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Abstract. Calculating a reliable similarity measure between pixel fea-
tures is essential for many computer vision and image processing applica-
tions. We propose a similarity measure (affinity) between pixel features,
which depends on the feature space histogram of the image. We use
the observation that clusters in the feature space histogram are typi-
cally smooth and roughly convex. Given two feature points we adjust
their similarity according to the bottleneck in the histogram values on
the straight line between them. We call our new similarities Bottleneck
Affinities. These measures are computed efficiently, we demonstrate su-
perior segmentation results compared to the use of the Euclidean metric.

1 Introduction

Calculating similarity measure between pixels is a fundamental step in many
computer vision and image processing algorithms. Many of these algorithms
depend on a reliable affinity (or distance measure) between pixels for their cal-
culations. The affinities are either measured between different pixels of the same
image in case of segmentation and edge detection, or between pixels from neigh-
bouring frames in case of optical flow calculation, motion segmentation and
tracking.

In most of these applications, pixels affinity is calculated as a simple function of
the Euclidean distance between the pixels’ features (usually e~%/@nce®) in some
feature space. Such common feature spaces are the one-dimensional gray scales
feature space, two or three dimensional colour spaces and higher dimensional
(~ 50D) texture feature spaces. Different researches suggest using different fea-
ture spaces for achieving optimal results in various applications, but no particular
feature space is considered optimal by the whole community (A survey of the
properties of different colour spaces for image segmentation can be found in [1],
while [2] provides a basic survey of different texture features). Other approaches
include learning pixels affinity and feature space clustering.

Fowlkes et al. suggested a high level approach for learning pixels affinity calcu-
lations using a dataset of human segmented images as ground truth [3]. Their
approach for affinity calculation uses the combination of several feature spaces
and information from the image itself (edges) through a high level learning mech-
anism. While the approach is suitable for segmentation and similar time con-



suming applications, it is less suitable for online applications or other compu-
tationally efficient applications. Another drawback is the generalization of the
method, which is not straightforward. For example, generalizing the approach to
handle affinity calculations between pixels in successive frames requires massive
human assistance.

A different approach for providing pixel affinity is by using feature space cluster-
ing [4]. This approach tries to exploit image specific characteristics rather than
learn a general rule for the affinities calculations. Although this approach can
be efficient and easy for generalization, it implies clustering of the feature space
(hard or soft) which is prone to errors due to noise and other difficulties.

We claim that given two feature points, u and w, with equal Euclidean distances
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Fig. 1. (a) An example of a one-dimensional features histogram. Given the above his-
togram, it stands to reason to claim that a pixel having a feature value of v is similar
to a pixel having a feature value of w and dissimilar to a pixel having a feature value
of w although the Euclidean distance between the feature values v and w is identical
to that of v and w.

from a third feature point v, it stands to reason that if w and v share the same
cluster, while w is located within another cluster, the affinity of w and v is larger
than the affinity of u and v.

The motivation for our approach is obvious when looking at the synthetic one-
dimensional feature histogram in Figure 1. Our main observation is that the
histogram provides us with the additional knowledge that the feature values
belong to two different Gaussian distributions. While v and w are very likely
belong to the same source and should be considered similar, v and u seem to
belong to two different sources and should be considered dissimilar.

This work suggests a straightforward and efficient approach to affinity calcula-
tions that exploits image specific attributes while not explicitly applying clus-



tering of the feature space. We do so by introducing the Bottleneck Affinities - a
simple mechanism for estimating the likelihood that two feature points belong to
the same cluster in the feature space. We estimate this likelihood by analyzing
the histogram values on the straight line connecting the two feature points in the
feature space histogram. A sparsely populated region along this line (in the his-
togram domain) is considered a “bottleneck” and indicates that the two points
probably belong to two different clusters. We therefore decrease their affinity
measure. Similarly, a densely populated line indicates that the points belong to
the same cluster and we therefore increase their affinity measure.

Our approach utilizes the typical smooth and convex structure of clusters in the
RGB histogram of images. This structure is the result of scene properties and
the (digital) image acquisition process. We discuss the structure of the clusters
in the next section (section 2). Section 3 describes our algorithm and discusses
implementation issues. The results are shown in section 4, while section 5 sum-
marizes and suggests possible extensions to this work.

2 Histogram Clusters
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Fig. 2. (a) Sample image and (b) its RG histogram (a projection of the RGB histogram
upon the RG axis), darker colour represents a denser histogram bin.

This section discusses the physical properties that affect cluster structure in
an image feature space histogram.
Figure 2 shows a simple image, containing a small number of dominant colours
along with a two-dimensional projection of its RGB histogram. The difficulty
in modelling the clusters in the histogram domain is evident from this example.



The clusters have no particular shape, and methods like the Gaussian Mizture
Model are not suitable for this kind of problem. The large amount of noise makes
the task of clustering a difficult one even for this simple scene. Nevertheless, it is
obvious that the histogram contains different clusters. For most pairs of feature
points, the problem of estimating a likelihood measure for the points to belong
to the same cluster seems significantly easier than the actual clustering problem.
Our algorithm is aimed at utilizing this observation.

For the sake of simplicity, this discussion refers to three-dimensional colour fea-
tures (RGB values). We will address the generalization of the discussion to other
feature spaces at the end of this section.

Our algorithm takes advantage of three well studied image properties. The first
property is the piecewise smooth world assumption which has been used before
in many computer vision and image processing applications such as boundary
detection [5], image segmentation [6], noise reduction [7] and more. The second
property is that monochromatic scene objects create nearly convex elongated
clusters in the RG B histogram [8]. The third property is image blur due to the
optics of the camera and the finite size of the pixel [9].

The first and second properties imply that for two feature points belonging to
the same monochromatic object, all the bins along the line connecting them
(in the histogram domain) are populated. Due to the third property, the same
holds for textured objects as well. The justification for the last claim lies in the
following fact: While locally, in the image plain, there is no difference between
the blurring of edges due to texture and due to boundaries, globally - in the his-
togram domain there is a big difference between these phenomena. Boundaries
between objects are scarce and therefore produce a small number of interpolated
values. The line in the histogram between pixels from neighbouring objects is
therefore scarcely populated. In textured regions the same texture components
(texels) are blurred repeatedly. The line between pixels from two different texels
(of the same texture) in the histogram is well populated.

Figure 3 demonstrates the difference in the histogram domain between edges
due to object boundaries and edges due to texture. In the figure we show real
images of a synthetic scene along with their GB histogram (a projection of their
RGB histogram upon the GB plane). There are only a few pixels with interpo-
lated values in figure (a) and the two clusters are well separated in the histogram
domain (b). In figure (c¢) many of the pixels have interpolated values and the re-
gion between the two clusters in the histogram domain (d) is densely populated.
Figure 4 shows an image along with the edge maps according to the Euclidean
metric (b) and to our bottleneck distance measure (c). For visualization purposes
we show the square root of the edge maps (the difference is visually prominent
when looking at the squared root). Both edge maps were normalized to the range
of [0..1]. Notice how in the bottleneck edge map boundaries between objects are
maintained while the intensity of edges due to texture (the sculptures surface)
is decreased.
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Fig. 3. (a) An image of a synthetic scene containing two objects and its GB histogram
(b). (¢) An image of a synthetic scene containing a texture (two tezels) and its GB

histogram (d).

Fig.4. (a) An image with the squared root of its Euclidean edge map (b) and of its
bottleneck edge map (c) (the differences are more easily seen when looking at the
squared root). The values in both maps are normalized to the range of [0..1]. Notice
how the bottleneck edge map maintains edges between objects while the edge values
inside the sculptures are significantly lowered.



Refining Our Assumption: In order for our approach to separate feature points
only when they belong to different clusters in the feature space histogram, the
cluster should be convex. In real life, these clusters are usually not entirely con-
vex as can be seen if figure 2, and one could claim that our heuristic should
fail. Fortunately, although not entirely convex, the clusters are usually convex
in a small neighborhood in the feature space histogram and are therefore locally
convex. Since most applications calculate affinity only in limited neighborhoods
around pixels, our heuristic rarely fails. The justification lies in the smoothness
assumption. Due to this assumption, neighboring pixels that belong to the same
object (or piece) have similar features (the changes are smooth within the ob-
ject) and therefore reside in the same locally convex region of the cluster. Our
empirical results support this claim.

Although in the entire section we referred to RGB features, we would like
to point out that our main argument, smoothness due to scene and camera
properties, is a fundamental property of natural images and is not related to a
specific set of features. Our experimental results support this observation as we
clearly show in the results section.

3 Defining & Computing the Bottleneck Affinities

We implemented a simple and efficient algorithm that utilizes our observation
of the typical structure of clusters in the feature space histogram for calculating
the bottleneck affinities. Given two feature points, our distance measure is the
Euclidean distance between the points multiplied by a Bottleneck factor (bnf).
This factor receives a low value (bnf < 1) for points which our algorithm decided
are likely belong to the same cluster and, a high value (bnf > 1) for points which
our algorithm decided belong to different clusters.

Given two feature points p; and pa, a feature space histogram H, and L(p1, p2)
- the straight line connecting the two feature points in the histogram domain,
we calculate the bnf according to the following formula:

B 2min(H (p1), H(p2))
bnf(p1,p2) = 2min(H(L(p1,p2))) + min(H (p1), H(p2))

Where H (p) is the histogram value at the bin whose coordinates are given by the
feature point p and min(H (L(p1,p2))) is the minimum histogram value along
the line connecting the two points in the histogram domain (excluding the value
at the two end points). The term min(H (p1), H(p2)) was added to the denom-
inator for stabilization reasons. We chose the exact criteria for calculating the
bnf due to its simplicity. Our experience shows that other, similar formulas pro-
duce very similar results.

A more thorough analysis of the histogram values along the line may produce
yet better results, the exact formula may depend on the sparseness/denseness
of the histogram, the amount of noise and other factors, but as we show in our
results section, even this simple criterion yields very good results.

We believe that the main contribution of this paper is in introducing a new



approach to computing the affinities rather than in the specific formula sug-
gested.

We implemented the algorithm as a C routine that is called from Matlab
(mex file). Since Matlab is our development environment, our implementation
is only suitable for algorithms that calculate affinities or distance measures for
the original input image like Normalized Cuts (Ncut) [10] and other spectral
clustering algorithms. The implementation is not suitable for algorithms that
iteratively change pixel values like the MeanShift algorithm [11] since we can
not efficiently update our histogram dynamically in each iteration. Nevertheless
we are confident that given a dynamic implementation of the histogram (for
example in C++4) iterative algorithms may benefit from our affinity calculations
as well.

Since high dimensional histograms are extremely sparse, our method can not be
applied directly for modifying affinity calculations of texture features. Texture
is usually represented as a feature vector, holding the response of the pixel’s
neighbourhood to a large number of filters (typically, around 50). Even using
a quantization, allowing only four possible values for each coordinate we get a
feature histogram with 4°° bins and we hardly ever get two pixels in the same
bin. We address this problem by projecting the high dimensional feature vectors
onto their first three principal components. Even with this drastic dimensionality
reduction, using our affinity measures with the projected histogram dramatically
improves the segmentation results compared with those achieved by using Eu-
clidean affinities in the full dimensional space (using Euclidean distance in the
projected subspace produced poor results).

Computationally, calculating the histogram distance between two points, p; and
P2, in the feature space is linear in n - the number of bins along the line connect-
ing the points in the histogram domain. Since most of the applications calculate
distances (or affinity) only in a small neighbourhood, and neighbouring pix-
els tend to be similar, in average, n is very small. The average computational
time for computing the affinity between one pixel and the rest of the image in
a 480*320 image is 2 seconds on a Pentium4 2.4Ghz computer. Constructing
a Matlab sparse matrix with histogram affinity scores of 11*11 neighbourhood
around each pixel in an image of the same size took an average of 200 seconds,
80 of which were spent on the actual affinity calculations. For comparison, build-
ing the same matrix with Euclidean affinity scores took around 140 seconds, 24
of which were spent on the actual affinity calculations. In addition, the actual
segmentation process (given the affinity matrix) took at least twice that time
(~ 7 minutes), the computational overhead due to our method is therefore nearly
negligible.

When calculating affinities between texture features, our approach even proved
marginally more efficient than calculating the Euclidean distance, since we work
in a projected three dimensional subspace, while the Euclidean distance was cal-
culated in a much higher dimensionality.



4 Results

We demonstrate the competence of our pixels affinity through the results of seg-
mentation algorithms using both color and texture features. We chose the Ncut
algorithm for our demonstration since it is a well known image segmentation
algorithm that is easily adopted to use with various affinity measures, affinities
were computed in an 11*11 neighbourhoods around each pixel. We ran the algo-
rithm twice over the Berkeley segmentation dataset, once using Euclidean affini-
ties and the other using our bottleneck affinities. We provide both the Berkeley
segmentation benchmark results for both runs and a few qualitative examples.
The Berkeley segmentation dataset contains 100 test images. All images in the
dataset were manually segmented by humans and these segmentations are con-
sidered as ground truth. Berkeley’s benchmark tool calculates precision, recall
and F-measure (the harmonic mean of the precision and recall scores) for the
automatically segmented images according to these human segmented images.
Figure 5 provides benchmark results for images segmented by the Ncut algo-
rithm using color (RGB) features. The results in the figure are: Precision/recall
graph (a,d), the F-measure histogram (b,e) and the recall histogram (c,f). Using
our affinity measure improved the F-measure from 0.33 to 0.41 - an improve-
ment of 24%. The recall rate improved from 0.26 to 0.37 - an improvement of
42%. The improvement in precision was only marginal, from 0.49 to 0.50 - an
improvement of 2%. Using bottleneck affinities produced better segmentation
results (compared to using the Euclidean metric) for 82 out of the 100 images in
the dataset. Figure 6 provides benchmark results for images segmented by the
Ncut algorithm using texture features. The texture features used are the Leung-
Malik filter bank [12] (a total of 48 filters). We also tried using the Schmidt filter
bank [13] (a total of 13 filters) but received inferior results. The code for both
filter banks was obtained from [14]. The results in the figure are: Precision/recall
graph (a,d), the F-measure histogram (b,e) and the recall histogram (c,f). Using
our affinity measure improved the F-measure from 0.2 to 0.28 - an improvement
of 39%. The recall rate improved from 0.15 to 0.24 - an improvement of 56%.
The precision rate has improved from 0.34 to 0.39 - an improvement of 13%.
Using bottleneck affinities produced better segmentation results (compared to
using the Euclidean metric) for 92 out of the 100 images in the dataset. It is
important to mention that these results were achieved for the filter responses
alone, without incorporating gray-scale information, hence they are not high.
Figure 7 provides a comparison of segmentation results achieved using the Ncut
algorithm using RGB features. Results achieved using the Euclidean metric are
shown in the second row, while those achieved using bottleneck affinities are in
the third. Figure 8 provides a comparison of segmentation results achieved using
the Ncut algorithm using texture features. Results achieved using the Euclidean
metric are shown in the second row, while those achieved using bottleneck affini-
ties are in the third.

We used Matlab’s graph-partitioning algorithm for providing an additional eval-
uation of our bottleneck affinities. Graph vertices represented image pixels and
edge weights were calculated as the sum of distance in the image plane and color-



features dissimilarity (according to the Euclidean metric and to the bottleneck
affinities). The algorithm is computationally expensive in terms of both time and
memory, since it requires building a full graph. We therefore do not provide full
benchmark results for that algorithm, rather we provide a few examples. The
results are found in Figure 9. All the images in this experiment were segmented
to up to 8 segments.

We did not compare our algorithm to the Fowlkes et. al. algorithm because the
approaches are entirely different; our approach is a low level one that works on a
single feature space, while Fowlkes et. al. use a high level approach that combines
cues from several feature spaces and from the image plane itself. Moreover, their
approach can use our algorithm as a subroutine. We also did not compare our
approach to that of feature space clustering since this approach is rarely used
and our past experience with it produced inferior results.

5 Discussion and Future Work

We introduced bottleneck affinities, a straightforward and efficient approach that
utilizes image specific characteristics for calculating similarity measures between
pixel features. Our algorithm decreases the affinity between two feature points
when it estimates that they belong to two different clusters, while increasing
their affinity when estimating they belong to the same cluster. We do so without
explicitly clustering the data and with only weak assumptions on the structure
of these clusters.

Although we have justified our approach with the claim that the data is both
smooth and nearly convex in nature, we believe that for most applications the
smoothness requirement is the important of the two, since for smooth data, lin-
earity in a small neighbourhood is obtained automatically according to Taylor’s
theorem and most applications calculate affinity only in a small neighbourhood
around pixels.

We demonstrated the advantages of our affinities compared to the Euclidean
distance measure for segmentation both in a three-dimensional color space and
in a high dimensional texture space. The improved segmentation results were
achieved for only a small additional computational cost, compared with the use
of the Euclidean metric, in the case of the three-dimensional colour features. In
the case of the high-dimensional texture features our algorithm proved slightly
more efficient than the Euclidean metric. We are confident that other applica-
tions that rely on pixel affinity measures will benefit from our algorithm.

We believe that better results may be obtained through using a more thorough
analysis of the feature space and allowing for more general paths between the
feature points (and by this, giving up the convexity requirement). Represent-
ing the feature space using a graph, where vertices store density measurement
of the neighborhood around each feature point and edges represent Euclidean
distance between neighboring features enables calculating (dis)similarities using
shortest path algorithms that will consider both the length (distance) and the
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density along the path in the feature space. We are currently working in this
direction. The graph representation has other advantages as well, probably the
most important of which is that it enables working in an arbitrary high dimen-
sion without difficulties, which is useful for calculating affinities between texture
features.

We further believe that the method may be applied to clustering and affinity
measuring for different kinds of data and we intend to try it in different domains.
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Fig. 5. Benchmark results of the Ncut algorithm using color features and Euclidean
affinities: (a) precision/recall segmentation results (mean precision/recall in red circle),
(b) F-measure histogram and (c) recall histogram. Benchmark results of the Ncut algo-
rithm using color features and bottleneck affinities: (d) precision/recall segmentation
results (mean precision/recall in red circle), (e) F-measure histogram and (f) recall
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Fig. 6. Benchmark results of the Ncut algorithm using texture features and Euclidean
affinities: (a) precision/recall segmentation results (mean precision/recall in red cir-
cle), (b) F-measure histogram and (c) recall histogram. Benchmark results of the Ncut
algorithm using texture features and bottleneck affinities: (d) precision/recall segmen-
tation results (mean precision/recall in red circle), (e) F-measure histogram and (f)
recall histogram.
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Fig. 7. Segmentation results of the Ncut algorithm using texture features in 15*15
neighbourhoods (each cluster is colored using its mean intensity) according to Euclidean
affinities (second row) and to our bottleneck affinities (third row)
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Fig. 8. Segmentation results of the Ncut algorithm using texture features in 15*15
neighbourhoods (each cluster is colored using its mean intensity) according to Euclidean
affinities (second row) and to our bottleneck affinities (third row)
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Original Euclidean Bottleneck

Fig. 9. Segmentation results of Matlab’s average-link graph partitioning algorithm us-
ing RGB features. Results achieved using the Euclidean metric are in the second col-
umn. Results achieved using the bottleneck affinities are in the third column. All images
were automatically segmented into up to 8 (not necessarily continuous) segments



