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Abstract

This paper proposes a Riemannian geometric framework
to compute averages and distributions of point configura-
tions so that different configurations up to affine transfor-
mations are considered to be the same. The algorithms are
fast and proven to be robust both theoretically and empiri-
cally. The utility of this framework is shown in a number of
affine invariant clustering algorithms on image point data.

1. Introduction

Objects are often known up to some ambiguity, depend-
ing on the methods used to acquire them. The first-order ap-
proximation to any transformation is, by definition, affine,
and the affine approximation to changes between images
has been used often in computer vision [8]. Thus it is bene-
ficial to deal with objects known only up to an affine trans-
formation. For example, feature points on a planar trans-
form projectively between different views, and the projec-
tive transformation can in many cases be approximated by
an affine transformation. Likewise, color values of pixels
vary close to affinely with change of illumination[10]. A
number of popular clustering algorithms, such as k-means,
mean shift and EM use averaging on the data and probabil-
ity distributions. In order to use these algorithms we need
methods to measure distances between such sets, to com-
pute means and to put probability distributions on them.

Previous work treating affine invariance in computer vi-
sion can be generally divided into two approaches: invari-
ants and normalization. The first method consists in com-
puting different functions (invariants) of a set of points that
are invariant to the relevant group of transformations [11].
The disadvantages of this approach is the difficulty of using
invariants to define a meaningful distance between configu-
rations of feature points, moreover, a full set of invariants is
needed in order to distinguish between different sets. Also,

averaging the invariants is not the way to average different
configurations, as the averaged invariants don’t necessarily
correspond to a configuration.

One popular form of normalization, originating in statis-
tics, is whitening, in which an affine transformation is ap-
plied to set of points such that they have zero average
and the identity covariance matrix. The problem with this
method is that there are remaining degrees of freedom,
that is, two affinely equivalent sets can have different nor-
mal forms. Another normalization, obtained by bringing
pivot points in the configuration to a standard location suf-
fers from being arbitrary and thus highly sensitive to noise.
(Note that the non-pivot points after the transformation are
invariants).

Affine-invariant distance between sets of points in 2D
has been suggested in [15], but, as above, having a distance
does not allow us to compute means and probabilities.

The study of the space of ordered configurations of n
points inR

k up to similarity transformations was pioneered
by Kendall (see [9]), who coined the nameshape space. For
different groups of transformations (rigid, similarity, linear,
affine, projective) one obtains different shape spaces. Shape
spaces were considered in [3],[14], although no attempts to
give a geometric structure on the shape space were made.
Methods similar to ours were suggested [13] in order to
morph between affine shapes, although mistakenly only the
linear invariance was used (see Appendix).

Our approach is to define a canonic geometric structure
on the affine shape space and use general geometric meth-
ods [12] to compute averages and distributions of affine-
invariant point configurations. Thus the clustering algo-
rithms mentioned above can be implemented on the affine
shape space.

The paper is organized as follows: the next section pro-
vides the mathematical background in geometry and Sec-
tion 3 explains how to use the geometrical methods on the
affine shape space. We proceed with possible applications
of the approach and results therein, finishing with a discus-
sion and suggestions for future work.
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2. Mathematical Background

We are going to map everyn-point configuration to a
single point in a certain manifold, on which we can com-
pute distances and averages. To enable further discussion,
we need to take a small detour into Riemannian geometry.
Further information can be found in any textbook on the
subject, such as [6].

An m-dimensional manifold is a space that locally looks
like R

m. A differential manifoldM enables us to talk about
derivatives of curves on the manifold, the derivative of a
curveγ(t) at a pointx ∈ M being a vectorγ′(t) lying in the
vector spaceTxM which is called the tangent space toM at
x. A Riemannianmanifold is a differential manifold with an
inner product<, >x uniquely defined on each tangent space
TxM . With the inner product, any differentiable curveγ :
[a, b] → M has lengthL(γ) defined as

L(γ) =

∫ b

a

‖γ′(t)‖γ(t)dt (1)

where‖v‖x =
√

< v, v >x is the norm onTxM de-
rived from the inner product. The distanced(x, y) between
two points on the manifold is the infimum of the lengths
of paths between them. A path that minimizes the distance
between two nearby points is called a geodesic. While it
is not always true, in a generic situation for every pointx
in M there is a unique geodesic starting fromx in every
direction, giving us theexponentialmap (the usual expo-
nential is a special case)expx : TxM → M such that
d(x, expx(v)) = ‖v‖x for everyv in TxM . The inverse
map to expx, the logarithm is defined only in a certain
neighborhood ofx and is denoted bylogx.

The notion of the mean of a set of points inM can be
defined in different ways. One of them, called the Karcher
mean [5](although it was originally defined and studied by
Cartan) comes from noticing that the mean of a set of points
in the euclidean spaceRk minimizes the sum of the squared
distances to the points in the set. This still makes sense in
any Riemannian manifold, thus we define:

Mean(x1, . . . , xn) = arg min
y∈M

n
∑

i=1

d(y, xi)
2 (2)

The mean is not unique for a general set of points, con-
sider two antipodal points on a sphere. Nevertheless, it is
known [2] that for points lying close enough to each other
the mean is unique and in addition the equation above has
unique local minimum (See Appendix for further discus-
sion). By differentiating we get thaty is the mean if and
only if

n
∑

i=1

logy xi = 0 (3)

This gives us a simple gradient descent algorithm for find-
ing the mean.

Using the mean defined in the above paragraph we can
estimate the expectation of an empirical distribution on a
manifold. We can go one step further and compute the
covariance matrix of the data. Letx1, . . . , xn ∈ M and
µ = Mean(x1, . . . , xn). Fix a basisv1, . . . , vn of TµM .
The covariance matrixΣ relative to the basisv1, . . . , vn is

Σ =
1

n

∑

i,j

logµ(xi) logµ(xj)
T (4)

wherelogµ(xi) is written in the basis{vk}. We then get a
“normal” distributionN(µ, Σ) on M fitting our data with
density

φ(x) ∝ e−
1

2
logµ(x)Σ−1 logµ(x)T

(5)

The exponent of the density is the Mahalanobis distance be-
tweenx and the mean of the distributionN(µ, Σ)

d(x) = logµ(x)Σ−1 logµ(x)T (6)

If M1, M2 are Riemannian manifolds then there is a nat-
ural Riemannian structure on the product manifoldM =
M1×M2: if (x1, x2) is a point inM andv, w ∈ TxM then
v = (v1, v2) andw = (w1, w2). We define

< v, w >x=< v1, w1 >x1
+ < v2, w2 >x2

(7)

One easily shows that geodesics inM are product of
geodesics inM1 and M2: γ(t) is a geodesic inM iff
γ(t) = (γ1(t), γ2(t)) whereγi is a geodesic inMi. In the
same way, means inM can be computed coordinatewise.

3. Geometry of the affine shape space

Our goal is to define a geometric structure on the set
of n-point configurations inRk, where two configurations
(v1, . . . , vn) and(u1, . . . , un) are considered equivalent if
there is an affine transformation from one to another:

ui = Avi + b (8)

To achieve the goal, we need to assign a representative to
every configuration such that equivalent configurations get
the same representative. Given a configurationv1, . . . , vn

we look at the subspaceV spanned by the columns of the
following matrix:

M(v1, . . . , vn) =









vT
1 1

vT
2 1

. . . 1
vT

n 1









(9)

In other words, V is the image of the operator
M(v1, . . . , vn). We show thatV is invariant to any affine
transformation applied tov1, . . . , vn. If ui = Avi + b then

M(u1, . . . , un) =









vT
1 AT + bT 1

vT
2 AT + bT 1

. . . 1
vT

n AT + bT 1









= (10)



=









vT
1 1

vT
2 1

. . . 1
vT

n 1









(

AT 0
bT 1

)

(11)

As

(

AT 0
bT 1

)

is invertible, M(u1, . . . , un) and

M(v1, . . . , vn) have the same image. On the other hand, if
the image ofM = M(v1, . . . , vn) is equal to the image of
M ′ = M(u1, . . . , un) then there is ak + 1 × k + 1 matrix
B such thatM ′ = MB and thisB has to be affine, so{vi}
and{ui} are affinely equivalent.

Thus everyn-point configuration inRk gives rise to a
k + 1 dimensional subspace ofR

n, with equivalent con-
figurations giving the same subspace. Of course, the con-
figuration can be reconstructed from the subspace only up
to affine equivalence. Note, however, that not everyk + 1
dimensional subspace ofR

n is the representation of ann
point configuration, only those containing the vector~1 =
(1, 1, . . . , 1)T . Thus our representative will be the orthogo-
nal complement of~1 in V . Summarizing: the space of affine
shapes is the space of allk-dimensional subspaces in~1⊥.

The space ofk-dimensional subspaces ofR
n is called

the Grassman manifold and denoted byG(k, n). It is
a generalization of the notion of projective space, which
is the space of all 1-dimensional subspaces ofR

n. The
are different ways to define distances inG(k, n), and
in particular, Riemannian structure. Nevertheless, there
is a unique (up to scale) Riemannian structure that is
invariant to the action of the orthogonal group on the
left (see Appendix), thus becoming invariant to permuta-
tions (of the points), so thatd((v1 . . . vn), (w1 . . . wn)) =
d((vπ(1) . . . vπ(n)), (wπ(1) . . . wπ(n)) for any permutation
π. The geometry ofG(k, n) with this metric has been stud-
ied [16], [17] and algorithmic methods for solving prob-
lems on the Grassman manifolds have been suggested in [4]
[7],[1]. For completeness we give the algorithms for com-
puting the distance, exponent and logarithm on Grassman
manifolds equipped with this metric.

We represent ak-dimensional subspaceW of R
n by any

n × k matrix A whose columns spanW . Clearly, for any
nonsingulark × k matrix P the subspace spanned byAP
is identical to the one spanned byA. Thus, the dimension
of G(k, n) is k · n − k · k = k(n − k). Notice that we
are not using any canonical coordinates for the Grassman
manifold, such as Plucker coordinates, but work with any
matrix spanning the subspace.

Let X ,Y be orthogonaln× k matrices representing sub-
spacesW andW ′. Recall thatUΣV T = A is a thin SVD
decomposition ofA if U isn×k orthogonal,Σ isk×k diag-
onal andV is k×k orthogonal. Now the distance, exponent
and logarithm on the Grassman manifold can be computed
using standard mathematical tools:

Algorithm 1. Distance=d(X,Y)
UΣV T = thin 1SVD(XT Y )
Θ = cos−1 Σ
d(X, Y ) =

√
∑

i θ2
i

Algorithm 2.Gexp(X,H)

UΣV T = thin SVD(H)
Gexp(X, H) = XV cosΣ + U sinΣ

Algorithm 3.Glog(X, Y )

UΣV T = thin SVD((I − XXT )Y (XT Y )−1)
Θ = tan−1 Σ
Glog(X, Y ) = UΘV T

Using the functions above, we can write down the al-
gorithm for computing the mean of a set of configurations
M1, . . . , MN where eachMi is the matrix built from the
points ofi−th configuration as described in the beginning
of the section.

Algorithm 4. Mean(A1, . . . , AN)

Choose any orthogonal basisw1, . . . , wn−1 for 1⊥.

P =





w1

. . .
wn−1





for j = 1 to N do
Rj = PAj

UjDjV
T
j = thin SVD(Rj)

µ = U1

repeat
δ = 1

N

∑N

j=1 Glog(µ, Uj)
µ = Gexp(µ, δ)

until ‖δ‖ < ǫ
Mean= PT µ

The convergence issues are handled in the Appendix,
where we show that the algorithm works in a very general
setting. In [1] a different definition of a mean on the Grass-
man manifold is given together with a faster algorithm for
computing it. Unfortunately, nothing is known about the
algorithm’s convergence.

A tangent vectorv in the tangent spaceTW is represented
by matrixH such thatAT H = 0. Notice that this represen-
tation ofTW doesn’t depend on the choice ofA, as

AT H = 0 ⇐⇒ (AP )T H = PT AT H = 0 (12)

for any nonsingularP . To estimate the covariance matrix of
an empirical distributionx1, . . . , xn with meanµ we need
to pick a basisv1, . . . , vn(n−k) for Tµ. If Y representsµ
andY = UΣV T is the full SVD decomposition, then the
first k columns ofU spanµ, while the lastn − k columns



are an orthogonal basis toTµ. For any matrixH such that
Y T H = 0 (that is, representing a vector inTµ) the matrix
UT H will have zeros in the topk rows. The rest ofUT H ,
rewritten in a vector formcU (H) is the representation ofH
in our basis ofTµ. Summarizing we obtain the algorithm
for computing covariance:

Algorithm 5. Covariance=Σ(A1, . . . , AN)

µ = Mean(A1, . . . , AN )
UDV T = SVD(µ)
∀i vi = cU (Glog(µ, Ai))
Σ = 1

N

∑

i viv
T
i

Now the computation of the Mahalanobis distance and
the density of the normal distribution is as in Section2.

In some cases, as in some models for illumination in-
variance, we want to consider configurations up to linear
transformations, instead of affine. This case is even simpler
and is treated in the Appendix.

As remarked in the end of Section2, a product of Rie-
mannian spaces is a Riemannian space. This can be used in
the case of colored points, where the points are transformed
affinely in the space, and the colors transform affinely in the
RGB space.

4. Applications and Results

Being able to compute means, we can now employ clus-
tering algorithms that use averaging, such as k-means and
mean-shift. If the data is sufficient, Mixture of Gaussians
with EM can be used as well, applying the methods above
to estimate the covariance of a cluster. A number of syn-
thetic and real examples follow.

We give a short description of the well-known algorithms
used for clustering: k-means, mixture of Gaussians and
mean shift.

Algorithm 6. k-Means(x1, . . . , xN )
Pickk pointsc1, . . . , ck uniformly fromx1, . . . , xN

repeat
∀j Cj = ∅
for i = 1 to N do

Find j minimizingd(xi, cj)
Cj ⇐ Cj ∪ {xi}

for j = 1 to k do
cj = Mean(Cj)

until there are no updates

Notice that these algorithms can be implemented in any
data space as long as we can compute distance, mean
and covariance (for EM) in that space. As we have seen
above, the affine shape space, which is effectively a Grass-
man manifold, has efficient algorithms for computing these
quantities. We shall denote by k-means, EM and Mean-
shift the algorithms above using euclidean space after nor-

Algorithm 7. Mean shift(x1, . . . , xN )
for iter = 1 to IterNumdo

for i = 1 to N do
Let A ber closest neighbors ofxi

xi = Mean(A)
Run average-link clustering

Algorithm 8. Mixture of Gaussians(x1, . . . , xN )
Choose randomk pointscj from x1, . . . , xN

∀j Cj ⇐ ∅
∀jΣj ⇐ I
repeat

for i = 1 to N do
Findj minimizingdcj ,Σj

(xi) {w}ith dcj ,Σj
(xi) the

Mahalanobis distance fromxi to cj with covariance
Σj

Cj ⇐ Cj ∪ {xi}
for j = 1 to k do

cj = Mean(Cj)
Σj = Covariance(Cj)

until

malization of the configurations. On the other hand, G-k-
means, G-EM, G-Meanshift use the Grassman geometry. To
show the need for mean computing clustering algorithms,
we compare the results with the average link clustering of
the distance graph. This algorithm will be denoted bylink
or G-link when using the euclidean distance after normal-
ization or Grassman distance, accordingly.

As the ground truth clustering̃F : {1, . . . , N} →
{1, . . . , k} in the experiments is known, we use the misclas-
sification ratio of clusteringF to evaluate the performance.
As the order of the labels is meaningless, we define the mis-
classification ratio as the minimum of error percentage for
all possible orderings of the labels.

α(F ) =
1

N
min
π∈Sk

∑

c

|F−1(c) \ F̃−1(π(c))| (13)

We begin with a synthetic example demonstrating the
usefulness of the proposed approach. Two schematic draw-
ings of a man defined by a set of points were perturbed by
random affine transformations and random noise, resulting
in a set of drawings in Figure1. The goal was to partition
the set of drawings into two clusters. The comparison of the
misclassification relative to ground truth is shown in table1.

Algorithm linkage k-means meansift
Normalization 7 6 4

Grassman 7 2 1

Table 1. Classification error for clustering of the dancing stick fig-
ures. The smaller the number, the better the result.



Figure 1. Dancing men: Two “stick” drawings of a person were
randomly perturbed. The task is to cluster the images into two
groups. The ground truth: the first and the third column are per-
turbations of one figure and second and fourth of the other.

We now proceed to a systematic evaluation of the ap-
proach. 4 sets of 10 points in the plane were drawn from
N(0, 1). Each one of the sets was cloned 25 times. A differ-
ent random affine transformation was applied to every one
of 100 sets, and normally distributed noise with standard de-
viationσ was added. Our goal is to cluster the resulting 100
sets. Figure5 shows the average performance of different
algorithms.

Real-life example. We took a set of images of f15 and
f18 airplanes from the web (Figure5) and manually labeled
11 points on each image (the nose, corners of the wings
and tail, etc.) as in Figure2. The misclassification error of
different algorithms is shown in Table2.

Table 2. Classification error for clustering f15/f18 images

Algorithm link k-means meansift
Normalization 6 6 6

Grassman 4 3 0

5. Discussion and future work

We showed that affine invariance can be treated robustly
and efficiently using a Riemannian framework. Using this
framework we showed how classic clustering algorithms
can be adapted to the affine invariant case. We believe that
these methods will have many uses in computer vision and
image processing systems.

We plan to map other computer vision problems, such as
projective invariance and continuous shape deformations to
their relevant Riemannian manifolds in order to be able to
carry out the analysis on the correct spaces.

Figure 2. A set 11 points were labeled on each airplane image

Appendix

A. Linear shape space

The structure of the linear shape space is similar the
affine case, only simpler. Given a configurationv1, . . . , vn

we look at the subspaceV spanned by the columns of the
following matrix:

M(v1, . . . , vn) =









v1

v2

. . .
vn









(14)

In other words, V is the image of the operator
M(v1, . . . , vn). We show thatV is invariant to any linear
transformation applied tov1, . . . , vn. If ui = Avi then

M(u1, . . . , un) =









Av1

Av2

. . .
Avn









= (15)

=









v1

v2

. . .
vn









AT (16)

As AT is invertible, M(u1, . . . , un) and M(v1, . . . , vn)
have the same image. On the other hand, if the image
of M = M(v1, . . . , vn)) is equal to the image ofM ′ =
M(u1, . . . , un) then there is ak × k matrix A such that
M ′ = MA, so{vi} and{ui} are linearly equivalent.

In this way every configuration gives rise to ak-
dimensional subspace ofR

n. As opposed to the affine case,
there are no technical complications and the shape space is
just the Grassman manifoldG(k, n).



B. Convergence of the mean

A set S in a Riemannian manifoldX is called convex
if for any two pointsx1, x2 ∈ S there is a unique short-
est geodesic betweenx1 and x2 lying in S. Following
[2], if the points on a manifold lie in a convex ball then
∑n

i=1 d(y, xi)
2 has only one local (thus global) minimum

ensuring the convergence of the mean finding algorithm. As
the space is homogeneous, the convexity of a ball depends
only on its radius. The convexity radius ConRad (the maxi-
mal radius of convex balls) obeys

ConRad ≥ min{1

2
InjRad,

1

2
K} (17)

whereInjRad is the injectivity radius (the radius of the
biggest ball on whichexpx is injective) andK is a upper
bound on the sectional curvature. According to [16] any
geodesic inG(k, n) with min{k, n− k} ≥ 2 that intersects
itself is closed, and the minimal length of a closed geodesic
is π. Thus the injectivity radius isπ2 . By [17] the curva-
ture ofG(n, k) is bounded by4, thus the convexity radius
is π

4 . The diameter, that is, the maximal distance between
two points, ofG(k, n) is equal tomin{

√
k,
√

n − k}π
2 for

k, n − k 6= 1 [16]. In our applicationsk = 2 or 3, so we
see that the algorithm for computing the mean will converge
even for relatively spread out sets.

C. Noise sensitivity

A substantial advantage of our affine shape representa-
tion over normalization is its insensitivity to noise. Normal-
ization suffers badly from noise, as a small change in one
of the pivot points can lead to a large error in the position of
the other points. The difference in the stability between the
two methods is shown in Figure3.

We analyze the robustness of the Grassman metric un-
der Gaussian noise on the coordinates of the points. Let
u1, ...un be a configuration ofn points in the plane with
zero mean and unit covariance. We shall assume additive
independent Gaussian noiseyij of zero mean and variance
ǫ. Our goal is to compute the average distance between the
configuration{ui} and{vi = ui + yi}. LetA be the matrix








u1

u2

. . .
un









. As the{ui} have zero mean and unit covariance,

there is a orthogonal matrixO such that

OA =













√
n 0

0
√

n
0 0
. . .
0 0













(18)

As argued before, the metric is invariant underOn(R), thus
d(A, A+Y ) = d(OA, OA+OY ). The coefficients ofOY

Figure 3. A and B are two sets of 6 points on the plane drawn from
N(0,1). ∆A and∆B represent noise drawn fromN(0, σ). The
graph shows the average value ofD = |d(A+∆A,B+∆B)−d(A,B)|

d(A,b)

for both the distance on the Grassman manifold and the euclidean
distance after normalizing.

have the same distribution as the coefficients ofY , asO is
orthonormal, so we can assume thatA is

( √

nI

0

)

.
Let C andD be the matrices whose columns are the or-

thogonal bases ofA andA + Y , accordingly. WriteD as
(

F
G

)

whenF is 2 × 2 matrix. It is easily seen that

d(A, A + y) ≤
√

2 cos−1 ‖CT D‖ (19)

As C is just

(

I
0

)

in our case,CT D = F . To show that

d(A, A+Y ) is small we need to show that the norm‖F‖ is
close to1. We know thatD is orthogonal, thus maps every
unit vector to a unit vector.

1 = ‖D(1
0
)‖ =

q

‖F (1
0
)‖2 + ‖G(1

0
)‖2 (20)

As the first column ofD is obtained from the first column
of A + Y divided by

√
n and theyij are independent, on

average‖G
(

1

0

)

‖ < ǫ
√

n√
n

= ǫ. We have

‖F‖ ≥ ‖F (1
0
)‖ =

q

1 − ‖G(1
0
)‖2 ≃ 1 −

ǫ2

2
(21)

and finally

d(A, A + Y ) ≤
√

2 cos−1
√

1 − ‖G(1

0)‖2 ≃
√

2ǫ (22)

D. Uniqueness of metric

DenoteG = SOn(R) andH = SOk(R) × SOn−k(R).
We wish to show that there is a unique (up to scale)G-



invariant Riemannian metric onG(k, n) = G/H . Any in-
variant metric onG/H is uniquely determined by an inner
product<, > on the tangent spaceTx, whenx = eH ∈
G/H . In our case,x is the subspace spanned bye1, . . . , ek

andTx can be represented as the set of all matrices of size
(n−k)×k. Necessary and sufficient condition for the met-
ric to be invariant is:

∀h ∈ H ∀W, Z ∈ Tx < w, z >=< hW, hZ > (23)

If h =

(

U 0
0 V

)

then

hW =
d

dt
h

(

I
tW

)

=
d

dt

(

U
tV W

)

=

d

dt

(

I
tV WU−1

)

= V WU−1 (24)

Thus<, > must be invariant to the action ofSOn−k(R) on
the right andSOk(R) in the left. Denote byeij the natural
basis forTx, the set of all(n − k) × k matrices. Assume
< e11, e11 >= 1. To show that<, > is the standard inner
product and thus unique we need:

∀i, j < eij , eij >= 1

∀(i, j) 6= (k, l) < eij , ekl >= 0 (25)

For everyi, j there existU, V such thatUeijV = e11, thus
< eij , eij >= 1. For everyi 6= k there is aU (rotation by
π/4) such that for everyj

Ueij =

√
2

2
(eij + ekj) and Uekj =

√
2

2
(eij − ekj)

(26)
In the same way, for everyj 6= l there is aV such that for
everyi

eijV =

√
2

2
(eij +eil) and eilV =

√
2

2
(eij −eil) (27)

Finally, for i 6= k andj 6= l

< eij , eil >=
1

2
< eij + eil, eij − eil >= 0 (28)

< eij , ekj >=
1

2
< eij + ekj , eij − ekj >= 0 (29)

and
< eij , ekl >=

1

2
< eij + eil, ekj − ekl >=

1

2
(< eij , ekj > + < eil, ekj > − < eij , ekl > −

< eil, ekl >) =
1

2
(< eil, ekj− < eij , ekl >) =

1

2
(< eij , ekl > − < eij , ekl >) = 0 (30)
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Figure 4. Comparison of the average classification error of six algorithms: link, G-link, k-means, G-k-means, meanshift and G-meanshift
as a function of noise amplitude. As there were 4 clusters in the experiment, a misclassification ratio of 0.75 corresponds to the worst
result possible. The plot clearly shows the advantage of Grassman based algorithms Notice that for small enough noise the average link
algorithm using the Grassman distance performs well, although as the noise grows it gives way to the algorithms that use averaging.

Figure 5. A set of images of airplanes downloaded from the web. After labeling feature points, the images were successfully partitioned by
the G-meanshift algorithm in 2 clusters, corresponding to f15 and f18. Algorithms using normalization failed to accomplish the task.


