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Abstract

This paper unifies most of the current literature on
3D geometric invariants from point correspondences
across multiple 2D views by using the tool of Elimi-
nation from algebraic geometry. The technique allows
one to predict results by counting parameters and re-
duces many complicated results obtained in the past
(reconstruction from two and three views, epipolar ge-
ometry from seven points, trilinearity of three views,
the use of a priori 3D information such as bilateral
symmetry, shading and color constancy, and more)
into a few lines of reasoning each. The tool of Grobner
base computation is used in the elimination process.

In the process we obtain several results on N-view
geometry, and obtain a general result on invariant
functions of 4 views and its corresponding quadlinear
tensor: 4 wviews admit minimal sets of 16 invariant
functions (of quadlinear forms) with 81 distinct coef-
ficients that can be solved linearly from 6 correspond-
ing points across 4 views. This result has non-trivial
tmplications to the understanding of N-view geometry.
We show a new result on single-view invariants based
on 6 points and show that certain relationships are
impossible.

One of the appealing features of the elimination ap-
proach is that it is simple to apply and does not require
any understanding of the underlying 3D from 2D ge-
ometry and algebra.

1 Introduction

The area of 3D-from-2D geometry, namely the body
of results and methods on recovering and manipulat-
ing general 3D information from 2D projections, is
often fragmented into several fundamental questions
that are loosely related. When corresponding points
are identified across the projections of a 3D object,
one may ask the following questions:

1. Can the camera positions be recovered? If yes,
how many views are necessary and how many
points? How many solutions are there? What
can recovered from uncalibrated cameras?
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2. Given more views than necessary, and/or more
points than necessary, do we obtain fundamen-
tally different results? For example, can we
tradeoff views with points? Do fundamentally
non-linear processes become linear when we add
views/points?

3. Are there general results for N views? l.e., is
there a “view” manifold that captures the equiv-
alence class of views of a 3D object?

4. Are there functions of views that are object-
invariant? If yes, how many? What is their gen-
eral form?

5. What can we tell from a single view in general?
What kind of a priori information on the 3D world
permits general results from a single view?

Partial answers exist for each of these items, some
of the answers have been known for a while in the
computer vision community, some can be traced back
to the mid 19th century and the beginning of this cen-
tury, and some answers are very recent. But overall,
the answers are fragmentary and ranging over a wide
spectrum of tools and notations.

For example, it is known that 5 corresponding
points across two views provide a solution to the rela-
tive (calibrated) camera positions up to a 10-fold am-
biguity [7]; 7 corresponding points provide a solution
in a projective setting (uncalibrated cameras) up to
a 3-fold ambiguity [7]. The case of 6 points has not
been addressed in the past. A unique linear solution
can be obtained from 8 points [15], and likewise in the
projective case [6, 11, 27]. The “epipolar geometry” is
captured by an invariant function of two views having
a bilinear form [15, 6] — whether this is the only in-
variant function of two views is an issue that has not
been satisfactorily resolved.

Results in the case of N (N > 2) views are sporadic.
For N =3, 6 corresponding points are sufficient for a
projective reconstruction of camera position, up to a
3-fold ambiguity [25]; 7 points provide a unique lin-
ear solution [8, 30]. Invariant trilinear functions of
3 views come in linearly independent sets of 4 func-
tions, have 27 distinct coeflicients, and can be recov-
ered linearly from 7 points [28]. The minimal number



of algebraically independent functions of 3 views is 3
[37]. The notion of “view surfaces” that captures the

N-view geometry can be found in special cases — 1D
images in [34] and images under parallel projection in
[13].

In this paper we approach 3D-from-2D geometry
issues in a general and unified manner. The approach
relies on tools taken from symbolic algebra — specif-
ically, elimination theory using Grobner bases (cf.
[33, 5], and for review of applications of Grobner bases
for geometric theorem proving, computer graphics and
robotics, see [12, 2]). With this approach we have been
able to capture most of the previous results in the field
of geometric invariants, extend some of them to more
general cases and obtain a new general result on in-
variant functions of 4 views. We believe this approach
has much potential and would be very useful in future
progress of many other problems in computer vision.
One of the appealing features of this approach is that,
for the most of it, very little geometric and algebraic
intuition is required in order to obtain these results.

2 3D-from-2D Geometry and Elimina-
tion Theory

The general idea behind elimination is to start with
the equations describing the projection of 3D points
onto corresponding 2D points over n-points and N-
views; then to identify the variables we are not in-
terested in (those we want to eliminate), variables we
that we know or treat as constants, and variables we
care about (those that will participate in the implicit
form of our original equations); then we perform the
elimination process using the tool of Grobner bases.
The various questions we described above, and their
solutions, differ simply in the decision of what vari-
ables we assign to each of the three sets.

Specifically, Let P = (X,Y, Z, 1) denote the homo-
geneous coordinates of 3D points, and p = (z,y,1)
the homogeneous coordinates of the projection of P,
then a pin-hole camera model gives rise to a linear
projection described by a matrix A:

p= AP,

where = denotes equality up to scale. If nothing is
known about A we are in a projective setting (l.e.,
given enough views and points we can recover the ob-
ject up to an unknown projective transformation of 3D
space). Since the projection equation is up to scale,
there are 11 distinct variables to A, thus for N views
we have 11N camera parameters.

Let n be the number of 3D points. Since we are
dealing with a projective setting, there are 15 free pa-
rameters we can choose, i.e., any five of the points,
which are in general position, can be assigned the stan-
dard coordinates (i.e., form a projective basis of 3D
space). Thus, we have 3n—15 space variables. Finally,
we have 2Nn image coordinates. Taken together, we
have:

1. 11N camera variables.

2. 3n — 15 space variables.

3. 2Nn image variables.

We have 2Nn equations, where each equation is
a rational function that expands readily into a poly-
nomial in all three classes of variables. The zero-set
of the 2N n polynomials defines an algebraic manifold
(variety), and the questions of interest often boil down
to finding ways to project the variety onto a lower di-
mensional space. In other words, an invariance rela-
tion holds under the general variability of a subset of
our original variables — say, for example, reconstruc-
tion of the 3D object is an invariance relation under
the variability of the camera parameters. This readily
suggests the use of elimination, via Grobner bases, as
the general tool for achieving projections onto the de-
sired lower dimensional spaces. The final result that
the Grobner base computation provides is a basis for
the ideal that includes all possible relationships that
follow from the original equations and that include
only the required variables.

Since we can eliminate at most m variables from
m + 1 algebraically independent equations, we read-
ily obtain a parameter counting tool for dealing with
geometric issues. This method of parameter counting
is similar to counting degrees of freedom of a system,
with the difference that elimination arguments provide
a more general counting framework, and without the
subtleties (that often lead to mistakes) typically as-
sociated with degrees-of-freedom counting. As a final
remark, it is important to note that the main contribu-
tion of this framework is its generality, not merely the
principle of eliminating variables as a way to achieve
invariance relations. Particular uses of elimination ap-
peared in the literature in specific problems, such as in
[20, 21, 1, 28, 14, 9], but not as a general methodology
with the appropriate tools from symbolic algebra.

The following examples will demonstrate these sim-
ple ideas:

3 Reconstruction of 3D objects

Given N views and n points, we can achieve recon-
struction by eliminating the 11N camera parameters
and all space parameters except one, say the Z coor-
dinate of the n’th point. This is possible if:

2Nn > 11N +3n — 16 (1)

(the left hand side being the two equations per im-
age point and the right hand side being the camera
parameters and all the 3D points except for 5 points
and one Z coordinate of a single point). In the case
of two views, N = 2, we see that the minimal num-
ber of points is n = 7, where we get 28 algebraically
independent equations and 27 variables to eliminate
(note the lack of subtleties: because each equation in-
troduces a new variable, we are guaranteed to have an
algebraically independent set of equations). This im-
mediately tells us there is only one invariant function
of the form:

f(Zaxlaylaxgﬂy;) = 0’

where i = 1,...,7, and (&;,y;), (¢}, y;) are correspond-
ing image points. The degree of the polynomial in-



dicates the number of solutions (or at least an up-
per bound) (which we know is 3 from [7]). Fur-
thermore, running the Grobner bases program (using
Macaulay or Maple, with a sufficient amount of mem-
ory) we get a third-order polynomial in Z which is
a closed-from solution to the reconstruction problem
(forn="7,N =2).

We can ask what happens with n = 6 points (a
problem not addressed in the past). We see that we
have 24 equations and 24 variables to eliminate. This
means that a solution is not possible (we cannot elim-
inate all the variables we need), but there exists a
polynomial with two space coordinates (one polyno-
mial for each combination of two space coordinates),
say:

g(ZaYa xi;yi;'r;',yg) = Oa

where ¢ = 1,...,6. Thus if one coordinate is given, we
can recover the other two space coordinates.

So far we have re-derived the results of [7] on re-
construction from 7 points and discussed the case of 6
points across two views. In a similar straightforward
manner we can address the case of N = 3 views, as
follows. To satisfy Equation 1 we see immediately that
n > 6 points are needed in order to have enough equa-
tions for eliminating all the undesired variables. For
n = 6 points we have 36 equations and 35 variables to
eliminate, thus there is a unique reconstruction poly-
nomial (for each coordinate) of the form:

f(Z; T, Yi, 'Z‘;'; y;a "E;'/a ygl) = 0’

where i = 1,...,6 and (z,y}’) are the corresponding
image coordinates in the third view. The degree of f()
tells us the number of solutions (which we know is 3
from [25]). How many invariant reconstruction poly-
nomials exist per coordinate for 6 points and N > 3
views? We saw that for N = 2,3 the minimal number
of points gave rise to a single invariant polynomial;
however, we see that in general we will have N — 2
invariant functions for N > 2 views.

Finally, when do we obtain linear solutions? Extra
points and/or extra images add algebraically indepen-
dent equations — each with a new variable. Thus, the
basis B of the ideal grows with the new equations. Fol-
lowing the elimination stage we can once again com-
pute a basis but this time of B with respect to a single
variable, thus, producing a single polynomial. If there
is a linear solution, then we are guaranteed to have it
as the basis.

4 Invariant Functions of Views

Here we are interested in functions that are in-
variant to object structure, i.e., functions of image
coordinates across a number of views that vanish
for all tuples of corresponding points (i.e., matching
constraints). For example, the fundamental matrix
(epipolar geometry) is a matching constraint (bilin-
ear function) of two views, and the trilinear tensor of
[28] (trilinear functions) is a matching constraint(s) of
three views.

This goal is very similar to the reconstruction goal
with the difference that we treat the 11N camera pa-
rameters as constants (i.e., combinations of them will

form the coefficients of the invariant functions). In
reconstruction the role of the n points is to eliminate
the 11N camera parameters, thus for the task of in-
variant functions of views we need to consider only
n = 1 points.

The number of equations is 2N, we wish to elimi-
nate all 3 space coordinates (n = 1), and the camera
parameters are constants. Therefore, the inequality is:

2N > 3.

We see that for two views we have a single invariant
function which is the epipolar geometry. Computing
a Grobner base we indeed obtain the bilinear function
of image coordinates (whose coefficients are combina-
tions of the 22 camera parameters), as expected. If we
want to get this relationship from the images without
computing or knowing the camera parameters we have
to eliminate them using more image points;

2x2n>11%x243n—-15

so that we need at least 8 pairs of image points.
Note that the epipolar geometry (location of epipoles)
can be computed (non-linearly) from 7 points (classic
problem of Chasles [7]) up to a three-fold ambiguity,
yet the bilinear invariant function of two views (the
matching constraint) as a function of image pairs re-
quires at least 8 pairs.

The advantage of this derivation over the geometric
derivation of the fundamental matrix (whose entries
are the coefficients of the bilinear invariant function),
is that here we have a simple and rigorous proof that
the epipolar constraint is the only invariant function
of two views — a statement that is well accepted in
the community but has not been adequately proven
before.

From here we obtain also a general result for N
views which is that the minimal number of alge-
braically independent functions of N views is 2N — 3
(in other words, 2N — 3 is the minimal generating
set of the ideal defined by the original camera equa-
tions). For example, we have 3 independent func-
tions for N = 3 views — a result previously noted
in [37]. Note that these functions are not necessarily
the epipolar constraints.

With a small amount of extra calculation (after we
get the Grobner basis) we get the following new re-
sult; It has been shown that N = 3 views admit sets
of four trilinear invariant functions with overall 27 co-
efficients, that can be solved linearly from 7 corre-
sponding points across the three views [28]. The 27
coefficients sit in a tensor whose relation to 3D in-
variants, epipolar geometry and intrinsic structures of
3 views has been recently derived in [30, 8]. We see
that a linear solution requires an extra point, but also
an extra equation. In other words, the four trilinear
equations are not algebraically independent but they
are linearly independent. This raises the question of
how does the linear situation grow with the number
of views? How do the number of coefficients grow?
Do we always need to add an extra point to obtain a
linear solution? The answers for N = 4 are described
below:



Four views admit a quad linear tensor with 81 co-
efficients described by 16 quadlinear functions. The
coefficients of the tensor can be solved linearly from 6
corresponding points across the four views.

5 Alternate
Mappings
The elimination process can also be viewed as a
mapping. For example, the case of matching con-
straints induces the mapping R3 — RV ie., a 3D al-
gebraic manifold (variety) in a 2N dimensional space.
In the case of parallel projection we immediately have
the following results:

e The rank of the span of the points in R?Y (the
2N coordinates of each projected 3D point) is 3
[35].

e The invariant functions (matching constraints)
across views are linear [36, 23].

View of Elimination:

e Segmentation of separately moving bodies can be
done by segmenting the points in RV into 3D
hyperplanes, for example, using a Hough trans-
form.

The elimination approach can be applied also to
shading and color domains as well. In fact, any vision
domain that has an algebraic form benifit from this
approach. For example, using any model of reflection
with the usual assumption of a light source at infinity
(or equivalently parallel light rays) the gray level at
a point in the image is a function (among other pa-
rameters) of the direction of the light source, which
is defined by two parameters (often noted p and g).
From this it immediately follows that all the images
of a given object are in a 2D manifold regardless of
direction of the light source. In the Lambertian case,
the 2D manifold becomes a 3D linear subspace by de-
scribing the light source (intensity and direction) by
three parameters. Thus, given three different images
I, I, and I3 of a scene taken under different lighting
conditions any other picture I of this scene is linearly
spanned by [;, i.e., I = a1y + azl3 + azlz, for some
coefficients alphay, alphas, alphas [29].

Color, both of the surface and of the illumination,
requires many parameters to be described exactly.
Therefore, in practice a reduced set of parameters is
typically used for an approximate model. For exam-
ple, in the linear combination color model [16], the
color of an object or a light source can be described
as a linear combination of a set of basis color func-
tions. It has been argued that 3 basis functions can
approximate well the color of natural objects and light
sources. The color measured at a point is alao a func-
tion of the illumination. We have immediately that
the colors of a set of points are in a 3D manifold re-
gardless of the illumination. In case the illumination
model is linear, then the manifold is a linear subspace.

6 What can be obtained from a single
view?

It has been stated in the past that there are no

invariants from a single view [3, 4, 19]. There are

still invariants over camera parameters that are not
invariant to the 3D structure of the object. However,
the issue of extracting information from a single image
remains largely an open problem (see also [38, 32]).

Similarly to the approach for obtaining invariant
functions of views, we treat a subset of our variables
as constants. In this case the space coordinates are
constants, which means that additional views would
be required for eliminating those constants. We elimi-
nate the 11 camera parameters, and we have 2n equa-
tions, thus for n points we have the following condition
to satisfy:

2n > 11,

which means that for n > 6 there exist 2n — 11 invari-
ant functions of image coordinates whose coefficients
are polynomials of the space coordinates. In other
words, the functions are invariant to camera transfor-
mations (because we eliminated them), but not nec-
essarily to the point-configuration in space, i.e., there
may be several, not projectively equivalent, configura-
tions of n space points that share the same invariant
function. One possible use of these single-view-object-
non-specific invariant is for indexing into object data
bases.

The invariant function for 6 points has a quadlinear
form and is shown Appendix A.

One way to overcome the the lack of general in-
variants from a single view is to employ a priori
knowledge on the class of objects. This knowledge
can be represented by E equations describing proper-
ties of the object. The relevant counting argument
is 2n + F > 11 + 3n — 16 for reconstruction and
2n+ E > 11+ 3n — 15 for recognition. One case that
has been treated is to assume existence of bilateral
symmetry of our 3D point set [19, 24, 26, 18].

A fairly complete explanation of model based in-
variants, model free invariants, indexing and their
complexity that is based on this work can be found
in [40].

7 The correspondence problem: The
Issue of Symmetric Functions

It would be desirable to to have some way of com-
puting invariants without having to solve the corre-
spondence problem. In its most generality this means
that we would like to find invariant functions that are
also invariant to permutations of the image point sets.
Therefore, the invariant function must be a polyno-
mial of symmetric functions of the image points. We
have

2Nn+ Ns > 11N+ 2Nn,

where s 1s the number of symmetric functions used in
each image. This implies that in order to have a corre-
spondence free invariant one must use on the average
more than 11 symmetric functions per picture, leaving
a complicated and high degree (thus noise sensitive)
invariant. In other words, the general solution to the
correspondence problem is not practically feasible, un-
less we make further assumptions.



8 The Case of Multiple Objects

The framework we have described so far can be eas-
ily extended to deal with multiple objects each mov-
ing independently in three space. Assume we have p
objects projecting onto each view and we have corre-
spondence of all points across the views, but we have
not segmented the points into object sets. As we have
seen above, each object maps onto a 3D manifold (va-
riety) in 2N dimensional space. The ideal describing
the multiple objects simultaneously is the intersection
ideal of each of the separate ideals describing the 3D
manifolds — which corresponds to the union of the
3D varieties. The dimension of the intersection ideal
is the sum of the dimensions of the individual ideals.
Thus, in order to have a large enough space to contain
the intersection ideal we need to increase the number
of images N:

2N > 3p.

For example, for p = 2 two objects we need N = 4 four
images in order to find an invariant function (matching
constraint) that applies to both objects simultaneously.
Note, that in the special case of parallel projection the
intersection ideal is still linear.

9 Motion of Lines

The framework can be easily applied to lines in
space. It is known that, first, three views are nec-
essary for reconstruction of lines, and 9 corresponding
lines are required in the process [17, 37]. Second, the
linear methods require 13 matching lines across three
views [10, 39, 31, 22].

A line in 3D requires 4 parameters, and its projec-
tion in 2D requires two parameters. Let | denote the
number of lines. We can readily state the following
observations:

e For N > 2 we have 2N — 4 algebraically inde-
pendent relationships between the parameters of
a projected line over N images.

e In a single image there are 2! 4+ 2n — 11 alge-
braically independent invariant functions (invari-
ant over camera transformation, but not to the
3D configuration of lines and points).

o If 2N > 11N+4l—15—1, then 3D reconstruction
is possible. For example, for N = 3 views we need
at least | > 9 lines; for N = 4 views we need | > 8
lines; for N = 4 views, [ > 7; for N > 8§ views,
! = 6 lines are sufficient.

o If 2N(n+ 1) > 11N + 4l + 3n — 16 we can also
reconstruct 3D (points and lines). For example,
for N = 2 views, the contribution of lines drops,
which means that lines do not help at all in reduc-
ing the number of required points for 3D recovery
from two views. With N = 3 views one can re-
cover 3D from 5 points and 2 lines.

10 The Case of Parallel Projection

An interesting special case of 3D-from-2D geome-
try is the case when the projection is parallel, i.e.,
we are in an affine setting. The appealing part of

this assumption is that the elimination process reduces
to Gaussian Elimination instead of the heavy tool of
Grobner bases. Moreover, the elimination process al-
ways results in affine functions.

Consider the following examples. In the case of
reconstruction we have the following condition to sat-
isfy:

2Nn > 8N 4+ 3n—-13

as there are 12 free parameters in a 3D affine projec-
tion, which shows that 4 points are needed for 2 views.
The example of epipolar geometry follows from the
same condition as in perspective projection:

2N > 3,

but now instead of a algebraic manifold we have a
3-space of a 2N dimensional vector space. For exam-
ple, for N = 2 we have a hyperplane in R*, and thus
the invariant function is unique and obtained by the
inner product between R* and the hyperplanes dual
space. The case of N > 2 readily shows the existence
of linear functions of views — which is the result of
[36] (also [23] contains an alternative derivation of the
same result).

The case of invariants from a single view, we have
n > 5 which yields two linear functions of the form:

EO{Z'.Z‘Z':O Eaiyi =0

where the two sets of coefficients are the same, and
their sum vanishes (for the case n = 5, each function
is a hyperplane of R® that passes through the origin).

Taking the case of n = 5 further we have that the
vector of coefficients « is the solution of the system
Aa = 0 where A = [Py, ..., Ps]. This provides another
route to epipolar geometry and the linear combination

of views of [36].

11 Summary

We have seen that by recasting the camera equa-
tions as an elimination problem (looking for projec-
tions of the general variety defined by the original
equations onto lower dimensional varieties), many of
the current and previously solved problems related to
geometric invariants become very simple.

The main ingredient of the approach is the division
of our parameters into three classes — those to be
eliminated, those that are constants, and those that
would participate in the implicit functions we want to
derive. Most, if not all, of the questions of interest
reduce to a proper choice of dividing the parameters
into these classes.

In addition to unifying most of the current results in
the field of geometric invariants from points and lines
sets, we have obtained few general results on N views,
and a general result on the invariant functions of 4
views that contains several non-trivial consequences
on the general understanding of linear solutions to the
N-views n-points reconstruction and representations
of 3D space from 2D views.



A

Invariant Functions From a Single
View

Siz image points (z;,y;), 1 = 1,,,6, satisfy a single
quadlinear function of image coordinates whose coef-
ficients are a function of the sixth space point whose
coordinates are denoted by (p,q,r,s). The function is
mvariant to camera transformations from 3D to 2D.
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