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Abstract

In this paper, we consider the generative model for affine transformations on point sets and show how a priori information on the noise and

the transformation can be incorporated into the model resulting in more accurate algorithms. While invariants have been widely used, the

existing literature fails to fully account for the uncertainties introduced by both noise and the transformation. We show how using such priors

leads to algorithms for Bayesian estimation and a probabilistic interpretation of invariants which addresses the limitations of current

methods. We present synthetic and real results for object recognition, image registration and determining object planarity to demonstrate the

power of using priors for image comparison.

q 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper we show how we can incorporate knowl-

edge of both the transformation and noise priors into a

probabilistic analysis of the affine point generative model.

This model leads to different estimators, namely a Bayesian

estimate of posterior probability and a probabilistic

interpretation of the affine invariant. We show how using

such priors improves the performance of the algorithms for

registering, matching and comparing images. Two of the

main criteria for comparing images or images to models are

registration error and invariants. These methods have a long

history [1,6] and together with image based representations

make up a substantial part of image pattern recognition

techniques. Algorithms that use registration find the

transformation that minimises a given residual error. The

differences between methods are the transformations (i.e.

Projective, Affine, Euclidean etc.) and the error metrics

used. In contrast, invariants are functions of points that are

independent of the transformation and affine invariants are

well studied as a tool for matching and indexing [9,6]. The

affine model is also useful since planes under a weak

perspective camera model behave in an affine manner.

The limitation of standard techniques is that they do not

correctly account for data noise. Thus in the case of

registration, the commonly used least squares metric might

be inappropriate. Similarly for affine invariants, invariance

does not hold when the data is noisy. In such a case, the

estimate of the invariant will depend on both the amount of

noise present and the applied affine transformation. Often,

for object recognition the invariant is computed and

matched with a set of models and the model, which is

closest to the estimate in a Euclidean sense (i.e. using least

squares of the difference) is declared the winner. This is ad-

hoc and can only be justified by computational ease. There

have been a number of papers under the name of shape

space in the statistical literature (e.g. [5]) and in the

computer vision literature that have studied the impact of

noise on the invariant in order to improve recognition rates

[4] and indexing [7]. However, these methods do not fully

account for all available prior information. While [4]

introduces a probabilistic affine invariant its analysis only

considers the effect of noise on the invariant and does not

incorporate information about the transformations. In Ref.

[3], a related method is proposed for computing the

Maximum Likelihood Estimate of the transformation. We

point out that the effect of noise on the invariant will also

depend on the scale of the transformation. If the transform-

ation is large then the relative impact of the noise is small
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and vice versa. Thus this relative effect of the transform-

ation will have to be accounted for in a probabilistic setting

by means of a prior on the affine transformations.

The rest of the paper is organised as follows. Section 2

briefly describes the generative model for our case and

Section 3 describe the different estimators that follow from a

probabilistic interpretation of the generative model. Section

4 describes the results of applying our methods to the

problems of object recognition, image registration etc. and

Section 5 will present some conclusions.

2. Generative model for affine points

In this section we describe the generative model for

affine-transformed points. The observed two-dimensional

points y are generated by an affine transformation on a

model m and is corrupted by additive Gaussian noise.

Hence, y ¼ Am þ n where A is the 2 £ 2 affine transform-

ation matrix1 applied to the model m and n is the Gaussian

noise added with n , Nð0;
P

nÞ: Similarly, the affine

transformations are assumed to come from a Gaussian

distribution i.e. A , NðmA;
P

AÞ: It must be kept in mind

that the Gaussian assumption of the transformation model

prior is only for analytic purposes and we can easily account

for non-Gaussian priors by expressing this prior as a mixture

of Gaussians. We also remark that the problem of learning

meaningful priors is beyond the scope of this paper. In

subsequent analysis, we will examine the effect of both the

transformation and noise priors on the estimation process.

3. Estimation methods

In this section, we will describe different estimation

methods as applied to our generative model.

3.1. Bayesian estimation method

Since the residual error is d ¼ y 2 Am and we have a

Gaussian noise model, the conditional probability of the

observed data given the model and the transformation is

PðylA;mÞ ¼ e21=2ðy2AmÞT
P

21

n
ðy2AmÞ2 We can rewrite the

term Am ¼ Ma; where a is the column-ordered vector

containing the terms in A and M is the appropriate matrix

that contains elements of m: Thus we can rewrite the

conditional probability given above as

PðylA;mÞ ¼ e21=2ðy2MaÞT
P

21

n
ðy2MaÞ ð1Þ

In our generative model the affine transformations are

drawn from a Gaussian distribution, which implies that

a , Nðma;
P

aÞ: Therefore, the posterior probability of

observing the points given a model m is obtained by

integrating out the affine transformation by means of its

prior, i.e.

PðylmÞ ¼
ð

PðylA;mÞPðAÞdA

¼
ð

e21=2ðy2MaÞT
P

21

n
ðy2MaÞe21=2ða2mÞT

P
21

a
ða2mÞda

ð2Þ

The exponent in Eq. (2) is quadratic in the affine

transformation a and hence can be solved easily by

completion of squares. For the problem of object recog-

nition if we have two models m1 and m2; we can compute

the conditional probabilities, Pðylm1Þ and Pðylm2Þ and

classify according to whichever likelihood value is higher.

In Ref. [2], a similar prior is used to control the estimate of

an affine transformation between two point sets.

3.2. Affine invariants

To compute affine invariants we use the first three model

points as the basis (i.e. m1;m2;m3). Therefore any point m

is described by its co-ordinates ða;bÞ in the invariant space.

These co-ordinates satisfy the relationship,

m 2 m1 ¼ aðm2 2 m1Þ þ bðm3 2 m1Þ ð3Þ

The relationship in Eq. (3) can be seen to be invariant to the

application of an affine transformation on the model points

since m 2 m1 ¼ aðm2 2 m1Þ þ bðm3 2 m1Þ ) Am 2

Am1 ¼ aðAm2 2 Am1Þ þ bðAm3 2 Am1Þ: The ‘naive’

way of using the affine invariants for object recognition is

to compute the affine invariants (c ¼ ða;bÞ) for a given set

of observed feature points y and compare them with the

model co-ordinates c1 and c2: The model closest to c is

chosen as the classification. As we shall show in the next

subsection this method fails to satisfactorily account for the

effect of the noise and the transformation on the estimated

invariant (in particular one must note the effect on the basis

points).

3.3. Probabilistic interpretation of invariant

In our formulation, the k th feature point is given by

yk ¼ Mka þ nk and by definition of the invariant, we have

yk ¼ ð1 2 ak 2 bkÞy1 þ aky2 þ bky3: Consequently, the

noise term in the k th point can be expressed as

nk ¼ yk 2 Mka

¼ ð1 2 ak 2 bkÞy1 þ aky2 þ bky3 2 Mka

¼ ½ð1 2 ak 2 bkÞM1 þ akM2 þ bkM3 2 Mk�a

þ ½ð1 2 ak 2 bkÞn1 þ akn2 þ bkn3� ð4Þ

1 While the affine transformation has six parameters, the translation terms

do not affect the invariants. Hence to ensure a uniform comparison we

remove the translation term from our model. It can be easily incorporated if

required.
2 There is a normalising term that will make this a true probability

distribution. However, unless explicitly required in our analysis we will

drop this normalising constant for notational convenience.
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This implies that given the object model and the affine co-

ordinates, the ‘estimated’ noise in any feature point depends

on the four parameters of the affine transformation ðaÞ and

the six parameters of the noise in the basis points (i.e. in

n1;n2;n3). Therefore, we have the following conditional

probability for PðnklMÞ;ð
e21=2nT

k

P
21

n
nk PðaÞPðn1ÞPðn2ÞPðn3Þdadn1dn2dn3 ð5Þ

where the term nk is as given in Eq. (4). However, the

probability that we are interested in is Pðak;bklMÞ: Thus we

transform the probability distribution from nk to that of

ðak;bkÞ by a change of variables. This uses the Jacobian of

the transformation between the two variables, i.e. lJl
between nk and ðak;bklMÞ: Now to express the required

probability as an integral, we concatenate the affine

transformation and the noise terms into a single vector,

x ¼ ½a;n1;n2;n3�: Therefore,

Pðak;bklMÞ ¼ e21=2s
ð

e21=2ðx2mxÞ
T
P21

x
ðx2mxÞlJldx ð6Þ

where J is the required Jacobian matrix and s is a constant

term. From Eq. (4) we see that

›nk

›ak

¼ ½M2 2 M1�a þ n2 2 n1 ¼ Lax

›nk

›bk

¼ ½M3 2 M1�a þ n3 2 n1 ¼ Lbx

where La and Lb are appropriate matrices. Since the above

partial derivatives can be expressed as linear constraints in

x; the entire Jacobian can be represented as a quadratic

expression in x; i.e. lJl ¼ lxTBxl: But we have N 2 3 affine

co-ordinates that are being transformed, making the

effective transformation lJlN23
: Therefore, the resultant

form for the probability function Pða;blMÞ is

e21=2s
ð

e21=2ðx2mxÞ
T
P

21

x
ðx2mxÞlxTBxlN23

dx ð7Þ

where ða;bÞ represents the affine co-ordinates for the

observed points. This formulation is similar to that of

Ref. [4]. However, the affine transformation prior is also

included in our analysis.

In our solution to Eq. (7) adopted from Ref. [4], the

absolute value is dropped thereby providing an approxi-

mation when N is even since then N 2 3 is odd. This

approximation is reasonable only when the covariances
P

a

and
P

n are small. However for odd powers of N this

solution is exact. The reader is referred to [4] for details.

Also we would like to address the issue of non-Gaussian

priors for the affine transformation, a situation that arises in

real life. Often we can reasonably approximate PðAÞ as a

mixture of Gaussians, i.e. PðAÞ ¼
P

i miNðmi;
P

iÞ where mi

is the relative mixing proportion and Nðm;
P
Þ denotes a

Gaussian distribution. As can be easily seen from Eqs. (2)

and (5), we can incorporate this non-Gaussian prior into the

analysis due to the linearity of the integral operator.

To demonstrate the correctness of the probabilistic

invariant (Eq. (7)) we compare its distribution with that of

an empirically derived one in Fig. 1. In this comparison, we

use a 4 point model which has an affine shape of (1,2), i.e.

m ¼ ½ð0; 0Þ; ð1; 0Þ; ð0; 1Þ; ð1; 2Þ�: The mean of the affine

Fig. 1. (a) shows the empirically derived affine shape distribution for a given model. The analytic expression for the probability distribution is shown in (b) and

is seen to be identical to the empirical distribution. The cross-correlation between the two distributions is 0.999 showing that our derivation of the analytic

distribution is correct.
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transformation prior is

ma ¼
1 0

0 1

" #

and its covariance is
P

a ¼ 0:02I4; where I4 is a 4 £ 4

identity matrix. However the additive noise used is non-

white and has a covariance of

X
n

¼ 0:05
1 0:1

0:1 1

" #
:

For the empirically derived distribution, we use the

parameters given above to compute the affine shape 5

million times and the resultant probability distribution of the

affine shape is shown in Fig. 1(a). This can be compared

with the analytically derived distribution for the same case

which is shown in Fig. 1(b). As can be seen the two

probability distributions are identical and in fact the cross-

correlation coefficient of the two distributions is 0.999. This

clearly demonstrates that the analytic expression for the

probabilistic invariant is correct inspite of the approxi-

mation made due to the dropping of the sign of the Jacobian

in our analysis.

Finally, in the standard least squares method, the model

with the smallest residual error, ðd ¼ ky 2 Âmk2Þ is

selected. Here Â is the linear estimate of A:

4. Experiments

In this section we will describe experiments with

synthetic and real data that demonstrate the power of

explicitly incorporating priors into the generative model for

object recognition and image comparison.

4.1. Recognition accuracy

In this subsection, we will describe the performance of

the different algorithms for object recognition. We will

briefly describe the experimental protocol used and show

the results than can elucidate the behaviour of the different

recognition methods.

For our experiments we used point sets that range from

4 to 10 points in each data set. For each case we

generated two models and performed recognition using

the various algorithms. Our experiments are symmetric,

i.e. for each pair of models generated, we test for

recognition accuracy with one instance of each model

generating a data set. The error rates are averaged over

1000 trials (i.e. the averaging is over ð10 2 3Þ £ 1000 £

2 ¼ 14; 000 experiments).

In our experiments, not only do we look at the

performance of the different algorithms but we are also

interested in looking at the effect of incorporating the priors

into our models. This is of importance since we want to

demonstrate the power of using such priors in recognition

and comparison. The models m1 and m2 are generated by

picking N 2 3 affine co-ordinates (the other three points

being the canonical basis) using a Gaussian distribution with

a mean 0 and variance of 5. Now for each instance, we do

not simply pick an affine transformation A and noise n from

fixed distributions. Instead we first pick priors for the

transformation and noise and then use them to randomly

pick instances of the transformation and noise. The ranges

for the transformation prior and noise are [0,5] and [0,0.5]

respectively. Therefore for each instance, we first pick the

quantities
P

A and
P

n uniformly from these ranges. Thus we

now construct two priors
P

A ¼ s 2
AI4£4 and

P
n ¼ s 2

n In£n

where In£n is an n- dimensional identity matrix. Thereafter

we draw an affine transformation A and noise values n

from
P

A and
P

n ; respectively and generate data points

y ¼ Ami þ n where i [ {1; 2}; i.e. each of the two models

are used once.

Since the error rate for the Bayesian method is always the

lowest, we use this as a lower bound and show the relative

errors by dividing each of the error rates by the Bayesian

error rate. This allows us to focus on the relative

performance of each method without having to account

for the actual error rates which will vary according to

the dimensionality of the problem (i.e. vary with the number

of points involved). In Fig. 2(a) we show the relative error

rates for the different methods that are appropriately

labelled. The method due to Leung et al. [4] is also shown

for comparison. Obviously the relative Bayesian error rate is

always 1.

The plot labelled ‘naive invariant’ is one where the

invariant for the data set is computed and compared with the

two models to find the closest one in the Euclidean sense.

This is of course the standard method of using an invariant

for recognition without using any prior information and

expectedly does the worst amongst the different methods

(as indicated by its high value of relative error). It can also

be clearly seen that our probabilistic invariant (‘prob

invariant’) does significantly better than ‘Leung’s method’

due to the fact that our generative model and the subsequent

analysis in Section 3.3 explicitly incorporates priors for both

the affine transformation A and the noise n:

It bears repeating that just the way we use a Gaussian

prior for data noise (to reflect the fact that large noise values

are less likely) the knowledge that certain affine transform-

ations are less likely than others will have to be explicitly

accounted for in our model. This is obviously important

since in the process of computing the invariant the data is

scaled by an estimated affine transformation implying that

the scale of the affine transformation will determine the

impact of noise on the accuracy of the invariant computed.

Thus in a truly probabilistic analysis, we will need to

account for the transformation prior as is the case with our

probabilistic invariant. In contrast, Leung’s method cannot

use the prior information of the affine transformation and is

limited to using the knowledge of the noise prior. It is also
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worth noting that a simple least squares estimation method

(that does not use any priors) does better or as well as the

probabilistic invariant method. This could probably be

attributed to the loss of information that results when we

compress the N point data into N 2 3 affine co-ordinates

(i.e. the invariant). There is no such compression of

information in the full Bayesian method resulting in the

highest accuracy. However, in the event we are interested in

computing an invariant and using it for object recognition,

our experiments demonstrate that we should use all the

prior information available and incorporate it into our

probabilistic analysis.

In the results discussed above (Fig. 2(a)) for each

instance of recognition, we used the correct priors (i.e. we

provided the Bayesian method, Leung’s method and our

probabilistic invariant method with the covariances
P

A andP
n ). Note that we only provide them with the correct prior

and not the actual values of transformation and noise that

are randomly drawn from these priors. However in a real-

life situation we will have to take recourse to using a fixed

prior. Thus for the results shown in Fig. 2(b) we show the

recognition results for the same data set but using fixed

priors that are the average of the different priors used. We

may remind the reader that both the ‘naive invariant’ and

‘lsq fitting’ methods do not use the prior information and

hence their error rates do not change. However it is

interesting to note that Leung’s method’s performance

becomes similar to that of the naive invariant while our

probabilistic method does not change that much in

performance. Thus while expectedly both methods will do

worse here (since we have less knowledge of the underlying

priors), our method performs better than that of Ref. [4].

4.2. Likelihood ratios for matching sets

To use the probabilities defined earlier for hypothesis

testing we will have to compare them with a threshold.

Hence we need to ‘normalise’ the probabilities for mean-

ingful thresholds to be defined. In the case of the Bayesian

method of Eq. (2) we have a conditional probability which

can be extended to a likelihood. Thus, given two point

sets y1 and y2 we can define their Bayes likelihood as

Lbðy1; y2ÞPðy1ly2Þ=Pðy2ly2Þ: However a symmetric Bayesian

Likelihood can be defined as

Lbðy1; y2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pðy1ly2ÞPðy2ly1Þ

Pðy1ly1ÞPðy2ly2Þ

s
ð8Þ

This ratio is symmetric (Lbðy1; y2ÞLbðy2; y1Þ) and is normal-

ised to lie in the range [0,1]. The likelihood for the

probabilistic invariant can be similarly defined. These

likelihood ratios can be used to measure the confidence

we have that two given point sets arise from the same

underlying model. It must be emphasised that this likelihood

measure does not depend on knowing the underlying model

at all, rather it simply defines a probability-like measure that

two observed data sets are from the same generative model.

A high likelihood value implies a high ‘match’ confidence

which lends itself to the following method for finding

correspondences.

4.3. Correspondences in multi-sensor images

One common method for image registration is to match

features points and compute the relative transformation

between the two images [1]. In general, computing feature

correspondences is a hard task and is further compounded

for images from different sensors as there is no obvious

radiometric relationship between the images (see Fig. 3).

Here we have to rely on the geometry of the images to

establish correspondences.

In this example, we demonstrate the use of the

likelihoods to establish correspondences between feature

points in the two images. Using a simple corner detector we

Fig. 2. The relative error rates of each recognition algorithm are shown. In (a) we use the full information of the underlying priors; (b) uses a fixed prior.
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extract 300 ‘interest points’ from each image. We manually

select 3 correspondences for a basis set for the affine

invariants. Subsequently we automate the process of

deriving more feature correspondences. For points {X1}

and {X2} in the two images, every tuple in the set {X1 £ X2}

is a potential correspondence but this set can be pruned

using the bases to limit the search space (say within d pixels

after transformation). For every x1 in the first image, we

compute the likelihoods of its possible matches in the

second set and select the one with the highest likelihood

value and finally disambiguate multiple matches in the

correspondence set. This is significantly faster since now

our search complexity is OðNÞ instead of OðN2Þ for N

interest points in each image. The results of the registration

obtained using 46 ‘discovered’ correspondences are shown

in Fig. 3(c) and can be seen to be very accurate. The root

mean square registration error is 0.95 pixels,3 As a control

test, we used the basis points to warp one point set onto the

other and picked the closest match to select correspondences

which resulted in 46 correspondences with a slightly higher

error of 0.96 pixels. This error is higher since some of the

correspondences obtained here were wrong. In contrast, our

model more accurately captures the notion of likelihood of

point matches. It is significant that our process is automatic

since obtaining feature correspondences in a multi-sensor

scenario (esp. with large scale changes) is difficult.

4.4. Measuring coplanarity

While in Section 4.1, we considered recognition

accuracy, here we focus on using the likelihood measures

for another task, i.e. verifying if a point set is affine-

transformed. When the points lie on a plane and the camera

is roughly weak-perspective, we expect the points to behave

in an ‘affine’ manner, i.e. their relative transformations

will be sufficiently captured by an affine transformation.

Thus the goodness of affine fit of the data is a measure of

how close the data is to being planar and can be used to

guide image segmentation. In Ref. [8], planar invariants are

used (albeit in a non-probabilistic sense) to group coplanar

points for ground plane detection.

We will illustrate our results using two sequences from

the familiar COIL database from Columbia University,

(Figs. 4 and 5) which we call ‘Anacin’ and ‘Piggybank’

respectively. The Anacin images consist of planes and the

Piggybank is a non-planar surface. In both these examples,

the objects were placed on a turntable and rotated by one

complete revolution in fixed steps. For our purposes we use

13 images from each sequence since the areas being viewed

disappear beyond the range of these images. We use a

conventional image-matching scheme to match and track

feature points over the entire sequence.

For the Anacin sequence, we use a conventional image-

matching scheme to match feature points across the entire

sequence. This results in 37 feature points being tracked

over the entire sequence. The feature points tracked are

marked on Fig. 4(a). The points used as the basis are shown

by the co-ordinate frame on the vertical plane.

In Fig. 4(b) we show the Bayesian likelihood ratio of

these 37 points (i.e. 34 points using the rest of the 3 points as

basis points) for the entire sequence (This is shown in blue

as a continuous plot and is indicated by the legend ‘two

planes’). In the same figure, we also show the likelihood

ratio when we consider only those points that lie on the

vertical plane of the Anacin box (in red and marked with

diamonds with the legend ‘single plane’). The likelihood

ratio shown in the experiments of this subsection are the

Bayesian likelihood of each point set in each image as

compared to the same feature points in the first image. In

other words, if we denote the tracked feature points in image

k as pk; we are measuring the likelihood ratio, Lbðpk; p1Þ:

Thus obviously, the likelihood values for the first image are

equal to 1, since the point set is the same as the point set

used as the model.

As may be observed, both the likelihood values stay

close to 1 for most of the sequence and taper off towards

Fig. 3. Registration of multi-sensor images using likelihood to derive correspondences.

3 The results for both definitions of likelihood are identical in this case.

Also, we use the same data set to derive the transformation and the noise

priors. In a case with many image sets the underlying priors can be learnt.

V.M. Govindu, M. Werman / Image and Vision Computing 22 (2004) 1157–11641162



the end of the sequence. This tapering off is due to the fact

that towards the end of the sequence, the vertical plane is

almost parallel to the z-axis of the camera (i.e. viewing

direction) and hence the perspective effects do get

pronounced. In other words, for most of the sequence all

the feature points lie roughly at the same depth and only

start varying in depth towards the end of the sequence. The

relative behaviour of the two plots is also interesting. In the

case where all the feature points are confined to the same

plane (as the basis points) we get a better likelihood ratio

than when some of the points happen to lie on a different

plane. This behaviour is to be expected since the instance of

‘single plane’ better confirms to an affine transformation on

the data points and hence the likelihood ratio is less varying

than when the points confirm less to the coplanarity

assumption.

In both these plots, we use the tracked feature points to

estimate the correct priors for the affine transformation and

the noise in the data. The likelihood measures shown are

using these priors. We also illustrate the effect of using a

wrong prior set on the likelihood ratios in Fig. 4(c). As can

be observed, the effect of a wrong prior is significant since

the likelihood ratio falls off dramatically. However, as we

have indicated, the correct priors for the sequence can be

easily inferred from the data set itself and does not need any

external information.

In Fig. 5(b), we show the likelihood ratio of the

Piggybank sequence using its own correct priors (shown in

black dashed line). For the sake of comparison, we have

also included the likelihood plots for the Anacin sequence

from Fig. 4(b) in this plot. As can be easily observed,

since the points on the Piggybank are not coplanar, the

effect of the rotation of the object is pronounced. As the

object rotates, the transformation between the tracked

points and the points in the first image are less and less

‘affine’ like, since the effect of the non-planarity gets more

and more pronounced. Thus the likelihood ratio falls off

significantly.

In summary, a glance at Fig. 5(b) should tell us that the

Piggybank is not a coplanar object while the points in one

set of the Anacin sequence are coplanar. It also tells us that

the second set of points in the Anacin sequence deviate

slightly from coplanarity but significantly less than that of

the Piggybank. Thus, our measure accurately captures the

notion of co-planarity or ‘affineness’ for objects being

considered. It may also be pointed out that while we have

shown the Bayesian likelihood here, the likelihood ratio for

the probabilistic invariant has similar behaviour.

Fig. 4. Likelihoods for ‘Anacin’ sequence.

Fig. 5. Likelihoods for ‘Piggybank’ sequence.
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5. Conclusions

In this paper, we have considered the generative model

for affine transformations on image points. We have

describe how the incorporation of appropriate priors of

the transformation and noise into the generative model

leads to better estimators. The use of these estimators are

demonstrated on the problems of object recognition, image

registration and comparison. It is observed that the

Bayesian method outperforms all other methods and our

formulation of the probabilistic invariant is preferable over

others.
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