
COSINE INTEGRAL IMAGES FOR FAST SPATIAL AND RANGE FILTERING

Elhanan Elboher and Michael Werman

School of Computer Science
The Hebrew University of Jerusalem

Jerusalem 91904, Israel
{elhanane,werman}@cs.huji.ac.il

ABSTRACT

Non uniform filtering is important for many image processing
algorithms. However, for large kernel sizes the filtering can
become computationally expensive. We introduce cosine in-
tegral images (CII) which represent a large set of spatial and
range filters, based on their frequency decomposition. The
filtering requires a constant number of operations per image
pixel, independent of filter size. We make use of CII to com-
pute the Gabor filters, whose complexity is a constant O(1)
operations per image pixel. We also improve previous con-
stant time approximations of spatial Gaussian smoothing and
bilateral filtering.

Index Terms— Non uniform filtering, integral images,
cosine transform, Gabor filter, Gaussian filter, bilateral filter.

1. INTRODUCTION

1.1. Fast Non Uniform Image Filtering

Image filtering by various kernels is an important image pro-
cessing tool, which requires fast and efficient computation.
The main difficulty is that most of the kernels depend on the
kernel size, a neighborhood of the current pixel. When the
kernel size increases, the computation becomes slower.

In order to overcome this difficulty, Crow [1] introduced
summed area tables, known also as integral images [2]. Based
on the summation (or integration) of pixel values along the
image rows and columns, the sum of a rectangular region can
be computed using O(1) operations, independent of its size.

Crow’s method makes it possible to convolve an image
very fast with uniform kernels. However, many tasks require
filtering by non-uniform kernels which depend on the spatial
distances in the pixel’s neighborhood (spatial kernels, e.g.
Gaussian smoothing) or on the pixel values (range kernels,
e.g. the bilateral filter [3]).

Heckbert [4] generalized integral images for spatial dth-
degree polynomial kernels, by d + 1 repeated integrations.
Werman [5] extended the recursive approach for all the func-
tions which satisfy a linear homogeneous equation.

Hussein et al. [6] proposed Kernel Integral Images (KII)
for fast spatial filtering. The main idea is to decompose the
filter kernel, exactly or approximately, into simple functions
which are computable by integral images. Section 1.2 de-
scribes KII and related methods.

It should be remarked that Deriche’s classical method [7]
for Gaussian smoothing performs better than the mentioned
integral image based methods.

Another issue is speeding up range kernels such as the bi-
lateral filter (BF) [3]. For each pixel, x0 the BF computes
a weighted average its neighborhood. The weight of each
neighbor x depends on pairwise value difference e.g. the

pixel intensity, exp(− (f(x0)−f(x))2

2σ2). Previous works pro-
posed fast BF approximation by different methods based on
integral images, these methods are reviewed in [8].

1.2. Kernel Decomposition

Consider the convolution f ∗ K of an image f with an arbi-
trary kernel K. As shown by [6], using simple kernels Ki,
i = 0, 1, ...k which can be computed by integral images, the
following convolution: f ∗K =

∑k
i=0 wi(f ∗Ki)

can be performed using O(k) operations per pixel, indepen-
dent of kernel size.

Selecting appropriate functions Ki is critical for the per-
formance of the filtering scheme. The selected functions
should be able to express a large set of complicated kernels,
exactly or approximately. On the other hand, the representa-
tion of each kernel should be sparse. A specific kernel should
be represented by only few simple functions, otherwise it will
become computationally expensive.

The authors of KII suggested using polynomial functions
for the representation of complicated kernels. This selection
is appropriate where the kernel can be represented by low de-
gree polynomials. However, high degree polynomials (e.g.
d=6,7,8) require not only d + 1 integrations, but also high
precision numerical representation, due to raising numbers to
high powers.

Another option is to use simpler kernels Ki. Marimon [9]
used linear functions for the construction of triangle-shaped

and pyramid-shaped kernels. The Stacked Integral Images
(SII) proposed by Bhatia et al. [10] use as even simpler rep-
resentation. A non uniform kernel (e.g. Gaussian) is approx-
imated by a ’stack’ of box filters (constants) which are all
computed by accessing a single integral image. The approx-
imation requires a non convex optimization for each kernel
size and number of boxes.

1.3. Contributions

This paper introduces cosine integral images (CII). We sug-
gest a different type of simple kernels: cosine functions of
various frequencies u, cos(ux), which is an orthogonal basis.
The desired kernel is approximated by a linear combination
of cosines, which are the first k terms of its inverse Discrete
Cosine Transform (DCT). The convolution with each cosine
function is computed using a constant number of operations
per pixel.

The frequency decomposition results in very accurate ap-
proximation of non uniform spatial and range kernels using
only few terms. We demonstrate the utility of CII for such ker-
nels by improving the approximations of Gaussian smoothing
and bilateral filtering, compared with previous methods.

An additional advantage of CII is the convenient repre-
sentation of high frequency terms. Opposed to high-degree
polynomials, there is no numerical problem of overflow or
rounding, since the sine and cosine functions are bounded in
[−1, 1]. This makes it possible to compute high frequency
kernels such as Gabor using only a few relevant cosine terms,
as described in Section 3.2.

2. COSINE INTEGRAL IMAGES

2.1. DCT Based Decomposition

We first discuss the one dimensional cosine integral images
(CII), and then generalize them to higher dimensions.

LetK(t) be a 1D symmetric kernels kernel of length 2r+
1. The l2 approximation error of K(t) in [−r, r] by linear
combination of k simple functions Ku is

∫ r

−r

(
K(t)−

k−1∑
u=0

Ku(t)

)2

dt (1)

Selecting Ku to be cosine functions cos(ut), the mini-
mal l2 error is reached by inverse Discrete Cosine Transform
(DCT):

K(t) =
k−1∑
u=0

au cos(
π

r − 1
ut) (2)

where au are the DCT coefficients of the kernel K(t). (The
proposed framework can be easily extended for non symmet-
ric using more DCT coefficients).

2.2. Efficient Spatial Filtering Scheme

We describe now an efficient scheme to convolve a discrete
1D function f(x) (e.g. an image row) with a cosine kernel
cu(t) = cos(ut) within a bounded segment, t ∈ [−r, r]:

(f ∗ cu) (x0) =
x0+r∑

x=x0−r
f(x) cos(u(x0 − x)) (3)

Based on the trigonometric identity cos(α − β) =
cos(α) cos(β) + sin(α) sin(β), we replace Equation (3) by

cos(ux0)
∑
x

f(x) cos(ux)+sin(ux0)
∑
x

f(x) sin(ux) (4)

The values of cos(ux), sin(ux) can be stored in lookup
tables. Thus, the first sum in Equation (4) can be computed
efficiently as follows. First we compute the cumulative sum
Iu(x) =

∑x
x′=0 f(x′) cos(ux′).

The desired sum is Iu(x+ r)− Iu(x− r − 1).
To analyze the time complexity we use the cost function

C(+,×,MA) from [9], where ’+’ counts additions, ’×’
counts multiplications and ’MA’ counts memory access op-
erations (’lookups’) – each of them for a single coordinate (or
pixel) x. The cost of the above computation is C(2, 1, 1).

The second sum in Equation (4) is computed similarly
with the same cost, where cos(ux) is replaced by sin(ux).
The total computational cost of Equation (4) is therefore
C(5, 4, 4). For u = 0, Equation (4) reduces to

∑
x s(x)

whose cost is C(2, 0, 0).
To convolve a function f with linear combination of k

cosine kernels {cos(ut)}k−1
u=0 we need k − 1 more additions.

The multiplications of the cosine kernels with their appropri-
ate DCT coefficient are pre-computed using the lookup tables
of cos(ut), sin(ut). The total cost is therefore C(6k−4, 4k−
4, 4k − 4).

2.3. Higher Dimensions & Space Complexity

We now describe the 2D case in which an image f(x, y) is
convolved with a 2D kernelK(tx, ty) = cos(uxtx) cos(uyty).
K can be expressed as a convolution of two 1D filters
Kx ∗ KT

y . Thus the convolution can be computed by fil-
tering the image rows withKx, and then filtering the columns
of the intermediate result byKy . Hence, convolving an image
with a separable 2D kernel only doubles computational cost
of the 1D case.

The space complexity is also very low. Since the fil-
tering of each row and column is independent, filtering an
image of size n × m with k cosine kernels requires only
O(kmax(n,m)) additional space over the input and the
output images.

The computation can be extended for n-dimensional sep-
arable filters with cost of C(n(6k−4), n(4k−4), n(4k−4)).
Extending CII for non separable kernels is possible, based on

Fig. 1. Approximations of the normal standard Gaussian
kernel. We compare the l2 error in [−π, π] (Equation (1))
for different approximations. The error of 3 cosine func-
tions {cos(ux)}2u=0 with the appropriate DCT coefficients is
0.0000469. This is better than the 6th degree polynomial with
minimal l2 error on [−π, π], which is 0.000266. The error of
the first 2 Euler terms, used in KII [6], is 0.0203. The error of
4 Euler terms (a 6th degree polynomial) is 0.0047.

their 2-dimensional cosine decomposition. However, this re-
quires the computation of more basic cosine functions.

2.4. Range Filtering

In the above scheme the kernel argument was the spatial dis-
tance between the current pixel location, x0 to another loca-
tion x. The scheme for range filtering is almost identical. The
only change is that now the arguments are the values of f in
those locations f(x0), f(x). When the range of f is bounded
(e.g. [0, 255]) we store cos(uf(x)), sin(uf(x)) in lookup ta-
bles, indexed by gray level. Hence, the above scheme can be
adapted for range filtering with the same time complexity.

3. APPLICATIONS AND RESULTS

We applied the CII filtering scheme for the spatial Gaussian
and Gabor filters and for the range bilateral filter. The speedup
and accuracy of CII and previous methods are compared with
the direct computation of the filtering.

Note that we optimized all the methods. The direct com-
putation is performed separately on rows and columns and
makes use of lookup tables. This makes the direct compu-
tation faster by orders of magnitude than a naive implemen-
tation. The code of the experiments will be available on the
web.

3.1. Gaussian Smoothing

The Gaussian filter is zero mean, its only parameter is stan-
dard deviation σ. Choosing a r × r window is actually an

Parameters Deriche KII SII CII CII
(σx, σy) (k = 3) (k = 4)

(a) 47.21, 36.43, 47.38, 48.25, 57.07,
8.75, 18.3 ×4.05 ×1.21 ×6.40 ×3.47 ×2.65

(b) 42.19, 31.20,
N/A

44.32, 56.06,
40, 40 ×20.37 ×5.96 ×17.38 ×13.52

(c) 40.31, 29.39,
N/A

41.91, 55.68,
60, 60 ×43.95 ×12.19 ×37.66 ×28.25

Table 1. Gaussian smoothing – experimental results. A
3360×2240 image (7.5 megapixel) was filtered with different
(σx, σy) values. We present the PSNR score (the first number
in each cell) and speedup factor in comparison to optimized
direct convolution (see Section 3). For KII we used 2 Euler
terms (=9 integral images) as in [6]. For SII we used 5 boxes.
Since SII requires non convex optimization for each kernel
size, we report in (a) the results for 55 × 115 window used
in [10]. CII was examined using 3 and 4 cosine terms (=5 and
7 integral images, respectively).

approximation of the Gaussian kernel, which is positive on
[−∞,∞]. We set r = πσ since for greater distances from
the origin, kernel values are negligible. Since r depends on σ,
all the Gaussian kernels are rescalings of the normal standard
kernel N(t) = 1√

2π
exp(t

2

2). The rescaling is 1
σN(tσ).

Figure 1 shows the approximation ofN(t) on t = [−π, π]
using polynomials and cosines. The Euler expansion approxi-
mates N(t) only near 0. The least square 6th-degree approxi-
mation on [−π, π] has much smaller error. The most accurate
approximation is achieved by 3 cosine terms.

Table 1 presents the results of convolving a large image
(7.5 Mpixel) with a large Gaussian kernel using KII, SII, De-
riche and CII.

3.2. Gabor Kernels

The 1D Gabor kernel around the pixel x0 is defined by

exp
(
− (x0 − x)2

2σ2

)
cos
(

2π
λ

(x0 − x) + ψ

)
(5)

In two dimensions, the coordinate system is rotated in an-
gle θ. Computing the Gabor kernel is then equivalent to 1D
Gabor filtering of the new x axis, and a Gaussian smoothing
of the new y axis. Therefore we separate the 2D kernel by
rotating the input image by θ, and rotate the result back by
−θ afterwards. As in Section 2, we split the cosine term and
rewrite Equation (5)

exp
(
− (x0−x)

2

2σ2

)
cos
(

2π
λ x0 + ψ

)
cos
(

2π
λ x
)
+

+ exp
(
− (x0−x)

2

2σ2

)
sin
(

2π
λ x0 + ψ

)
sin
(

2π
λ x
) (6)

Since the exponential terms are Gaussians, they can be
decomposed as in Section 3.1. We store lookup tables for the

Gabor parameters CII parameters PSNR Time
(σx, σy, λ, ψ, θ) (k, #in.ims.) (dB) speedup

(45, 45, 90, -10, 60) k = 4, #14 52.02 × 7.08
(25, 25, 40, 0, -45) k = 3, #10 52.03 × 4.18
(35, 15, 50, 25, 0) k = 3, #10 48.67 × 3.07
(45, 25, 70, -12, 130) k = 3, #10 48.01 × 5.62
(75, 35, 140, 0, -65) k = 4, #14 53.47 × 6.12
(33, 64, 10, 10, 17) k = 3, #10 43.77 × 16.13

Table 2. Gabor filtering - experimental results. A 2880×3840
image (7.5 Mpixel) was filtered by various Gabor kernels us-
ing CII. The results are compared to direct convolution (opti-
mized).

CII Yang et al. [8]
Input parameters Time PSNR Time PSNR

(sec.) (dB) (sec.) (dB)
512× 512,

0.18 58.64 0.32 53.61
r=15, σ=0.08, k=12

640× 480,
0.1 56.26 0.11 52.36

r=14, σ=0.2, k=5
2119× 3148,

5.85 51.70 7.26 51.61
r=64, σ=0.08, k=12

2119× 3148,
2.30 55.10 3.08 45.09

r=64, σ=0.2, k=5

Table 3. Bilateral filtering experiment (Section 3.3).

following expressions: cos(ut) cos
(

2π
λ t
)
, cos(ut) sin

(
2π
λ t
)
,

sin(ut) cos
(

2π
λ t
)

and sin(ut) sin
(

2π
λ t
)
. Then, Equation 6

can be efficiently computed using the CII filtering scheme
from Section 2.2.

Table 2 compares the filtering of an image by various Ga-
bor kernels using CII against the direct computation. While
preserving high accuracy, CII speeds up the computation
much more than previously reported factors, e.g. ∼1.61 using
the Reshuffling method [11] for PSNR = 50dB.

3.3. Bilateral Filtering

The CII range filtering (Section 2.4) was applied to approxi-
mate bilateral filtering (BF) [3].

We examined our method in comparison to Yang et al. [8],
which is the current state of the art fast BF approximation, us-
ing their published code (the updated version without spatial
quantization). To filter n×m images we set spatial box kernel
with radius r = 0.03 min(n,m) and range Gaussian kernels
with different σ values. The parameter k denotes the number
of sampled values (for Yang et al.) or the number of cosine
kernels (for CII). Table 3 presents the experimental results 1.

4. SUMMARY

We presented cosine integral images (CII), an efficient spatial
and range filtering scheme. The filtering requires O(1) oper-

1In our current implementation, filtering columns is slower than rows.

ations per image pixel independently of the kernel size. We
demonstrated that CII makes it possible to perform an effi-
cient and accurate image filtering by the Gaussian and Gabor
spatial kernels and by the bilateral filter.

5. REFERENCES

[1] F.C. Crow, “Summed-area tables for texture mapping,”
in Proceedings of the 11th annual conference on Com-
puter graphics and interactive techniques. ACM, 1984,
pp. 207–212.

[2] P. Viola and M. Jones, “Rapid object detection using
a boosted cascade of simple features,” in IEEE Com-
puter Society Conference on Computer Vision and Pat-
tern Recognition. Citeseer, 2001, vol. 1.

[3] C. Tomasi and R. Manduchi, “Bilateral filtering for gray
and color images,” in Computer Vision, 1998. Sixth In-
ternational Conference on. IEEE, 2002, pp. 839–846.

[4] P.S. Heckbert, “Filtering by repeated integration,” in
Proceedings of the 13th annual conference on Computer
graphics and interactive techniques. ACM, 1986, pp.
315–321.

[5] M. Werman, “Fast Convolution,” J. WSCG, vol. 11, no.
1, pp. 528–529, 2003.

[6] M. Hussein, F. Porikli, and L. Davis, “Kernel integral
images: A framework for fast non-uniform filtering,” in
Computer Vision and Pattern Recognition, 2008. CVPR
2008. IEEE Conference on. IEEE, 2008, pp. 1–8.

[7] R. Deriche, “Recursively implementating the Gaussian
and its derivatives,” 1993.

[8] Q. Yang, K.H. Tan, and N. Ahuja, “Real-time o (1) bilat-
eral filtering,” in Computer Vision and Pattern Recog-
nition, 2009. CVPR 2009. IEEE Conference on. IEEE,
2009, pp. 557–564.

[9] D. Marimon, “Fast non-uniform filtering with Sym-
metric Weighted Integral Images,” in Image Processing
(ICIP), 2010 17th IEEE International Conference on.
IEEE, 2010, pp. 3305–3308.

[10] A. Bhatia, W.E. Snyder, and G. Bilbro, “Stacked In-
tegral Image,” in Robotics and Automation (ICRA),
2010 IEEE International Conference on. IEEE, 2010,
pp. 1530–1535.

[11] F. Porikli, “Reshuffling: a fast algorithm for filtering
with arbitrary kernels,” in Society of Photo-Optical
Instrumentation Engineers (SPIE) Conference Series,
2008, vol. 6811, p. 18.

