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Abstract. This paper describes a method that accelerates pattern
matching. The distance between a pattern and a window is usually close
to the distance of the pattern to the adjacement windows due to image
smoothness. We show how to exploit this fact to reduce the running time
of pattern matching by adaptively sliding the window often by more than
one pixel. The decision how much we can slide is based on a novel rank
we define for each feature in the pattern. Implemented on a Pentium 4
3GHz processor, detection of a pattern with 7569 pixels in a 640 × 480
pixel image requires only 3.4ms.

1 Introduction

Many applications in image processing and computer vision require finding a
particular pattern in an image, pattern matching. To be useful in practice, pat-
tern matching methods must be automatic, generic, fast and robust.

(a)

(b) (c) (d)

Fig. 1. (a) A non-rectangular pattern of 7569 pixels (631 edge pixel pairs). Pixels not
belonging to the mask are in black. (b) A 640 × 480 pixel image in which the pattern
was sought. (c) The result image. All similar masked windows are marked in white.
(d) The two found occurrences of the pattern in the image. Pixels not belonging to the
mask are in black. The method suggested in this paper reduced the Pele and Werman
pattern matching method[1] running time from 21ms to only 3.4ms.
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(a)

(b) (c) (d)

Fig. 2. (a) A non-rectangular pattern of 2197 pixels. Pixels not belonging to the mask
are in black. (b) Three 640x480 pixel frames out of fourteen in which the pattern was
sought. (c) The result. Most similar masked windows are marked in white. (d) Zoom
in of the occurrences of the pattern in the frames. Pixels not belonging to the mask are
in black. The method suggested in this paper reduced the Pele and Werman pattern
matching method[1] running time from 22ms to only 7.2ms. The average number of
samples per window reduced from 19.7 to only 10.6.

Pattern matching is typically performed by scanning the entire image, and
evaluating a distance measure between the pattern and a local rectangular win-
dow. The method proposed in this paper is applicable to any pattern shape, even
a non-contiguous one. We use the notion of “window” to cover all possible shapes.

There are two main approaches to reducing the computational complexity of
pattern matching. The first approach reduces the time spent on each window.
The second approach reduces the number of windows visited. In this work we
concentrate on the second approach.

We suggest sliding more than one pixel at a time. The question that arises is:
how much can you slide? The answer depends on the pattern and on the image.
For example, if the pattern and the image are black and white checked boards
of pixels, the distance of the pattern to the current window and to the next
window will be totally different. However, if the pattern is piecewise smooth, the
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(a)

(b) (c)

(a-zoom)

(d)

Fig. 3. (a) A rectangular pattern of 1089 pixels. (b) A noisy version of the original
640x480 pixel image. The pattern that was taken from the original image was sought
in this image. The noise is Gaussian with a mean of zero and a standard deviation of
25.5. (c) The result image. The single similar masked window is marked in white. (d)
The occurrence of the pattern in the zoomed in image. The method suggested in this
paper reduced the Pele and Werman pattern matching method[1] running time from
19ms to only 6ms. The average number of samples per window reduced from 12.07 to
only 2. The image is copyright by Ben Schumin and was downloaded from: http://en.
wikipedia.org/wiki/Image:July 4 crowd at Vienna Metro station.jpg.

distances will be similar. We describe a method which examines the pattern and
decides how much we can slide in each step. The decision is based on a novel
rank we define for each feature in the pattern.

We use a two stage method on each window. First, we test all the features
with a high rank. Most of the windows will not pass and we will be able to slide
more than one pixel. For the windows that passed the test we perform the simple
test on all the features.

A typical pattern matching task is shown in Fig. 1. A non-rectangular pattern
of 7569 pixels (631 edge pixel pairs) was sought in a 640×480 pixel image. Using
the Pele and Werman method[1] the running time was 21ms. Using our method
the running time reduced to only 3.4ms. All runs were done on a Pentium 4
3GHz processor.

Decreasing the number of visited windows is usually achieved using an image
pyramid[3]. By matching a coarser pattern to a coarser level of the pyramid,
fewer windows are visited. Once the strength of each coarser resolution match is
calculated, only those that exceed some threshold need to be compared for the
next finer resolution. This process proceeds until the finest resolution is reached.

There are several problems with the pyramid approach. First, important de-
tails of the objects can disappear. Thus, the pattern can be missed. For exam-
ple, in Fig. 1 if we reduce the resolution to a factor of 0.8, the right occurrence
of the pattern is found, but the left one is missed. Using the smaller images
the running time decreases from 21ms to 18ms (without taking into account
the time spent on decreasing the resolution). Using our approach, both occur-
rences of the patterns are found in only 3.4ms. Note that smoothness can change

http://en.wikipedia.org/wiki/Image:July_4_crowd_at_Vienna_Metro_station.jpg
http://en.wikipedia.org/wiki/Image:July_4_crowd_at_Vienna_Metro_station.jpg
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(a)

(a-zoom)

(b)
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Fig. 4. (a) A non-rectangular pattern of 3732 pixels (3303 edge pixel pairs). Pixels
not belonging to the mask are in black. (b) A 2048 × 1536 pixel image in which the
pattern was sought. The area where the pattern was found is marked in white. (c) The
occurrence of the pattern in the image zoomed in. (d) The occurrence of the pattern
in the image zoomed in, with the exact found outline of the pattern painted in white.
The method suggested in this paper reduced the Pele and Werman pattern matching
method[1] running time from 437ms to only 51ms. Note the large size of the image.
The average number of samples per window reduced from 27 to only 3.7.

between different local parts of the pattern. The pyramid approach is global,
while our approach is local and thus more distinctive. The second problem of
pyramid approach is the memory overhead.

This paper is organized as follows. Section 2 presents the LUp rank for pixels
and for pairs of pixels. Section 3 describes a method that uses the LUp rank for
accelerating pattern matching. Section 4 presents extensive experimental results.
Finally, conclusions are drawn in Section 5.

2 The LUp Rank

In this section we define a novel smoothness rank for features, the LUp rank.
The rank is later used as a measure that tells us how much we can slide for each
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(a)

(b)

Fig. 5. (a) A 115×160 pattern (2896 edge pixel pairs). (b) A 1000×700 pixel image in
which the pattern was sought. The most similar window is marked in white. The method
suggested in this paper reduced the Pele and Werman pattern matching method[1]
running time from 51ms to only 9.2ms. The average number of samples per window
reduced from 23 to only 3. The images are from the Mikolajczyk and Schmid paper[2].

pattern. This is first defined for pixels and then for pairs of pixels. Finally, we
suggest ways of calculating the LUp rank.

2.1 The LUp Rank for Pixels

In this sub-section we use the Thresholded Absolute Difference Hamming dis-
tance that was suggested by Pele and Werman[1]. This distance is the number
of different corresponding pixels between a window and a pattern, where the
corresponding pixels are defined as different if and only if their absolute inten-
sity difference is greater than a predefined pixel similarity threshold, q; i.e. The
distance between the set of pixels, A, applied to the pattern and the current
window is defined as (δ returns 1 for true and 0 for false):

TADA(pattern, window) =
∑

(x,y)∈A

δ (|pattern(x, y) − window(x, y)| > q) (1)

We first define the LU rank for a pattern pixel as:

LU(pattern, (x, y)) = max
R

s.t:

∀ 0 ≤ rx, ry ≤ R pattern(x, y) = pattern(x − rx, y − ry)
(2)

Now, if we if we assess the similarity between a pixel in the pattern with an
LU rank of R, to a pixel in the window, we get information about all the windows
which are up to R pixels to the right and down to the current window. Using
this information we can slide in steps of R + 1 pixels, without losing accuracy.
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The requirement for equality in Eq. 2 is relaxed in the definition of the LUp

rank. In this rank the only requirement is that the absolute difference is not too
high:

LUp(pattern, (x, y)) = max
R

s.t:

∀ 0 ≤ rx, ry ≤ R |pattern(x, y) − pattern(x − rx, y − ry)| ≤ p
(3)

Note that the LU and LU0 ranks for pixels are equivalent.

2.2 The LUp Rank for Pairs of Pixels

In this sub-section we use the Monotonic Relations Hamming distance that
was suggested by Pele and Werman[1]. This distance is the number of pairs of
pixels in the current window that does not have the same relationship as in the
pattern; i.e. the basic features of this distance are pairs of pixels and not pixels.
Pixel relations have been successfully applied in many fields such as pattern
matching[1], visual correspondence[4] and keypoint recognition[5].

Each pattern is defined by a set of pairs of pixels which are close, while the
intensity difference is high. We assume without loss of generality that in the
pattern the first pixel in each pair has a higher intensity value than the second
pixel. The distance between the set of pairs, A, applied to the pattern and the
current window is defined as (δ returns 1 for true and 0 for false):

MRA(pattern, window) =
∑

[(x1,y1),
(x2,y2)]∈A

δ (window(x1, y1) ≤ window(x2, y2)) (4)

Given a pattern and pair of pixels, [(x1, y1), (x2, y2)] such that the first pixel
has a higher intensity value than the second pixel, i.e. pattern(x1, y1) >
pattern(x2, y2), we define the pair’s LUp rank as:

LUp(pattern, [(x1, y1), (x2, y2)]) = max
R

s.t: ∀ 0 ≤ rx, ry ≤ R

pattern(x1 − rx, y1 − ry) > pattern(x2 − rx, y2 − ry) + p
(5)

The requirement that the relation must be bigger in at least p is added for
stability. Now, if we assess the similarity between a pair of pixels in the pattern
with an LUp rank of R, to a pair of pixels in the window, we get information
about all the windows which are up to R pixels to the right and down to the
current window. Figure 6 illustrates this. Using this information we can slide in
steps of R + 1 pixels, without losing accuracy.

2.3 How to Calculate the LUp Rank

We suggest two methods of calculating the LUp rank of all features (pixels or
pairs of pixels) in the pattern. The first is to calculate the rank for each feature.
If we denote by R̄ the average LUp rank and by |A| the feature set size, then
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Fig. 6. The pair of pixels in the pattern (marked with two circles): [(3, 4), (1, 1)], has
LU10 rank of 1 (Pattern(3, 4) > Pattern(1, 1) + 10 and Pattern(3, 3) > Pattern(1, 0) +
10), etc). Thus, when we test whether Image(3, 4) > Image(1, 1), we get an answer to
these 4 questions (all coordinates are relative to the window’s coordinates):
1. In the window of (a), is Window(3, 4) > Window(1, 1) as in the pattern?
2. In the window of (b), is Window(2, 4) > Window(0, 1) as in the pattern?
3. In the window of (c), is Window(3, 3) > Window(1, 0) as in the pattern?
4. In the window of (d), is Window(2, 2) > Window(0, 0) as in the pattern?

the average time complexity is O(|A|R̄2). The second method is to test which
features have each LUp rank. This can be done quickly by finding the 2d min
and max for each value of R. The Gil and Werman[6] method does this with
a time complexity of O(1) per pixel. If we denote by Rmax the maximum R
value, then the time complexity is O(|A|Rmax). A combined approach can also
be used. Note that the computation of the LUp is done offline for each given
pattern. Moreover, the size of the pattern is usually much smaller than the size
of the image; thus the running time of this stage is negligible. In this paper we
simply calculate the LUp rank for each feature.

3 The Pattern Matching Method

The problem of pattern matching can be formulated as follows: given a pattern
and an image, find all the occurrences of the pattern in the image. We define a
window as a match, if the Hamming distance (i.e. Eq. 1 or Eq. 4) is smaller or
equal to the image similarity threshold.

In order to reduce the running time spent on each window we use the Pele
and Werman[1] sequential sampling algorithm. The sequential algorithm random
samples corresponding features sequentially and without replacement from the
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window and pattern and tests them for similarity. After each sample, the algo-
rithm tests whether the accumulated number of non-similar features is equal to
a threshold, which increases with the number of samples. We call this vector of
thresholds the rejection line. If the algorithm touches the rejection line, it stops
and returns non-similar. If the algorithm finishes sampling all the features, it
has computed the exact distance between the pattern and the window. Pele and
Werman[1] presented a Bayesian framework for sequential hypothesis testing on
finite populations. Given an allowable bound on the probability of a false nega-
tive the framework computes the optimal rejection line; i.e. a rejection line such
that the sequential algorithm parameterized with it has the minimum expected
running time. Pele and Werman[1] also presented a fast near-optimal frame-
work for computing the rejection line. In this paper, we use the near-optimal
framework.

The full system we use for pattern matching is composed of an offline and an
online part. The offline part gets a pattern and returns the characteristic LUp

rank, two sets of features and the two corresponding rejection lines. One set
contains all the pattern features. The second set contains all the pattern features
from the first set that have an LUp rank greater or equal to the characteristic
LUp rank.

The online part slides through the image in steps of the characteristic LUp

rank plus one. On each window it uses the sequential algorithm to test for
similarity on the second set of features. If the sequential algorithm returns non-
similar, the algorithm slides the characteristic LUp rank plus one pixels right
or the characteristic LUp rank plus one rows (at the end of each row). If the
sequential algorithm returns similar (which we assume is a rare event), the
window and all the windows that would otherwise be skipped are tested for
similarity. The test is made again using the sequential algorithm, this time on
the set that contains all the pattern features.

4 Results

The proposed method was tested on real images and patterns. The results show
that the method accelerates pattern matching, with a very small decrease in ro-
bustness to rotations. For all other transformations tested - small scale change,
image blur, JPEG compression and illumination - there was no decrease in ro-
bustness. First we describe results that were obtained using the Thresholded Ab-
solute Difference Hamming distance (see Eq. 1). Second, we describe results that
were obtained using the Monotonic Relations Hamming distance (see Eq. 4).

4.1 Results Using the Thresholded Absolute Difference Hamming
Distance

We searched for windows with a Thresholded Absolute Difference Hamming dis-
tance lower than 0.4×|A|. The sequential algorithm was parameterized using the
near-optimal method of Pele and Werman[1] with input of a uniform prior and
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a false negative error bound of 0.1%. In all of the experiments, the p threshold
for the LUp rank was set to 5. The characteristic LU5 rank for each pattern was
set to the maximum LU5 rank found for at least 30 pattern pixels. Note that
the online part first tests similarity on the set of pixels with a LU5 rank greater
or equal to the characteristic LU5 rank. The same relative similarity threshold
is used; i.e. if the size of this small set is |As| we test whether the Thresholded
Absolute Difference Hamming distance is lower than 0.4 × |As|. Results that
show the substantial reduction in running time are shown in Figs. 2 and 3.

4.2 Results Using the Monotonic Relations Hamming Distance

The pairs that were used in the set of each pattern were pairs of pixels belonging
to edges, i.e. pixels that had a neighbor pixel, where the absolute intensity
value difference was greater than 80. Two pixels, (x2, y2), (x1, y1) are considered
neighbors if their l∞ distance: max(|x1 − x2|, |y1 − y2|) is smaller or equal to 2.
We searched for windows with a Monotonic Relations Hamming distance lower
than 0.25 × |A|. The sequential algorithm was parameterized using the near-
optimal method of Pele and Werman[1] with input of a uniform prior and a false
negative error bound of 0.1%. In all of the experiments, the p threshold for the
LUp rank was set to 20. The characteristic LU20 rank for each pattern was set
to the maximum LU20 rank found for at least 30 pairs of pixels from the set of
all edge pixel pairs. Note that the online part first tests similarity on the set of
pairs of edge pixels with a LU20 rank greater or equal to the characteristic LU20
rank. The same relative similarity threshold is used; i.e. if the size of this small
set is |As| we test whether the Monotonic Relations Hamming distance is lower
than 0.25 × |As|. Results that show the substantial reduction in running time
are shown in Figs. 1, 4 and 5.

To illustrate the performance of our method, we ran the tests that were
also conducted in the Pele and Werman paper[1]. All the data for the ex-
periments were downloaded from http://www.cs.huji.ac.il/~ofirpele/hs/
all images.zip. Five image transformations were evaluated: small rotation;
small scale change; image blur; JPEG compression; and illumination. The names
of the datasets used are rotation; scale; blur ; jpeg; and light respectively. The
blur, jpeg and light datasets were from the Mikolajczyk and Schmid paper[2].
scale dataset contains 22 images with an artificial scale change from 0.9 to 1.1
in jumps of 0.01; and rotation dataset contains 22 images with an artificial in-
plane rotation from -10◦ to 10◦ in jumps of 1◦. For each collection, there were ten
rectangular patterns that were chosen from the image with no transformation.
In each image we considered only the window with the minimum distance as
similar, because we knew that the pattern occurred only once in the image. We
repeated each search of a pattern in an image 1000 times.

There are two notions of error: miss detection error rate and false detection
error rate. As we know the true homographies between the images, we know
where the pattern pixels are in the transformed image. We denote a correct
match as one that covers at least 80% of the transformed pattern pixels. A false
match is one that covers less than 80% of the transformed pattern pixels. Note

http://www.cs.huji.ac.il/~ofirpele/hs/all_images.zip
http://www.cs.huji.ac.il/~ofirpele/hs/all_images.zip
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Fig. 7. The miss detection error rates of our method on the rotation and scale tests.
There is a slight decrease in performance with our method on the rotation test. On the
scale test the performance is the same for both methods. Note that our approach runs
much faster and that on all other tests (light, jpeg and blur) the miss detections error
rates were exactly the same.

that there is also an event of no detection at all if our method does not find any
window with a Monotonic Relations Hamming distance lower than 0.25 × |A|.
The miss detection error rate is the percentage of searches of a pattern in an
image that does not yield a correct match. The false detection error rate is the
percentage of searches of a pattern in an image that yields a false match.

The detection and miss detection error rates were the same as in the Pele
and Werman method[1], except in the rotation test where there was a slight
decrease in performance (see Fig. 7). In the light and jpeg tests, the performance
was perfect; i.e. 0% miss detection rate and 0% false detection rate. In the blur
test, only one pattern was not found correctly in the most blurred image. The
miss detection rate and false detection rate for this specific case was 99.6%. In
all other patterns and images in the blur test, the miss detection rate and false
detection rate was 0%. In the scale test, there was only one pattern with false
detection in two images with scale 0.9 and 0.91. In the rotation test, there was
only one pattern with false detection in images with rotation smaller than -2◦

or larger than +2◦. Miss detection rates in the scale and rotation tests (see
Fig. 7) were dependent on the pattern. If the scale change or rotation was not
too big, the pattern was found correctly.
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Fig. 8. Average number of samples per window for each of the ten patterns with our
method (dotted lines) and with the Pele and Werman method[1] (solid lines). In all
of the tests our approach ran much faster. Note that as our approach skips windows,
the average of samples per window can be even smaller than one. It is also noteworthy
that the running time in our approach depends on the characteristic LU20 rank. For
example, in the light test - (a), finding pattern number 6 (marked as a pink star) using
the original method took the most time, while using our method it is one of the patterns
that was found the fastest. This can be explained by the fact that this pattern has a
characteristic LU20 rank of two, which is high compared to the other patterns.
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We also measured the average samples taken for each window using our
method and the Pele and Werman method (see Fig. 8). In all of the tests our
approach ran much faster. Note that as our approach skips windows, the average
of samples per window can be even smaller than one. Further, the running time
in our approach depends on the characteristic LU20 rank.

5 Conclusions

This paper described a method to accelerate pattern matching by adaptively
sliding the window often by more than one pixel. We assigned a novel rank to
pixels and edge pixel pairs that tells us how many pixels we can slide through the
image. We suggested a pattern matching method that uses this rank. Extensive
testing showed that the pattern matching was accelerated without losing almost
any accuracy.

Faster than real time results were presented, where patterns under large illu-
mination changes, blur, occlusion, gaussian noise, etc, were detected in several
milliseconds. To the best of our knowledge, the running time results presented
in this paper are the fastest published.

An interesting extension of this work would be to use this novel rank to
accelerate additional methods of pattern matching.
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