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Abstract—We present a family of “normal” distributions over a matrix group

together with a simple method for estimating its parameters. In particular, the mean

of a set of elements can be calculated. The approach is applied to planar projective

homographies, showing that using priors defined in this way improves object

recognition.

Index Terms—Homography, lie groups, normal distribution, Bayesian statistics,

geodesics.
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1 INTRODUCTION AND OUTLINE

ONE reason to describe a distribution of homographies is to
introduce a meaningful prior for Bayesian image recognition.
Suppose we want to distinguish between N planar objects. The
input we are given is a picture of an object imaged from an
unknown direction. Thus, the image, D, should be obtained from
the original by some homography �. Let M be the model, in other
words, one of the objects. From Bayes rule we get:

P ðM;�jDÞ ¼ P ðDjM;�ÞP ðM;�Þ
P ðDÞ ¼

¼ P ðDjM;�ÞP ð�jMÞP ðMÞ
P ðDÞ :

ð1Þ

Thus, to be fully Bayesian, we need to know P ð�jMÞ, that is, a
distribution on the group of the homographies of a plane.

Many papers, such as [13], [5], deal with means on groups,
although all of them are for subgroups of the group of Euclidean
motions. In [3], [4], a method for putting a distribution on a Lie
group is described. The method is appropriate, though, only when
the group is compact (such as SOð3Þ, the group of rotations of the
3D space) or abelian (such as IRn, the group of translations) or direct
products of such groups. However, some models involve groups
that cannot be represented in such away; in particular, the views of a
planar object from different directions. These are modeled with the
group of plane homographies, that is, 3-by-3 matrices where
matrices differing only by scalar multiplication represent the same
homography. To get rid of this ambiguity, we normalize the
matrices to have determinant 1. This group is usually denoted by
SL3ðIRÞ. Distributions on such groups were treated in [11], but no
method for estimating expectation and the parameters of the
distribution was described and the absence of the covariance
greatly diminishes the ability of the distribution to fit data. In this
paper we propose a parametric distribution on such groups,
together with simple methods for finding the parameters.

The main idea needed in order to define the distribution is as in
[3] for the orthogonal group, the geodesic distance on the group. The
geodesic distance is used in order to define a mapping from the
group G to a linear space where we estimate the parameters of the
normal distribution. Anotherway to look at it is to say thatwedefine
an invariant distribution on the group and learn its parameters.

The next section shows the need to define the probability using
the group structure. In Section 3, the mathematical background
needed is described. Section 4 describes the actual algorithms for
estimating the parameters of the distribution fitted to given data.

The paper finishes with a demonstration of the methods applied to
object recognition.

2 MOTIVATION

Intuitively, a “normal” distribution on G should have a mean value
� and a covariance matrix �. In the case of the usual normal
distributions on IRn, we know that if a random variable X is
translated by t, then the probability translates

X � Nð�;�Þ ¼) ðX þ tÞ � Nð�þ t;�Þ:

Wewould like a similar property to hold for our distributions onG.
For example, suppose thatwe have a planar object and adistribution
of camera positions above it (Fig. 1). If the distribution of the
homographies from a set of images I to Image 1 is Nð�;�Þ, the
distributions of the homographies from the set of images I to Image 2
is g �Nð�;�Þ, where g is the homography between Image 1 and
Image 2. We would like the parameters to be invariant to the group
action, that is,

h � Nð�;�Þ ¼) ðghÞ � Nðg � �;�Þ:

One might try to define a distribution on the group G, for
example, SL3ðIRÞ, by treating it as a subset of IR9. There are a few
problems with this approach. First of all, SL3ðIRÞ is an
8-dimensional manifold and not 9-dimensional. One might take
only eight coefficients of the 3� 3matrix and define the distribution
using those. But, in this way, the invariance property doesn’t hold.
The solution is to define the distribution using intrinsic features of
the group G. We define the distribution with a given mean � by
mapping a normal distribution on the tangent space at � to the
group itself, while keeping the invariance properties.

In Fig. 2, the advantage of our distribution is demonstrated. A set
of homographies between a planar object and its image when the
camera is randomly placed on a sphere above the plane. The dashed
line is the density of one of the coefficients of the usual matrix
representation of a homography (as a 3-by-3 matrix normalized to
have determinant 1) and the solid line is the density of the
corresponding coefficient after our transformation was applied. It
can be seen that our distribution is more “normal” and informative.
The distribution of the coefficients after transformation is much
closer to normal, as is demonstrated by the results of Kolmogorov-
Smirnov [7] tests of normality of the coefficients shown in Fig. 2
(smaller numbers imply more normality, the numbers were scaled).

3 MATHEMATICAL BACKGROUND

The tools used here come primarily from Lie theory and
differential geometry. For more information on these subjects,
the reader is referred to [14] or [8].

A Lie group G is a group which is also a smooth manifold, such
that multiplication and inversion are smooth. For any point x on a
smooth manifold, one has the tangent space to the manifold at x,
denoted by Tx.

Many of the examples of Lie groups are matrix groups, for
example,G ¼ SLnðIRÞ, the set of all n-by-nmatriceswith real entries
and determinant 1. This set has a manifold structure inherited from
the natural manifold structure of IRn2

, the set of all matrices. Every
matrix in G has an inverse in G and as the determinant is
multiplicative, the product of two matrices in G is in G. Thus,
SLnðIRÞ is a Lie group.

Aswith any smoothmanifold and anypoint on it, if we have a Lie
groupG, one has the tangent space to the identity element eG which
we will denote by G.1 There exists a map, called the exponential map,
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1. The reason we pick a special name, G, for the tangent space, which we
could denote by Te, is that this space, called the Lie algebra of G, plays an
important role in Lie theory, and proofs of some of the following claims use
Lie algebra. We chose to omit the definition of Lie algebras and their
multiplication in order to keep this exposition as simple as possible.
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exp : G ! G such that, for any v 2 G and any two real numbers t; s;
we have expðtvþ svÞ ¼ expðtvÞ expðsvÞ. Moreover, d

dt expðtvÞj0 ¼ v.

Let us look again at G ¼ SLnðIRÞ. The tangent space to I (the

identitymatrix) is a subspace of the space of all matrices. In this case,

as with all matrix groups, we get that the exponent map is (hence,

the name) expðXÞ ¼ eX ¼
P1

k¼0
Xk

k! .

So, what is G for SLnðIRÞ? We should take all the matrices X

such that detðeXÞ ¼ 1. As is known, detðeXÞ ¼ etrðXÞ, thus the

condition is that trðXÞ ¼ 0. We denote the set of all n-by-n matrices

with zero trace by slnðIRÞ.
As the exponential map is not onto and 1:1 in general, the

inverse map, log , can be defined only in a certain neighborhood of

the identity. In the case of matrix group, logðgÞ ¼
P1

k¼1
�1k

k ðg� IÞk.
Next, wewant to put ametric structure on our groupGwhichwe

will use to define the distribution. A general way to define metrics

on a manifold G (not necessarily a group) is to assign to every

point g 2 G an inner product <;>g on the tangent space Tg at g,

enabling us tomeasure the length of a tangent vector.We denote the

norm on Tg derived from <;>g by k � kg.

kvkg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
< v; v >g

p
:

Now, we can define the length of a path � : ½a; b� ! G as follows:

Lð�Þ ¼
Z b

a

k�ðtÞ0k�ðtÞdt

when �ðtÞ0 is the derivative of �ðtÞ. The distance dðg1; g2Þ between

two points is the infimum of the lengths of paths between them,

and a path where the infimum is achieved is called a geodesic.

While it is not true in general, in a generic situation for every point g

in G there is a unique geodesic starting from g in every direction,

giving us the exponential map (not to be confused with the

exponential map above, although sometimes they coincide) expg :

Tg ! G such that dðg; expgðvÞÞ ¼ kvkg for every v in Tg. In what

follows, we denote the map expe, the Riemannian exponential map

from the tangent space at the identity element of G, by expp.

For the family of distributions to be left-invariant, the metric has

to be left-invariant. Multiplication by g defines a map Lg : G ! G.

Lg maps e to g and, thus, maps Te to Tg. It also carries the inner

product from Te to Tg in the following way: Let L�1
g be the inverse

map from Tg to Te. Now, the inner product defined by

< v; u >¼< L�1
g v; L�1

g u >e v; u 2 Tg

is Lgð<;>eÞ. For the Riemannian structure to be invariant, we need
to have Lgð<;>eÞ ¼<;>g . We conclude that an invariant Rieman-
nian structure on a group is determined by an inner product on Te.

Let us demonstrate the principle with some examples. For

G ¼ IRn, the identity element is 0. In this case, we can take <;>0 to

be the standard scalar product. An action on the left (this group is

commutative, thus it doesn’t matter) by an element g of IRn

translates the whole group, so we get that <;>g¼ Lgð<;>Þ is again
the standard scalar product. The length of a path now is the usual

length in IRn, so geodesics are straight lines. Thus, the invariant

metric we get on IRn is the usual Euclidian metric.

The followingdiscussion enables us todealwith the special linear

group SLnðIRÞ and the orthogonal group SOnðIRÞ.2 We choose a

certain inner product on G:3

< A;B >¼ TrðABT Þ:

As we will see, the distribution we get from this definition

coincides with that of [3] for the case G ¼ SOn, the group of

orthogonal matrices. Additionally, we still obtain a closed form for

the geodesics (the shortest paths) in this metric. It turns out that the

Riemannian exponential map in this case is [15]

exppðXÞ ¼ e�XT

eXþXT

:

Themap expp is onto, although not 1:1, so to define the inversemap,

logg, we need to choose X with the smallest kXk such that

exppðXÞ ¼ M . For the case G ¼ SOnðIRÞ, the group of orthogonal

matrices, we get G ¼ sonðIRÞ which is the n-by-n antisymmetric

matrices with zero trace. It follows that, for every X 2 G, we have

XT ¼ �X, yielding

exppðXÞ ¼ e�XT

eXþXT ¼ eX

and, respectively, loggðgÞ ¼ logðgÞ, giving the same as in [3]. Now,

we make the step from metric to distributions. Recall that the usual

normal distribution in IRn with mean � and covariance � has

density

�ðxÞ /�1
2ðx��ÞT��1ðx��Þ :

When trying to mimic that distribution in the case of Lie groups, we
have a small technical complication, namely, to define the
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Fig. 2. Distributions of a coefficient of the homography matrices in usual matrix

representation (dashed line) and after transformation (solid line). Kolmogorov-

Smirnov normality test result (scaled) is 84 before transformation and 19 after.

Fig. 1. A planar object imaged from different directions.

2. This discussion is true, in general, for semisimple Lie groups of which
these two are examples.

3. This inner product is invariant under orthogonal transforma-
tions: < OA;OB >¼ trðOABTOT Þ ¼ trðOTOABT Þ ¼ trðABT Þ ¼< A;B > .
This definition is also very natural in the setting of semisimple
groups, see [15].



covariance, we need to look at points in G as vectors, notmatrices, by
picking some basis v1; . . . ; vm for G and taking f to be themap from G
to IRm giving the coefficients according to that basis. This done, we
define “Lie-normal”4 distribution on G with mean � 2 G and
covariance � (a m-by-m matrix) as having the density

�ðgÞ / e�
1
2 fðloggð��1gÞÞT��1fðloggð��1gÞÞ

and this family of distributions is left-invariant by construction.

4 ALGORITHMS

The algorithms described in this section follow the algorithms of [1]
differing in the substitution of expp and logg in place of exp and log .

Our goal is to find a Lie-normal distribution on G that fits the

data. First, we should estimate the expectation of the distribution by

finding the “mean” of the data. In this section, we define the mean

on a Lie group. The notion of a center of mass on Riemannian

manifold was intoduced by Cartan, see [9, Chapter 8] and [12] for

further information. Remember from the previous section that the

distance in G is given by

dðg; hÞ ¼ kloggðg�1hÞk:

Thus, the mean of g1; . . . gn 2 G is [9]

� ¼ argmin
h2G

Xn
1

dðgi; hÞ2

¼ argmin
h2G

Xn
1

kloggðg�1
i hÞk2:

The first order approximation to the mean is given by

�̂� ¼ expp
1

n

Xn
i¼1

loggðgiÞ
 !

:

The error in this approximation is larger when points are far from

the identity. Thus, we left-multiply all points by �̂��1 so that �̂� is

moved to identity. Now, we compute the mean of these residual

points and combine this with �̂� to get a new approximation of the

mean. This process is repeated until the mean of the residuals is

sufficiently near the identity.

As this is a gradient decent method, it will converge to a local

minima. The uniqueness cannot be always guaranteed for example,

there is no unique mean between the north and the south pole of a

sphere. In the Appendix we show that for close enough homo-

graphies, the computation converges to the global minima.

Now, we want to find the covariance matrix. First, we find the

mean � of the data using the algorithm above, then map the data to

the tangent space of � and finally compute the covariance matrix.

Pick any basis fv1; v2; . . . ; vmg for G and let f : G ! IRm be a map

that takes X 2 G to its representation according to the basis as in

the previous section. Now, we can present the algorithm:

Any basis for G will do. For G ¼ SLnðIRÞ, we can take, for
example, the following basis:

0 1 0

0 0 0

0 0 0

0
B@

1
CA;

0 0 1

0 0 0

0 0 0

0
B@

1
CA;

0 0 0

1 0 0

0 0 0

0
B@

1
CA;

1 0 0

0 �1 0

0 0 0

0
B@

1
CA

0 0 0

0 0 0

1 0 0

0
B@

1
CA;

0 0 0

0 0 0

0 1 0

0
B@

1
CA;

0 0 0

0 0 1

0 0 0

0
B@

1
CA;

0 0 0

0 1 0

0 0 �1

0
B@

1
CA;

leading to the following f :

f

x11 x12 x13

x21 x22 x23

x31 x32 x33

0
B@

1
CA

0
B@

1
CA

¼ ðx11 � x22; x22 � x33; x12; x13; x21; x23; x31; x32Þ:

5 RESULTS

In this section, the results of applying our methods are demon-

strated. The computations of logg and exppwere done with Matlab.

In Fig. 3, we see examples from a set of images of a wall clock

shot from different positions in the street. The one closest to the

mean computed by Algorithm 1 is highlighted. This is how the

clock is seen in average by a passerby. In this case, one might

suggest to the designer to change the shape of the clock in such a

way that, on average, it will look circular. This can of course be

achieved by applying to the clock the inverse of the average

transformation found.
In Fig. 4, we see a set of images of a wallet with the average

view chosen by the algorithm highlighted.
We chose a contrived, but nontrivial example to test our new

distribution. For the object recognition task we took as the three
models the same cutter but opened to three different angles. Each
one of the models was imaged from different directions. In Fig. 5,
sample pictures of eachmodel are shown in a different row. The goal
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Fig. 3. Different views of a street clock with the mean view in the middle.

4. Strictly speaking, we have no right to call these distributions normal as
a notion of truly normal distributions on groups exists [6], although, these
distributions aren’t feasible for computational purposes.



was to recognize the model, opening angle, from a single image. A

training set of 100 images for each angle was given and Algorithm 1

was used to find the “average” view of each class. The distribution

parameters for both the usual normal distribution (see Section 1) and

Lie-normal (Section 3) distribution were computed. The test set

contained 60 images, different from the training set (20 for each

opening angle). The recognition stage was implemented in the

following way: For a given image, the best homographies to the

three average views were computed, using Lowe’s [10] feature

detector, with the homography between points of interest computed

by the RANSAC algorithm [2].

The different scoringmethodswere: choosing themodelwith the

smallest fitting error obtained by a homography (thus, using only

theP ðDjM;�Þ term in (1)), choosing the objectwith the homography

having the highest probability (using the P ð�jMÞ term in (1)), and

combining the two, thus using the full Bayes formula. The results in

the table below show that the fitting error performs poorly (in fact, it

is not better than random) which is due to the fact that homography

hasmany degrees of freedom and can align images well even if they

are not images of the same object. Combining fitting error with the

usual distribution is better, but as the results show, the Lie-normal

distribution combined with fitting error outperforms the other

methods.

6 SUMMARY

Weproposed a new family of probability distributions on the group
of homographies. The advantage of this new approach is the
invariance of the family, thus, these distributions are more suitable
to describe group-invariant distributions arising in computer vision.
The parameters of these distributions are easily estimated and the
density simply computed. The advantage of the method as opposed
to an ad hoc approach is demonstrated in a toy example of object
recognition.

APPENDIX

For a set contained in a convex ball (every two points in the ball
have a unique geodesic between them that is contained in the ball),
the uniqueness of the mean and the convergence of Algorithm 1
follows from [1, p. 160]. We show that a ball with radius 1

5 in the
Frobenius norm (kXk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðXXT Þ

p
, which is the Euclidian norm

in IRn2

) around I in G ¼ SLnðIRÞ sits in a convex ball in the sense
of Section 4, thus the mean of every set contained in it is uniquely
defined and reached by the algorithm. In what follows, d will be
the invariant metric on the group as defined above.

Lemma 1. The map expp is one-to-one on fX 2 slnðIRÞ; kXk < 1
2g.

Proof. Suppose exppðXÞ ¼ exppðY Þ, then

e�XT

eXþXT ¼ e�Y T

eYþY T

;

e�XT

eXþXT

e�Y T�Y eY
T ¼ I;

log e�XT

eXþXT

e�Y T�Y eY
T

� �
¼ 2�ikI k 2 ZZ:
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Fig. 4. Different views of a wallet with the mean view in the middle.

Fig. 5. Each row shows a few images with the same opening angle.



By CBH formula [14],

X þXT �XT � Y T � Y þ Y T þOðkXk; kY kÞðX � Y Þ

¼ 2�ikI k 2 ZZ

with the constant in OðÞ term smaller than 1. As kXk; kY k < 1
2 ,

we see that k must be zero and we have

kX � Y k < kX � Y kmaxðkXk; kY kÞ;
but then X ¼ Y and the injectivity is proven. tu

Lemma 2. The sectional curvature of SLnðIRÞ with the Riemannian
structure as above is bounded by 24.

Proof. This bound is extremely loose, but it is not the bottleneck of
our calculation, so it suffices. The norm is submultiplicative,
thus, for any X;Y 2 slnðIRÞ, we have

k½X;Y �k � 2kXkkY k:

By [8, p. 277], the formula for the affine connection on our
manifold is

rXY ¼ 1

2
ð½X;Y � þ ½XT ; Y � þ ½Y T ;X�Þ

and, by the previous equation,

krXY k � 3kXkkY k:

Now, the sectional curvature in the plane defined by X, Y is

�ðX; Y Þ ¼
< rYrXX �rXrY X þr½X;Y �X;Y >

kXk2kY k2� < X;Y >2
:

Without lost of generality, assume kXk ¼ kY k ¼ 1 and
< X; Y >¼ 0. We obtain the claimed bound on the curvature:

j�ðX;Y Þj � 3 � 3þ 3 � 3þ 3 � 2 ¼ 24:

ut

By [1], if the sectional curvature of a Riemannian manifold is
bounded from above by K and the injectivity radius is bigger than
R, then

ConRad � min
1

2
R;

1

2

�ffiffiffiffiffi
K

p
� �

:

Thus, we have ConRad > 1
4 , that is, the convergence of the

algorithm is assured on the ball of radius 1
4 in the invariant metric.

To see what it means in the usual Euclidian metric in SLnðIRÞ, let
�ðtÞ be a path in Rm. If k�0 0ðtÞk < C for 0 � t � 1, then k�ð1Þ �
�ð0Þk � k�0ð0Þk � 1

2C

k�ð1Þ � �ð0Þk � < �ð1Þ � �ð0Þ; �0ð0Þ >
k�0ð0Þk

< �ð1Þ � �ð0Þ; �0ð0Þ >¼
Z 1

0

< �0ðtÞ; �0ð0Þ > dt

¼
Z 1

0

<

Z t

0

�0 0ðsÞdsþ �0ð0Þ; �0ð0Þ > dt

¼< �0ð0Þ; 0 �ð0Þ > þ
Z 1

0

Z s

0

< �0 0ðsÞ; �0ð0Þ >

�< �0ð0Þ; �0ð0Þ > � 1

2
Ck�0ð0Þk:

Collecting the pieces:

k�ð1Þ � �ð0Þk � k�0ð0Þk � 1

2
C:

If we take �ðtÞ ¼ exppðtXÞ for kXk ¼ 1
4 , we can easily bound the

second derivative from above by 1
10 , thus using the last claim we

obtain: If kG� Ik < 1
5 , then dðG; IÞ < 1

4 . In otherwords, theEuclidian
ball of radius 1

5 sits in a convex ball in the Riemannian metric.
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