter through a practical example from image 
processing, where this filter is quite practical and efficient. 

3. A practical example: ‘l%acking a moving ob- 
ject in a video sequence 

A moving object is inspected by a video camera and its 
location on the image should be tracked. A set of n points 
on the object are given in the first frame, and it is known that 
the displacement d = (u, TJ) of the points between consecu- 
tive frames is within the range: Urnin. .U,,, , i&in. .V,,,. 
The object is tracked by tracking the mean motion of the n 
points. A complete description of the tracking system can 
be found in [4] and [5], we show here only the outline. The 
first stage in the tracking system is to find the displacement 
of a single point. It can be shown that the point’s displace- 
ment can be found confidentially only when the point is a 
sharp corner. In other cases, the displacement cannot be 
found precisely, and it should be described as a probability 
distribution. Fig. 1 shows such a probability matrix and its 
Gaussian approximation. It can be seen how the Gaussian 
approximation does not preserve the information held in the 

probability matrix because its peak fall in an area where the 
real probability is almost zero. 

Figure 1. Center: the probability matrix of the 
point inside the circle. Right: Gaussian ap- 
proximation. 

Filtering The velocity of the tracked point is assumed to 
be roughly constant in a short sequence. Therefore, filtering 
can be used to improve the point’s tracking, where the pro- 
cess is the velocity of the tracked point and each frame is a 
measurement. In many papers, the probability distribution 
of the displacement was approximated as a Gaussian, and 
the Kalman filter was used. However, this is unjustified, as 
the probability matrix can have an arbitrary shape, and ap- 
proximating it as a Gaussian causes severe information loss. 
However, with the filter introduced here these problem are 
avoided. Besides, the size of the probability matrix is rela- 
tively small, so an efficient implementation is possible. Fig. 
2 demonstrate the filtering effect. 

Using the tracked points to compute the object’s mo- 
tion Given the displacement probability matrices of the N 
points, the object’s mean motion is computed as follows: 
Let P; be the distribution matrix of the i-th tracked point. 
Let 

N 

Psum(~, Y) = C pi(z, Y) 
i=l 

For each value (u, r~), the expected squared error will be: 

MSE(u, v) = c, c, Psum(~, Y)KX - u12 + (Y - 4”l 
c, c, Psum(~c, Y> 

(u, 6) minimizes MSE, where: 

u = 

c, c, PSUrn(~> Y> 2 

c, c, Psum(~c, Y) 

v = c, c, Pwm(~, Y> Y 

c, c, Psum(2, Y> 

Choose (u, 8) as the object’s motion. 
The right matrix in Fig. 2 shows P,,, at one frame. 
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Figure 2. First row: The probability matrix 
of one point (left), after filtering (middle) and 
the all points sum matrix (right). Second 
row: Approximating all probabilities as Gaus- 
sians. 

Updating the tracked point’s location in order to keep 
the tracked point on the same image feature each tracked 
point must choose a single value for the displacement, and 
update its location accordingly in the next frame. 

As discussed in Section 1.3, choosing the maximum like- 
lihood entry from the matrix yields a very noisy result. A 
better choice for the working point is xoPt. The optimiza- 
tion criteria used is, that the point moves as close as possible 
to the object’s mean motion. 

More details and experimental results can be found in [4] 
and [5]. 

4. Summary 

We have introduced the general distribution filter as an 
alternative to the Kalman filter in cases where the measure- 
ment’s distribution cannot be approximated by a Gaussian. 
An effective computer implementation of this filter is pos- 
sible when the measurement has a discrete distribution, or 
when it can be approximated as discrete. The filter was im- 
plemented in a tracking application, but it can have various 
applications in other fields as well. 

A. Derivation of the Kalman filter as a special 
case of the global distribution filter 

In this appendix we show how the Kalman filter can 
be derived as a special case of the global distribution fil- 
ter when imposing the Kalman filter constraints. 

Transition in time of the state from t to t+l. In the Kalman 
filter case, the transition function cf, is a square matrix, and 
the state vector at t+l is: 

Wfl = Q, xt 

We will consider the case that Cp is invertible, so that Cp-l 
exists 3. For this case, Equation 2 turns to: 

P x*+1 = px, (a- l u> (6) 

xt is a Gaussian: 

Px,(u) = Ke(“-“‘)TC;1(“-“‘)12 = N(mt, C,) (7) 

Using Equations 6 and 7, it can be shown that the probabil- 
ity distribution of Pxlsl is also a Gaussian: 

where: 
mt+l = @mt, &+I = @,Ct@ T 

Therefore the state vector after the transition is: 
I xttl =ni(Qm,, (PCtQT) (8) 

where x:+1 is the transition of state t to state t+l without the 
process noise. We see that if xt is Gaussian, then xt+i is 
also Gaussian. To get the complete state transition equation 
we have to add the noise effect. 
The process noise 
We assume that the transition noise nt(u) is a multivari- 
ate Gaussian distribution with covariance matrix C, and a 
mean of 0. Thus: 

nt(u) = K e-uTCn u/2 = N(0, C,) 

As we have seen, the sum of two uncorrelated random vec- 
tors is also a random vector. The probability distribution of 
the sum is the convolution: 

Px(u) = Px, (u) @ P&) 

If xi and x2 are uncorrelated Gaussians, where x1 = 
N(ui, Cl) and x2 = N(u2, X2), the convolution turns 
into a simpler form: 

X=x1+x2=N(u1+u2, cl+&) 

which is also Gaussian. 
In our case, the two random vectors are the process and the 
process noise: 

nt (u> = N(0, %I> (9) 

x:+1 = N(@mt, @EtfDT) (10) 

3 We do not derive here the case where 4, is not invertible. In this case, 
the definition of @-I can be extended using the singular value decompo- 
sition for @. 
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From the convolution in Equation 3 we get: 

XL+1 = N(@mt , @Et (PT + C,) 

where xt+ 1 is the a priori state vector at t + 1. 
Taking the measurement 
So far we have found the apriori probability distribution. 
After taking the measurement we get the aposteriori distri- 
bution. 

In the Kalman filter, the measurement probability distri- 
bution is: 

Pylx = c x + N(0, q> = N(C x, Ey) 

and the process is 

Px = N(ji, Xx) 

In the Kalman filter it is assumed that the state vector x and 
the measurement noise hi(0, J&) are uncorrelated. 
The aposteriori distribution: 

p,’ = p(x 1 Y) = i’(Y~b4W = P(Y I x)P(x) 
s P(Y I xP(xPz 

It can be shown that Pz is a Gaussian with: 

x+=x+G,(y-CC) 

IS:,+ = (I - G, C)X 

where 
G, = Xx CT (C IS, CT + ICY)-’ 
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