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Abstract 

 

We propose a method for computer analysis of 3D-scanned lithic artifacts. It provides a detailed 

description of the scars and ridges that were left on the surface of the stone tool while it was produced 

by knapping. Traditional documentation and research methods are based on hand drawn images of 

stone tools and manual measurements. Our algorithm enables automatic, objective and precise 

documentation of the tool surface, together with a quantitative analysis of the scar and the ridge 

networks. The proposed algorithm detects ridges on the surface of the scanned object, segments the 

surface to scars and calculates features that can be used for clustering and classifying lithic artifacts. 

We demonstrate our method on various lithic artifacts, present the extracted features and compare the 

results to traditional hand drawings. 

 

1. Introduction 

 

Much of what is known today about prehistoric periods derives from the study of stone artifacts 

manufactured during the Paleolithic period that spans over 99.5% of human history. The gradual 

evolution of stone technology from rough and simple forms to highly sophisticated and refined 

objects marks the cognitive evolution of the human brain, as well as the development of manual, 

technical and social skills. Prehistoric stone tools were manufactured by knapping flakes from a stone 

core and creating a scared surface. The surface that is created after removing a flake is called a scar 

and the boundary of the scar a ridge. As more flakes are removed, ridges become borders between 

adjacent scars on the lithic artifact (Figure 1). 

 

 
 

Figure 1: Lower Paleolithic Handaxe from the site NBA (after Grosman et al 2011). (a) A 

photograph of the stone tool (b) A traditional hand drawing with indication of a scar and 

a ridge (c) Rendering of the 3D-scanned tool 
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The most important and difficult task of the archaeologist is to decipher the mute messages embedded 

in the shapes and forms of the lithic artifacts and thus learn about different aspects of the lithic 

industry. Of prime importance are questions related to the production technology of the artifacts. The 

very nature of the irreversible process of knapping implies that the producer of a stone artifact had a 

clear idea not only of the final product he/she had aimed at, but also of the chain of operations which 

should be followed to achieve the desired goal. Hence, the mental process is engraved in the 

morphology of artifacts retrieved from prehistoric sites, which include the waste and the final 

products of knapping - the tools. This is the reason why a major effort in prehistoric research is 

devoted to the study of knapped stone morphology, aiming to deduce from the observed features the 

chain of actions and considerations involved in the production (Bar-Yosef and Van Peer 2009; Boeda 

et al 1990; Sellet 1993). The most prominent morphological feature of the stone tool surface is the 

distribution and hierarchy of scars and ridges which decorate it. They provide the only direct evidence 

for the succession of flake removals. This is why the study of the apparent scars and the ridges that 

form their boundaries was always considered of supreme importance in prehistory. Scars and ridges 

provide direct clues for the various phases in handling the raw material of the knapper and also hint to 

his/her technological skill. 

 

In the present work we utilize a high precision optical 3D scanner that bridges between archaeology 

and computer graphics/vision methods enabling computer-based analysis of the morphology of 

prehistoric stone tools. This work relies on previous work that was aimed at positioning and extracting 

measurements of lithic artifacts using 3D-scanning models (Grosman et al 2008, Grosman et al 2011). 

We present an algorithm for identifying the ridge and scar pattern on the surface of the object. It 

enables the introduction of quantitative and intrinsic measures such as the number of scars, their 

surface area, depth and mean curvature. 

  

The presentation is arranged along the following lines: Section 2 of the paper discusses prior work, 

both in the field of prehistoric archaeology and in computer vision. In section 3, we provide a detailed 

description of the scar segmentation algorithm. The extracted features are described in section 4 and 

some results are presented in section 5, including comparison to hand drawings and to other mesh 

segmentation methods. In the last section, we discuss the results and possible future work.  

  

 

2. Related Prior Work 

 

Most of the archaeological research which focused on scars and ridge patterns has been rather 

intuitive and descriptive. Several attempts were made to explain prehistoric assemblage variability by 

trying to quantify the extent, nature and variability of the reduction chain (e.g. Davis and Shea 1998; 

Eren et al 2005, Eren and Sampson 2009; Kuhn 1990).  

Attempts to quantify flake scar patterning were based primarily on two dimensional projections (e.g., 

Conrad et al 2004), drawing the scars manually and subjectively, thus failing to capture the 

complexity of the 3D nature of stone knapping. Recently Clarkson et al (2006) suggested a 3D 

analysis of flake scars using a 3D measurement tool. The 3D data was recorded manually and the 

scars were described in terms of directed lines (vectors) which connect the extreme points of the scar 

– a rather incomplete description which fails to convey the complexity and detail of the network of 

scars and their characteristics.  

 

Scar detection, from the computer graphics/vision point of view, belongs to the intensively studied 

field of image segmentation. In recent years, with the increased availability of three-dimensional data, 

there has been much research in the area of 3D surface segmentation. One of the challenges in surface 

(or “mesh”) segmentation is to define the criteria for evaluating the quality of the resulting 

segmentation. In most cases there is no objective principle which establishes a correct or preferred 

segmentation. In (Shamir 2008), the author defines two types of mesh segmentation methods, which 

aim to achieve two different goals. Part-type segmentation methods aim to segment the 3D object into 

meaningful parts, for example, segmenting a 3D human figure into head, arms, legs etc. The goal in 

surface-type segmentation is to segment the surface of the object into patches according to some 
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criteria. The problem of segmenting the scanned lithic artifact belongs clearly to the latter type. In 

addition, the underling knapping process, which ideally creates well-defined surface scars, should 

provide proper criteria for the success of a given segmentation: it should be consistent with the expert 

archaeological evaluation.  

 

Surface-type mesh segmentation algorithms are based on various surface attributes. Some examples 

are surface curvature and geodesic distances, which we discuss in more detail in section 3. Other 

possible attributes are the normal directions of the triangular faces, the dihedral angle between 

adjacent faces and the planarity and convexity of the segments. A popular family of segmentation 

methods is Watershed (Mangan and Whitaker 1998), a region-growing method that starts with local-

minima points of some attribute function of the mesh and grows regions until local-maxima points are 

reached. In section 5, we compare the results of our method to those of Watershed. 

 

Methods for detecting ridges and valleys on a surface embedded in 3D draw on techniques developed 

for the related problem of edge detection in images. In our work, we use an existing ridge-detection 

method (Yoshizawa et al. 2005). Applying a ridge detection method to the surface of a scanned stone 

tool does not solve the scar segmentation problem by itself, the method does not detect all the scar-

ridges, and on the other hand, it detects many false ridges. The reason for this failure is that ridges on 

stone tools have a specific archaeological definition – they are the intersection of two scars. In our 

method, we utilize ridge detection as an intermediate step towards the scar segmentation as described 

in section 3.5.  

 

 

3. Detecting Scars and Ridges 

 

3.1 Formal Definition of the Segmentation Problem 

 

The main goal of our algorithm is segmenting the surface of the scanned tool into scars. The stone 

tool is scanned using a structured-light 3D scanner, generating a triangular mesh (Figure 2), which is a 

surface in three-dimensions defined by small triangles – a set V of n vertices v1...vn in R
3
 and a set F of 

m triangular faces f1...fm, each face defined by an ordered set of three vertices. The goal of the 

segmentation task is to divide the set F of m faces into k disjoint sets F1..Fk, such that each Fi 

corresponds to a single scar on the surface of the object. It should be noted that the number of 

segments k is not an input to our algorithm – it is detected automatically. Once the mesh has been 

segmented into scars, the ridges can be defined as the borders between scars (the polygons connecting 

the ordered set of vertices that form the border of each segment). For rendering purposes, these 

polygons can be smoothed to form a smooth ridge curves. 

 

 
Figure 2: A close-up look on a scanned object, represented as a three-dimensional 

triangular mesh. 
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3.2 Outline of the Algorithm 

 

Our method is based on the importance of high-curvature ridges for identifying borders between scars 

and on the other hand by the need for a robust method that will ensure the spatial consistency of the 

scars.  

 

The surface curvature value at each point is first calculated. This value measures how strongly the 

surface bends at each point. Curvature ridges are then detected. These are continuous lines on the 

surface which follow local maximum points of the curvature value. The curvature-ridges mostly 

coincide with the actual scar-ridges. The curvature values and ridges are then utilized in a clustering 

process which breaks the surface of the object into small sub-scars. The clustering process is done in a 

way that ensures that a single cluster will not cross a high-curvature area or a ridge. In the next step, 

the border between each adjacent pair of clusters is analyzed, clusters with a weak border between 

them are merged together. At the end of this process, the small sub-scars have been merged to become 

complete scars. A final optimization step is then performed to fine-tune the segmentation. At the end 

of the optimization step, the final scars are defined and the border between each adjacent pair of scars 

is defined as a ridge. 

 

The list below outlines the main steps in our algorithm. Each step is further detailed in the sections 

below. Figure 3 shows the intermediate results. 

 

1. Preprocess the mesh (3.3) 

2. Estimate the maximum principal curvature at all vertices (3.4) 

3. Detect curvature-ridges (local-maxima lines of the principal curvature) (3.5)  

4. Perform initial geodesic clustering into sub-scars, using random seeds (3.6) 

5. Merge adjacent clusters that have a weak border (3.7) 

6. Fine tune the segments using graph-cut optimization (3.8) 

7. Define the ridges as the borders of the segments (3.9) 

 

List 1: Outline of the algorithm 
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Figure 3: Intermediate steps results. (a) Estimated maximum principal curvature (b) 

Detected ridge lines (c) Geodesic clustering (segments indicated by colors) and post-

merging (indicated by black borders). (d) The final scar-ridges after graph-cut 

optimization 

 

3.3 Mesh Preprocessing 

 

Artifacts can be scanned at different levels of detail, or resolution. As a pre-processing step, we apply 

a mesh simplification technique (Siek et al. 2002) to bring the resolution of all processed tools to a 

common value. In addition, we use Principle Component Analysis (Jackson 1991, Jolliffe 2002) to 

position the object in 3D so that the main axis of the tools is parallel to the x axis etc. This step is 

required for the proper calculation of the object’s dimensions. 

 

3.4 Principal Curvature Estimation 

 

The principal curvature values and directions at each point on a smooth surface embedded in a three-

dimensional space are mathematically defined as the two eigenvalues (k1, k2) and corresponding 

eigenvectors of the shape tensor at that point. The principal curvature on a triangular mesh is 

estimated using (Cohen Steiner and Morvan 2003). As can be seen in Figure 4(c), the maximum 

curvature value (k1) is high along the ridges. 

 

 
Figure 4: (a) The original scanned object. (b) The minimum principal curvature value - 

k2 (not informative for detecting the ridges.) (c) The maximum principal curvature value 

- k1. 

 

3.5 Curvature-ridges Detection 

 

We apply a ridge-detection method (Yoshizawa et al. 2005) to detect curvature-ridges on the surface 

of the object. Curvature-ridges are defined as local-maximum points of the maximum principal 

curvature value (k1) in the principal curvature direction (Koenderink 1990). We use the term 

“curvature ridges” to differentiate these ridges from the stone artifact ridges or “scar ridges”, which 

are the goal of our method. The differences are: 

● Curvature ridge detection identifies many minor ridges, which are caused by imperfections in 

the shape of the object. Most of these ridges are irrelevant to our work and are considered 

false detection. 

● In some cases, parts of the boundary of a scar will not be detected as a curvature-ridge. Our 

goal is to detect the entire boundary of each scar. 

 

Note that (Yoshizawa et al. 2005) also detects valley lines on the mesh, which are points of negative 

curvature. Our method does not use the valleys. Figure 5 shows the detected ridge lines. 
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Figure 5: Detected curvature ridges. 

 

3.6 Geodesic Clustering 

 

As a first step towards segmenting the scars, we perform initial clustering of the mesh faces. If we 

consider the original mesh as a clustering in which each face forms a cluster, our goal is to reduce the 

number of clusters from an order of 100K to several hundred. In addition, we require clusters to be 

connected component and we want the borders between adjacent clusters to be consistent with the 

curvature-ridges.  

 

A clustering process assigns to one cluster elements that are close to each other according to some 

distance function. Figure 6 demonstrates three vertex distance functions. The Euclidean distance 

causes points on opposite sides of the mesh to be close and therefore is not suitable for mesh 

clustering. The geodesic distance measures distances on the surface of the mesh. We use the Fast 

Marching method (Sethian 1999) to estimate the geodesic distance between a starting point to all 

other points on the mesh. We use non-uniform edge weights, based on the maximum curvature value 

at each vertex, thus increasing the geodesic distance between a pair of points on the two sides of a 

high-curvature ridge, as can be seen on the right column of Figure 6. This encourages low-curvature 

areas to be clustered together and the border between clusters to coincide with the curvature-ridges. 

 

Our clustering method proceeds along the following line: For each vertex we maintain three 

properties - a boolean flag indicating whether it is a part of a cluster, the assigned cluster (label) and 

the geodesic distance value to the segment center (or seed) point. We start with all vertices being 

unoccupied and having an “infinity” distance from a seed. We choose a random vertex (random seed) 

on the mesh and calculate its weighted geodesic distance to all other vertices. We then mark the 

geodesic neighborhood of the seed (all vertices whose geodesic distance from the seed is smaller than 

a predefined threshold) as occupied. We assign to the new seed all vertices that are geodesically closer 

to it than to their current seed. We then choose the next random seed that is not occupied and does not 

lie on a high-curvature ridge. The process continues until there are no available vertices. 

 

Note that although the above method clusters the set of vertices and not the faces, it is easy to define a 

clustering of the faces based on the vertices clustering. We use majority voting of the clusters of the 

three vertices. In rare cases, the three vertices of a triangular face will belong to three different 

clusters. In this case, we choose the cluster of the first vertex. 
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Figure 6: Distance functions. Each column shows the distance between the point marked 

by a red arrow in the top image to all other points on the object, according to a distance 

function. The distances are indicated using blue-to-red color coding. The objects on the 

bottom row are rotated to show the other side. (a) Euclidean distance. Note that points on 

the other side of the object are close to the marked point. (b) Geodesic distance. (c) 

Geodesic distance with a weight function based on the maximum curvature. 

 

3.7 Post Merging 

 

The geodesic clustering phase generates sub-scar clusters. These clusters (or segments) represent 

over-segmentation of the surface of the mesh, however, the segments do not cross the scar-ridges. The 

border between a pair of adjacent segments contains points that have equal geodesic distances to the 

two seeds. These borders fall into two categories - borders that strongly depend on the randomly 

chosen seeds of the clusters, and stable borders that do not depend on the exact location of the seeds. 

On flat areas (or areas with negative curvature), the points in which the geodesic distances from the 

two seeds are equal strongly depend on the selected random seed. However, if the two seeds fall on 

the two sides of a high-curvature ridge, the dependency will be much lower. Randomized Cuts 

(Golovinskiy and Funkhouser 2008) is a method that utilizes this feature to identify meaningful 

borders, by running the clustering algorithm multiple times and keeping only the repeating (or stable) 

borders. We found that in our problem, it is sufficient to identify the meaningful borders by 

calculating the median maximum-curvature value along the border and merging adjacent segments 

with a low-curvature border. Figure 7 shows the results of the geodesic clustering and post-merging. 
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Figure 7: Geodesic clustering and post-merging. (a) The original object. (b) The geodesic 

clustering result. (c) Post-merging: The colors indicate the original geodesic clustering 

and the black borders indicate the result of the post-merging (random borders removed). 

 

 

3.8 Graph-Cut Optimization 

 

Graph-cut is a familiar method for image and for mesh segmentation (Boykov and Jolly, 2001). We 

use graph cut as a final post-processing segmentation phase. Because we want to improve the quality 

of the border between the segments in addition to improving the segmentation, we use graph-cut at the 

individual triangular faces level. The graph-cut algorithm solves the min-cut optimization problem of 

partitioning a graph into two disjoint groups of vertices while cutting edges with a minimal total 

weight. In our case, we use a variant of graph-cut (alpha-expansion), which allows partitioning the 

graph into a larger number of segments. The input to graph-cut is the weighted face-adjacency graph. 

Each face forms a node in the graph and an edge connects each adjacent pair of faces (creating a 3-

regular graph). We now add a node for each segment label and an edge between each face-node to its 

initially-assigned segment. The weights of the edges connecting face-nodes are the smoothness terms. 

They define the cost of cutting the mesh into two segments at each edge. The weights between the 

face-nodes to the segment-nodes are the data term and represent the cost of changing the original 

assignment of a face to a segment. In our method, we base the smoothness term on the maximum-

curvature and on the detected ridges. An edge that passes through a detected ridge line will have zero 

smoothness term (thus encouraging graph-cut to segment the mesh at these edges). Other edges will 

have a weight that is proportional to 1/max-curvature, so that the cost of partitioning at a flat area is 

high. 

 

3.9 Defining the Ridges 

 

The final scar ridges are the borders between scars. We define the border between each adjacent pair 

of scars as a ridge line. We assign a weight to each ridge line, based on the median of the maximum-

curvature along the ridge line. This weight can be used to visually emphasize major scars by drawing 

them with a thicker line. In addition, we apply a smoothing function to the ridge lines. Figure 8 shows 

the final ridges, which are the result of the graph-cut optimization and the ridge definition phases. 
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Figure 8: The final scars and ridges. 

 

 

4. Feature Extraction 

 

As presented in section 1, one of the goals of our work is to calculate features that can be used for 

automatic classification and clustering of scanned artifacts. Clustering and classification algorithms 

require features that are descriptive and discriminative (can differentiate between classes of objects). 

(Tangelder and Veltkamp 2007) define several categories of 3D shape matching methods, for 

example, global descriptors and local features. Both these methods “take into account only the pure 

geometry of the shape”. In contrast, graph based methods “attempt to extract a geometric meaning 

from a 3D shape using a graph showing how shape components are linked together”.  

 

In the case of lithic artifacts, proper segmentation of the surface into meaningful scars allows 

generating a graph-based descriptor, which is rich and descriptive on one hand and with a reasonable 

dimensionality (k) on the other hand. Figure 9 shows the scar adjacency graph diagram super-imposed 

on the drawing of the object. Note that each scar node can contain several attributes of each scar, such 

as: 

● Area of the scar 

● Parameters of best-fitting plane, planarity value 

● Mean normal direction 

● Histogram of curvature values (1D or 2D) 

● Shape of scar (use some shape feature) / of ridge 

 

In addition, edges can hold information about the borders between scars, for example, the mean 

curvature value along the border. Usage of graph-based descriptors require a definition of a metric 

and some graph matching algorithm such as (Melnik et al. 2002) in the classification or clustering 

phase. 

 

In addition to the scars graph-based descriptor, global features such as the ones described in 

(Tangelder and Veltkamp 2007) can be calculated for the entire object: 

● The 3D shape histogram, as defined by (Otagiri et al. 2002) 

● Histogram of the principal curvature (1D or 2D) 

● Histograms of normal distances from centroids 

● The volumetric moments of inertia (Zhang and Chen 2001) 
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Figure 9: Lithic artifact represented as an adjacency graph of the scars. Size of the scar 

nodes in the drawing (blue circles) is proportional to the diameter of the scar. Edges (red) 

connect adjacent scars. The edges connecting to main scar on the back of the object are 

not shown. 

 

5. Results 

 

Figure 10 shows the output of our method on 13 different stone tools. The figure shows the scar ridges 

(the borders between the detected scars). 
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Figure 10: Scar segmentation results. 

 

Next, we compare our results to hand-drawings (Figure 11). As can be seen, our method created a 

segmentation which is quite similar to the segmentation that is expressed in the hand-drawing, 

although in some cases, our method broke a single scar to two or more parts. This is further discussed 

in section 6. 
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Figure 11: Segmentation results compared to traditional hand drawings (our results 

shown on the right.) Tools are from the Neolithic site of Abu-Gosh, excavated by Ianir 

Milevski, Drawn by Leonid Zeiger, Israel Antiquity Authority. 

 

We compared the performance of our method to Watershed (Mangan and Whitaker 1998), which is 

considered to be one of the more robust mesh segmentation methods. We ran an implementation of 

Watershed that uses the principal curvature value as a height function. As can be seen in figure 12, the 

out-of-the-box performance of Watershed is quite good, but compared to our method, it produces less 

accurate ridges and fails to segment some of the scars. 
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Figure 12: Segmentation results compared to Watershed. (a) The original objects. (b) 

Watershed results. The result is less consistent with the actual scars (e.g. on the right side 

of the object on the top row, at the top of the object in the second row). (c) Our method 

 

6. Discussion and Future Work 

 

The surface scars and ridges of stone tools are highly valuable for morphological study and for 

documentation. We presented a method for automatic detection of the scars and ridges on 3D-scanned 

lithic artifacts and for extraction of quantitative global and scar-related features, which can be used for 

clustering and classification of prehistoric artifacts. As presented in section 5, the scar segmentation 

result is consistent with prior methods, however, it is not always identical to the manual segmentation, 

which is expressed by the hand drawing. For example, our method might segment a scar into two 

parts because of some irregularity of the scar surface, while in the manual segmentation, the 

archaeologist can decide to define a single scar due to some higher-level archaeological 

considerations such as the position of the point of percussion. For the purpose of quantitative research 

(for example, clustering and classification of tools from several assemblages), which is the main goal 

of our work, we believe that the quality of our scar segmentation is sufficient, since it is performed in 

an objective and consistent manner on all scanned objects and it is mostly consistent with the 

archaeological scars and ridges definition.  

 

We are now integrating the automatic segmentation algorithm in a computer code which will be used 

for documenting lithic tools in archaeological reports and articles. The purpose is to enable the 

archaeologist to mark selected scars and ridges on the 3D model, and produce 2D views of the 

artifacts which include the marked features. The markings should reflect the degree of confidence or 

importance attributed to the feature, such as i.e., using thicker lines to delineate the more outstanding 

ridges. Moreover, it will enable the archaeologist to introduce his/her judgment in cases of 

archaeologically uncertain situations as for example when two neighboring scars should be merged to 

a single one.  

 

Future work can aim at enhancing the scar segmentation by introducing constraints or regularization 

terms on the shape of the scars (for example, requiring each scar to be convex) or by analyzing the 

surface of each scar. Detection of the conchoidal ripples on the surface of the scars can be performed 
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by means of Fourier analysis. This can enhance both the quantitative description of the scar and the 

generated drawing. 

 

As a next step towards utilization of the quantitative scar and ridge features, we plan to apply machine 

learning methods to automatically cluster and classify stone tools from several sites and from several 

periods. 

 

Acknowledgements 

We would like to acknowledge support from the Israel Science Foundation Center of Excellence 

(Grant 300/6) and from the Faculty of Humanities and the R&D Authority of the Hebrew University.   

 

 

References 

 

Bar-Yosef, Ofer, and Philip Van Peer. 2009. "The Chaine Operatoire Approach in Middle Paleolithic 

Archaeology." Current Anthropology no. 50 (1):103-131. doi: doi:10.1086/592234 %U 

http://www.journals.uchicago.edu/doi/abs/10.1086/592234    

Boykov, Yuri Y, and Marie-Pierre Jolly. 2001. Interactive Graph Cuts for Optimal Boundary & 

Region Segmentation of Objects in N-D Images. In IEEE International Conference on 

Computer Vision. 

Clarkson, Chris, Lucio Vinicius, and Marta Mirazon Lahr. 2006. "Quantifying Flake Scar Patterning 

on Cores using 3D Recording Techniques." Journal of Archaeological Science no. 33 (1):132-

142. 

Cohen-Steiner, David, and Jean-Marie Morvan. 2003. Restricted Delaunay Triangulations and 

Normal Cycle. In Proceedings of the nineteenth annual symposium on Computational 

Geometry. San Diego, California, USA: ACM. 

Davis, Zachary J., and John J. Shea. 1998. "Quantifying Lithic Curation: An Experimental Test of 

Dibble and Pelcin's Original Flake-Tool Mass Predictor." Journal of Archaeological Science 

no. 25 (7):603-610. 

Eren, Metin I., Manuel Dominguez-Rodrigo, Steven L. Kuhn, Daniel S. Adler, Ian Le, and Ofer Bar-

Yosef. 2005. "Defining and Measuring Reduction in Unifacial Stone Tools." Journal of 

Archaeological Science no. 32 (8):1190-1201. 

Eren, Metin I., and C. Garth Sampson. 2009. "Kuhn's Geometric Index of Unifacial Stone Tool 

Reduction (GIUR): does it measure missing flake mass?" Journal of Archaeological Science 

no. 36 (6):1243-1247. 

Golovinskiy, Aleksey, and Thomas Funkhouser. 2008. "Randomized Cuts for 3D Mesh Analysis." 

ACM Trans. Graph. no. 27 (5):1-12. doi: 10.1145/1409060.1409098. 

Grosman, Leore, Smikt, Oded, and Uzy Smilansky. 2008. "On the Application of 3-D Scanning 

Technology for the Documentation and Typology of Lithic Artifacts." Journal of 

Archaeological Science no. 35:3101-3110. 

Grosman, Leore, Gonen Sharon, Talia Goldman-Neuman, Oded Smikt, and Uzy Smilansky. 2011. 

"Studying Post Depositional Damage on Acheulian Bifaces using 3-D Scanning." Journal of 

Human Evolution no. 60 (4):398-406. 

Jackson, J. Edward. 2004. A User's Guide to Principal Components: John Wiley & Sons, Inc. 

Jolliffe, Ian T. 2002. Principal Component Analysis, 2nd Edition: Springer. 

Koenderink, Jan J. 1990. Solid Shape: The MIT Press. 

Kuhn, Steven L. 1990. "A Geometric Index of Reduction for Unifacial Stone Tools." Journal of 

Archaeological Science no. 17 (5):583-593. 

Mangan, Alan P, and Ross T Whitaker. 1998. "Surface Segmentation using Morphological 

Watersheds." IEEE Visualization 1998 Late Breaking Hot Topics. 

Meignen, Liliane, Jean-Michel Geneste, and Eric Boëda. 1990. "Identification de Chaines Operatoires 

Lithiques du Paleolithique Ancient et Moyen." Paleo no. 2:43-80. 

Melnik, Sergey, Hector Garcia-Molina, and Erhard Rahm. 2002. Similarity Flooding: A Versatile 

Graph Matching Algorithm and its Application to Schema Matching. In International 

Conference on Data Engineering, 2002: IEEE Computer Society. 

http://www.journals.uchicago.edu/doi/abs/10.1086/592234


15 
 

Ohbuchi, Ryutarou, Tomo Otagiri, Masatoshi Ibato, and Tsuyoshi Takei. 2002. Shape-Similarity 

Search of Three-Dimensional Models using Parameterized Statistics. In 10th Pacific 

Conference on Computer Graphics and Applications: IEEE Computer Society. 

Sellet, Frederic. 1993. "Chaine Operatoire; the Concept and its Applications." Lithic Technology no. 

18 (1-2):106-112. 

Sethian, James A. 1999. Level Set Methods and Fast Marching Methods Evolving Interfaces in 

Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science, 

Cambridge Monograph on Applied and Computational Mathematics: Cambridge University 

Press. 

Shamir, Ariel. 2008. "A Survey on Mesh Segmentation Techniques." Computer Graphics Forum no. 

27 (6). 

Siek, Jeremy, Lee-Quan Lee, and Andrew Lumsdaine. 2002. The Boost Graph Library: User Guide 

and Reference Manual: Addison-Wesley. 

Tangelder, Johan, and Remco Veltkamp. 2008. "A Survey of Content Based 3D Shape Retrieval 

Methods." Multimedia Tools and Applications no. 39 (3):441-471. doi: 10.1007/s11042-007-

0181-0. 

Yoshizawa, Shin, Alexander Belyaev, and Hans-Peter Seidel. 2005. Fast and Robust Detection of 

Crest Lines on Meshes. In Proceedings of the 2005 ACM Symposium on Solid and Physical 

Modeling. Cambridge, Massachusetts: ACM. 

Zhang, Cha , and Tsuhan  Chen. 2001. Efficient Feature Extraction for 2D/3D Objects in Mesh 

Representation. In IEEE International Conference on Image Processing. 

 

 

 

 

 

 


