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Abstract. We show that a polynomial time algorithm exists to find all integer sequences with
a given autocorrelation function, and we show that the same methods yield a polynomial bound on the

number of different arrangements (up to translation and reflection) of n points on a line which generate a
n

2) unlabelled distances between pairs of points.

given multi-set of <
1. Introduction. Finding a function given only certain autocorrelation information
about it is a problem which arises in signal processing. Uniqueness of the solution and the
difficulty of finding it are usually the issues. We investigate here the case where the data
is a finite sequence of integers. We then look at the problem of locating n points on a line
so that the (g) distances between pairs of points correspond to some given set.

Much of the mathematics needed for our result has already been done in other con-
texts; we repeat some of it here for more self-containment in this context. References to
other work are given when known.

Problem Definition. For a finite sequence of integers bg, b1, ... b, (which are usually
constrained to be equal to +1, but which may be any integers of small absolute value for
our purposes), the autocorrelation function a(k) is defined by

n—k
(1) a(k) = bibigx for k=0,1,...,n.

=0

We may then ask the question: Given the integer n and the values a(0),a(1),...,a(n),
is the sequence bg, by, ..., b, uniquely defined up to reversal of order? Is it easy to com-
pute all such sequences? For the first question, we looked at the specific case of 0-1
sequences, that is, where we have b; € {0,1} for : = 0,1,...,n. We assume that the
sequence does not begin or end with 0 to avoid the ambiguity associated with shifting
the sequence (for example, for n = 5, 101100, 010110 and 001011 all have the same au-
tocorrelation function). We also did not consider two sequences “different” if they differ
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only by order reversal. Our computer search shows that for n < 10, no two different
0-1 sequences give rise to the same autocorrelation function. For n = 11, however, the
sequences 110000110101 and 111000101001 have the same autocorrelation function, with
values 6,2,2,1,2,2,2.1,1,1,1,1. However, there were only 234 such pairs among the
66,047 different strings with n < 17, and there are no sets of 3 or more different strings
with the same autocorrelation function for n < 17. This data would seem to indicate that,
while the solution is not always unique, it usually is, and is of only small multiplicity when
it 1s not. We now show, in fact, that the multiplicity of solutions is polynomially bounded
in the length of the sequence when the members of the sequence are restricted to belong
to a fixed set of small integers. We also show that all solutions can be found in polynomial
time.

We may assume without loss of generality that b, > 0, by # 0, and ged(b,, b1,...,b,) =
1. We may then define the polynomials b(z) and A(z) by:

In general, if f(z) is a polynomial in x of degree d with f(0) # 0, and with its highest
degree term coefficient positive, define the “reciprocal” polynomial f(z) by:

Note that if g(z) = f(r), then g(x) = f(z) for each such polynomial f(z). Equation (1)
then becomes:

(2) A(z) = b(a)b(z).

Given the polynomial A(z), we then wish to find a polynomial b(z) with integer
coefficients satisfying (2), whose coefficients may also have to belong to a certain restricted

set (such as {—1,1}).

2n

We will show that given a polynomial p(z) =", ciz' with ¢y, > 0, it is possible to
find all polynomials f(z) with integer coeflicients and with positive highest degree term
coefficient satisfying

(3) F@)f(z) = plx),
in running time bounded by a polynomial function of max(n, Efjo |lei])-

The algorithm to do this is essentially that of J. Rosenblatt and P.D. Seymour in
[2], which deals with more general polynomials, although he does not prove a polynomial
bound on the running time.



Algorithm. Factor p(z) into polynomials which are irreducible over the integers, and
which have the coefficient of their highest degree term positive. Arrange them into pairs
(p1(z), p1(x)), (p2(x), p2(x)), - -, (pr(x),pr(z)). If this cannot be done, there are no
solutions. Otherwise, let I be the set of all ¢ € {1,2,...,k} such that p;(z) = pi(z) and
let J={1,2,...,k} — I. Compute all 2|’I polynomials f(z) such that

- () (Lot

Jjel jEeJ

with d; € {0,1} for j € J. Sort out the resulting list to remove duplicates.

Proof that the algorithm works. If a solution to (3) exists, and if fi(z), f2(z), ..., fe(z)
are the irreducible factors of f(x) with positive highest degree term coefficients, then fi (z),
fz(x), . ,fg(m) are the corresponding irreducible factors of f(a:), so that the factors of p(x)
can be paired as indicated above. Since the pairings are unique up to their order, and the
order of the polynomials within each pair, and since the above algorithm finds all distinct
polynomials which are the product of £ polynomials, one from each of the ¢ pairs, it must
find f(z). Conversely, if f(z) is a polynomial found by the algorithm, it is clear that
f(@)f(z) = p(=).

Proof that the algorithm is polynomial time. Polynomials can be factored into irre-
ducible polynomials in time which is polynomial in n and depends only slightly on the coeffi-
cient size ([1]). Thus p(z) can be factored in time which is polynomial in max(n, E?Zo ;1)
and clearly the polynomial multiplications and pairings can also be done in polynomial
time. The remaining part of the proof is therefore to show that 27! is bounded from above
by a fixed power of E?Zo lc;|. This may be done by the method of C.J. Smyth in [3] in
the context of Newman polynomials, modified for more general polynomials.

First, we need the inequality:

(4) ha ] 175l = A,

[rj|>1

where h(z) = 2?20 h;x? is a polynomial with integer coefficients with kg > 0,hg # 0,
h(z) # h(x), and With complex roots ry,rg9,...,rq, and where A = 1.3247... is the real
root of the equation #* — 2 — 1 = 0. Eq. (4) follows immediately from an earlier result

h(z)

he) to prove (4)

of Smyth ([4]) in which he uses arguments involving the power series of =

when hy; = 1. We then need the inequality

(5) I (Zq]) |

Irj|>1

where ¢(z) = 2?20 ¢;jz? is a polynomial with real coefficients and complex roots
r1,72,...,7q¢. This inequality is credited in [3] to W. Specht ([5]). It may be proven as

3



follows:
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the above becomes:
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Substituting 6 = ¢ + ¢; in the integrand in the last term, where ¢; = arg(r;) for j =
1,2,....,d gives:

2w ) 2T —o;
/ ww—mwz/ Inlei®ei®s — |r;]c |dg = / In(|e"4 || — |r;|1)d
0 _

o;
2m—o; ) ) 27— (;SJ ]
=/ MW”WNmz/ MWWWNM+/ In]ci® — |rj||d¢
—®; —®; 0
2m ) 2T—; ] 2w )
:/ In|ei® — |rj||d¢+/ In|ei¢ — |rj||d¢>:/ In|e’ — |ry||dé =
2m—g; 0 0

27
1
/ §Zn(sin2 ¢ + (cos ¢ — |rj|)?)de.
0
This last integral may be evaluated to give:

2m 1
1 9 if |rj| <1
/0 5In(sin ¢ + (cos ¢ — |r;|)*)d¢ = {27[n|7«]| if |r;| > 1.

Substituting this result in (9) gives (8).
It is easier to use Specht’s inequality in the form (7), and to use (8) with (4) to get

1 2m .
(10) %/0 In|h(e'®)|d6 > InA,

where h(z) is any polynomial satisfying the constraints listed after (4). Since pe(z) and
pe(x) each satisfy these conditions for ¢ € J, and since from (8) we know that the left-hand
side of (10) is always non-negative when h(z) is any polynomial with integer coefficients,

we have
1 2n 1 27 0
2 )
5“‘(;‘31‘) > E/o In|p(e*”)|dd
k 1 2m k 1 27
_ 10 ~ 10
=3 on [ mledelan+ 30 5 [ mlpe) g
(=1 (=1
> 2|J|lnA,
so that

2n
1
11 < 2
(1) 71 ()

and since 3" oCi < (Z?Zo |ci])?, we have

in2

2n FIE I 1.23248...
e (Se) = (Se)
i=0 i=0
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and the proof is complete.

Clearly, 2!Y! represents an upper bound on the number of solutions to (3). The sum
of the squares of the coefficients of A(z) in (2) is bounded from above by (Y., b7)* <
(max; b;)*(n + 1)%, so that with (11) the general upper bound for a sequence of length ¢
1.232482627...

and maximum term magnitude m is (Zm2)2llnT2A = (Im?)

For the case of 0-1 sequences, this bound is somewhat larger than our data would
suggest. This is not surprising, considering that only a small fraction of the polynomials
b(x) which satisfy (2) will have coefficients which all belong to the restricted set. Also, the
polynomial A(z) in (2) probably cannot have nearly as many non-self-reciprocal irreducible
polynomial factors as is allowed by the bound on |J| implied by (7). It might therefore be
possible to get a better bound on the number of solutions to (1) derived above.

A simple lower bound for an upper bound for zero-one strings may be obtained by
defining the polynomial ¢g(x) by:

k_q

k
go) = [Ja+27= +2%),
j=1

and then letting p(z) = g(z)g(x). Equation (3) will then have 2% solutions with f(z) a
3+l g

polynomial whose coefficients are 0 or 1, and the degree of f(z) will be . In terms

of the length ¢ of the sequence, the number of solutions to (1) will then be approximately
(Th3 = (0-63092975... Thjig example is a modification of examples given by J.N. Franklin in

[6] and later by Rosenblatt in [7] in the context of homometric sets (discussed later).

Another approach to obtaining an upper bound to the number of solutions to (1) for
non-negative sequences {b;} is to solve the following problem: Given a polynomial p(z)
with non-negative integer coefficients, in how many different ways can p(z) be factored
into two polynomials with non-negative coefficients, as a function of p(1)? This is an
interesting problem in its own right, and we currently do not have a polynomial upper
bound. A lower bound for an upper bound can be obtained as follows: for any polynomial
f(z) with non-negative integer coefficients and f(0) # 0, define ¢(f) to be the number of
factorizations of f(x) into 2 polynomials with non-negative integer coeflicients, counting
different orders of the factors as different, for example if f(z) = 22 + 2 and g(z) = 12,
then ¢(f) =4 and ¢(¢) = 6. Now define s(f) by

s(f) =
so that ¢(f) = £(1)*'Y). We would now like to know how large s(f) can be. We may note
that if f(z) is a polynomial of degree d and if pi(x) is defined by:

k .
pele) = [ A0,
1=0
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then we have pi(1) = f(1)¥*!, and it is not hard to show that ¢(pr) > ¢(f)*!, so that
s(pr) = s(f) for k = 0,1,2,.... Thus it follows that there are infinitely many integers
n such that for some polynomial p(z), p(1) = n and ¢(p) > n*¥). In particular, if
f(z) = = + 1, then we have s(f) = 1, so that any upper bound on the number of non-
negative factorizations of a polynomial p(x) must grow at least linearly with p(1). A better

bound, due to S. Winograd ([8]), can be obtained by defining

k

fu@)= (22 + 2+ 1) (H(;ﬂ" + 1)) H(xzi“ — a2 1),

=0

We then enumerate the ways to partition the 2k + 1 factors of fi(z) given above into 2 sets
so that the product of the factors in each set is a polynomial with non-negative coefficients.
The factor 22 4+z+1 may be assigned to either set, and, for fixed 5 € {0,1,..., k} the factors
Y0¥ 41 are assigned to the same set, giving a product
+ z + 1, which has non-negative coefficients. The factors 21t +1

and 22’7 + 1, whose product is also non-negative, are then assigned to the opposite set (if

j < k). Finally, the factors z + 1, 22 +1,... ,2¥ + 1, and the pairs of factors 22 + 1 and
22 2?41 (whose product is non-negative) for ¢ = j+2, 43, ..., k may be arbitrarily
assigned to either set. For each value of j < k we have 2% possible ways to assign the
factors according to the above rule, 281 if j =k, or (k + 2)2F ways altogether, and each
way gives a non-negative factorization of fi(z). We therefore have ¢(f1.) > (k +2)2*, and
since fr(1) = 3 - 2**! we have

In((k + 2)2%)
s(fi) > In(3- 261

The value of the right side of (8) is maximized when k& = 15, when we have s(fx) >
1.0854423.

We may also ask how many non-negative polynomial divisors f(z) a given polynomial

p(z) can have (regardless of whether the quotient % is non-negative). The number is

unbounded as a function of p(1), since ™ 4+ 1 has 2% + 1 as a divisor when n is odd and
d divides n, and n can have arbitrarily many divisors. However, it may well be bounded
by a polynomial function of max(p(1),deg(p)), where deg(p) denotes the degree of p(z).
The same would then be true for ¢(p), even if ¢(p) turned out not to be bounded by a
polynomial function of p(1) alone.

Points on a Line. A problem in discrete geometry related to inverting autocorrelation
functions is the problem of determining the position of n points on a line, given the (g)
unlabelled distances between all pairs of them. Precisely, we are given a multi-set S of (g)
non-negative real numbers and we wish to find real numbers 1, 22, ..., z, such that

(12) U flei =251} = S.

1>]



We may then ask the questions:

1. If a solution exists, is it unique up to translation and reflection? If not, how many
different solutions can there be as a function of n?

2. Is it possible to compute some or all solutions in polynomial time?

Question 1, in particular, has been given considerable attention in the literature,
usually as a problem occurring in crystallography in which the point s involved form a
repeating unit of an infinite periodic set in R?. (In this context, equation (12) is modified
by having the absolute value signs removed and the restriction ¢ > j dropped. The set
S then consists of n? differences rather than (g) distances.) If more than one solution
exists for some S, the solution sets which share the same difference set are then called
homometric sets. Work on finite homometric sets goes back at least as far as 1939 ([9]),
with more recent results in [6], [2], and [7]. Here, we will limit our concerns to finite sets

in R
To avoid ambiguity, we can require:
i) ¢ <a2 <. <y,
i) 1 =0

i) x1,22,...,x, is lexicographically smaller than or equal to x, — 2y, Tp—Tp_1,...,Tn—
1.

We will call the members of s dy,ds,... ,d(n), and assume that d; > dy > ... > d(n)

Given these conditions, we have, in addition to: a) #; = 0, the equalities:

b) Tp = dl
¢) Tp— Ty =ds
Q) Shes(ay —21) = p_y 2k —n— Dy = X4 de

These equalities uniquely define the multi-set of points for n < 4. For n = 5, the 4 points
other than z3 are uniquely defined, and x3 is then defined by the following lemma:

Lemma 1: If z1,x5,..., 2%,y and z are real numbers, and if the <k42—1) distances asso-
ciated with the multi-set {z1,25,...,2,y} are the same as the distances associated with
the multi-set {xy,z9,..., 2k, 2}, then these two multi-sets are either equal, or equivalent
under reflection and translation. Specifically, if we assume that xy < x9 < ... < 2y, then
we must have either y = zorelse y+ 2z =z; + vp_i41 fore = 1,2, ... k.

Proof: We assume that the above statement is true for k¥ < n — 1 for some integer n,
and we will then prove it for k = n.

Since the (}) distances {|z; — z;|};>; are contained in each set, the hypothesis of the



Lemma is equivalent to:

(13 Ul = o1y = Ul =213

Equating the maxima of these multi-sets gives

T+ T

2

Tn + 21

2

so that if y # z we must have y + z = z; + z,,. We then must have:

{lzr =yl U{lzn =yl = {len — 2} U{len — 2]} = {dm, [2n — 21 — dml},

where d,,, denotes the maximum of the multi-sets in (13). This implies:

U s — vl = U (s~ =1,

which, using the inductive hypothesis, implies that if y # z, then y + z = z; + x,,_;41 for
t=2,3,...,n— 1. Since we already know that y + z = z; + z,,, we are done. o ©

Thus for n = 5, z3 can only go in one place subject to constraint 2z once the other 4
points are defined, and so the arrangement of n points on a line is uniquely determined
by their (g) unordered distances up to translation and reflection for n < 5. For n = 6,
however, we may use the example given earlier of the two binary sequences with the same
autocorrelation function, by treating the 1’s in the sequences as points on a line, with their
positions in the sequence corresponding to their locations on the line. This gives the two
point sets 0,1,6,7,9,11 and 0,1,2,6,8,11 which have the same distance multi-sets.

This example generalizes to the sets X = {0,1,5,6,...,n—=3,n—2,n,n+1,n+3,n+5}
and X U{2}U{n+2} —{n+1} —{n+ 3} for all n > 6.

In fact, if the coordinates of the points are known to be integers, the problem of
finding the points, given the multiset of distances between them is equivalent to the prob-
lem of inverting the autocorrelation function. Specifically, the polynomial p(x) in (3) is
determined from S in (12) by defining:

2k
(14) pla) = Zc”_mrcl,
1=0
where k is the maximum of S, ¢ = n, and, for j = 1,2,...,k, ¢; is the number of

members of S equal to j. A non-negative polynomial f(z) = Zf:o fiz® which solves (3)
will correspond to a multi-set {z1,z2,...,2,} solving (12) by letting

k
{$17$27"' 7$n} = U{L}fza
1=0
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that is, the point ¢ occurs f; times in the multi-set {zy,z2,...,2,}. Conversly, given a set
of integers {z1,x2,...,x,} satisfying (12) we translate the set so that its minimum is 0,
and we can then go backwards to find a solution to (3). In the generalized example given

2l ) (a® —a? + 1) or fla) = (St — ) (2® — a2 4 1),

Thus if the points are integers, we can find them in polynomial time in max(SU{n}).

above, we have f(z) = (

z—1 z—1

If we cannot assume that the points have integer coordinates, we can analyze the
problem as follows:

We can normalize the distances in the given multi-set S by dividing equation (12)
through by the maximum of S. Thus we can assume without loss of generality that
dy = 1 (where dy,ds,...,d n are the members of S, and are considered given and fixed

2

for this analysis). We also assume that conditions ¢ and it apply to z1,22,...,2,. We

now construct a system L of linear equations with variables yy,ys ... Y- The system
2

contains y; = 1, y; + y; = y¢ whenever d; + d; = d¢, and y; = 0 whenever d; = 0. Clearly

yi =d; for e =1,2,..., (g) is a solution to this system. If it is the only solution, then d;

must be rational for each ¢ since the data in L are rational. Otherwise, let L* denote the

set of solutions to L. When y; = d; for: =1,2,..., (g), the equations:

(15a) ] = 0
n i—1 (g)
(15b) U U{ei =2} = U{ved
i=2 j=1 =1

are equivalent to (12) plus requirements ¢ and ¢¢, and will therefore have the same number,
clearly a finite number, of solutions. (This will be at most twice the number of solutions
that the system has with requirement ¢ added). Assume that there are k distinct solutions
to (12), ¢, and ii, and denote them by (z¢,z8,... 2%) for £=1,2,... k. For each ¢, there
must be a one-to-one function ¢¢ mapping {(¢,7)|n > ¢ > 7 > 1} into {1,2,..., (;)} such
that

(16) xf — 335 =d

The solution (z¢,z,...2%) is then given explicitly in terms of ¢, by:

(17a) i =0

(170) v =d, 1 fori=23,... .n

The sets |J;_,{dg,(i,1)} must therefore be different for each ¢, since the corresponding

solutions (z¢,z%,...,2!) are distinct by definition. Now, if (y1,yz,... ,y(n)) € L* and if
2

we define (z{,75,..., %) by:

(18a) =0



(18b) Tt = Yg(iny fore=2,3,....n
then we will automatically have
(19) Ty =T =Ygy forn>i>j>1

since the equality
(i) = dgu1) = dgy iy formzi>j 22

is implied by (16) and (17b), which then implies

Yr(i)) = Ygqu(G1) = Ygqu (i) form=>1i>7 > 2,

since these equalities must then be contained in the system L by definition. This, to-
gether with (18b), implies (19). It follows that (z¢,Z5,...,7%), as defined by (18a) and

(18b), is a solution to (15a) and (15b) whenever (yi,y2,. .. ,y(n)) € L*. We know that
2
if (y1,y2,... ,y(n)) = (dy,ds,... ,d(n)), the vectors (4,75 ...,7%), £ = 1,2,...,k, will be
2 2
distinct. It follows from continuity considerations that if
(20) ly; — d;| < € f01‘i:1,2,...,<g)
for some sufficiently small positive number €, these k vectors will remain distinct. If we
also have (y1,ya2,... ,y(n)) € L*, then we must have y; > 0 for ¢« = 1,2,..., (g), because
2
if d; > 0 for some ¢ we can choose ¢ < d;. If d; = 0, then the equality y; = 0 will be

contained in L, so that we have y; = 0. Finally, since L* is an affine space defined by
rational equalities, rational points are dense in L*, and since (d;,ds, . .. d(n)) € L*, for any
2

given € > 0 we can choose rational numbers y;, y2, . . . Y(n) such that (y1,y2,. .. ,y(g)) e L*

and such that (20) holds. It follows that we can replace the members of S in (12) with
non-negative rational numbers so that (12), with requirements i and ii, has at least as
many distinct solutions as it did with the original S. This can then be multiplied through
by a common denominator to obtain an all-integer problem, for which we can then use
(14) to get the problem into the form of (3). Moreover, it seems that one can readily get
it into that form in polynomial time, but unfortunately, the degree of the polynomial p(z)
in (3) can grow exponentially with n, even in the case where the solution to the system
L is unique. This precludes carrying out the first step of the algorithm, which involves
the factorization of p(x). We therefore do not know at this time whether the points on a
line problem can be solved in polynomial time for general positions. It seems it should be
possible to do so, but it would, at least, require some modification of this method.

However, the bound on the number of solutions to (3) depends only on the sum of
the absolute values of the coefficients of p(x), which, for the points on a line problem, is
always equal to n? 2.465
n > 2 (the factor + coming about from the enforcement of requirement #iz). As with the

2
autocorrelation case, it seems that a better bound should exist. As for a lower bound

. It follows that the number of solutions does not exceed %n for

for an upper bound we can use the example given previously for a lower bound for the

11



upper bound for zero-one sequences with a given autocorrelation function to show that
there are infinitely many n such that there exists an example with at least n°-¢3%9 different
arrangements of n points on a line with the same distance multi-sets.

Points in E¢. The above questions concerning points on a line can just as easily be asked
about points in d dimensions, for d > 2. The examples for one dimension automatically
apply to E¢ to show that for n > 6 there exist two arrangements of n points in E? which
are different (not equivalent under translation, rotation, or reflection), but which have the
same multi-set of (g) distances. For E? an example exists for n = 4, which is clearly
the smallest possible, namely {(0,0),(0,2),(1,0),(1,2)} and {(0,0),(0,2),(1,0),(—1,0)},
which share the distance multi-set {1,1,2,2,v/5,v/5}. Note that this violates Lemma 1
proven for E'. In fact this example may be extended by adding any point z to both sets
which is equidistant to the alternating points (1,2) and (—1,0). This method can be used
successively to generate pairs of multi-sets of d+ 2 points in E? which are different, span an
affine space of d dimensions, and have the same distance multi-sets. We have not examined
the problem of finding an upper bound to the number of different multi-sets of n points in
E? which share the same multi-set of distances, or of efficiently computing some or all of the
point multi-sets, given the distance multi-sets. The question of how many different multi-
sets of points can share the same difference multi-set, however (the difference problem is
quite different from the distance problem for d > 2), might be approachable using the same
methods as above, working with multi-variate polynomials instead of univariate ones.
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