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Abstract.
We revisit the bilinear matching constraint between two perspective views of a 3D scene. Our objective

is to represent the constraint in the same manner and form as the trilinear constraint among three views.
The motivation is to establish a common terminology that bridges between the fundamental matrix F

(associated with the bilinear constraint) and the trifocal tensor T jk
i (associated with the trilinearities).

By achieving this goal we can unify both the properties and the techniques introduced in the past for
working with multiple views for geometric applications.
Doing that we introduce a 3� 3� 3 tensor Fjk

i , we call the bifocal tensor, that represents the bilinear
constraint. The bifocal and trifocal tensors share the same form and share the same contraction properties.
By close inspection of the contractions of the bifocal tensor into matrices we show that one can represent
the family of rank-2 homography matrices by [�]�F where � is a free vector. We then discuss four
applications of the new representation: (i) Quasi-metric viewing of projective data, (ii) triangulation,
(iii) view synthesis, and (iv) recovery of camera ego-motion from a stream of views.

1. Introduction

The geometry of multiple views is governed by
certain multi-linear constraints, bilinear for pairs
of views and trilinear for triplets of views | all
other multi-linear constraints (four views and be-
yond) are spanned by the bilinear and trilinear
constraints.

The traditional representation of the coe�cients
of the bilinear constraint is by a 3 � 3 matrix,
F , that satis�es p0>Fp = 0 for all matching
image points p; p0 (represented in the 2D pro-
jective space) across two views. On the other

hand, the three-view relations are represented by
a set of 4 trilinear constraints, each of the form
pisjrkT

jk
i = 0 where s and r are lines coincident

with the matching points p0 and p00, respectively.
In other words, the bilinear constraint represents
a \point+point" relation, whereas each of the tri-
linear constraints represents a \point+line+line"
relation (further details can be found in the Ap-
pendix).

Because of the di�erence in form between the
fundamental matrix and the trifocal tensor, the
analysis tools are di�erent and the properties dis-
covered for one do not easily carry over to the
other. For example, the trifocal tensor contracts
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(reduces) to matrix forms that carry geometric in-
formation: one type of contraction produces sub-
groups of 2D homography matrices and another
type of contraction produces a subgroup of 2D
correlation matrices. There is no such equivalence
known for the fundamental matrix, for instance.

In this paper we revisit the bilinear con-
straint and represent it using a 3 � 3 � 3 tensor
pisjrkF

jk
i = 0 where s; r are two coincident lines

with the matching point p0. We call the tensor
Fjk
i the \bifocal" tensor and show that not only

it shares the same form as the trifocal tensor but it
also shares the same properties. We can therefore
consider contractions of the bifocal tensor just as
was done with the trifocal counterpart.

Through the inspection of tensor contractions
we derive the representation of the subgroup of
rank-2 homography matrices in the simple form
of [�]�F where � is a free vector. We introduce
the group of \primitive homographies" and dis-
cuss 4 applications of the new representation: (i)
Quasi-metric viewing of projective data, (ii) trian-
gulation, (iii) view synthesis, and (iv) recovery of
camera ego-motion from a stream of views. This
work in its initial form was presented at the meet-
ing found in [1].

2. Notations

A point x in the 3D projective space P3 is pro-
jected onto the point p in the 2D projective space
P2 by a 3�4 camera projection matrixA = [A; v0]
that satis�es p �= Ax, where �= represents equality
up to scale. The left 3 � 3 minor of A, denoted
by A, stands for a 2D projective transformation
of some arbitrary plane (the reference plane) and
the fourth column of A, denoted by v0, stands for
the epipole (the projection of the center of cam-
era 1 on the image plane of camera 2). In a cali-
brated setting the 2D projective transformation is
the rotational component of camera motion (the
reference plane is at in�nity) and the epipole is the
translational component of camera motion. Since
only relative camera positioning can be recovered
from image measurements, the camera matrix of
the �rst camera position in a sequence of positions
can be represented by [I; 0].

We will occasionally use tensorial notations,
which are brie
y described next. We use the

covariant-contravariant summation convention: a
point is an object whose coordinates are speci�ed
with superscripts, i.e., pi = (p1; p2; :::). These are
called contravariant vectors. An element in the
dual space (representing hyper-planes | e.g., lines
in P2), is called a covariant vector and is repre-
sented by subscripts, i.e., sj = (s1; s2; ::::). Indices
repeated in covariant and contravariant forms are
summed over, i.e., pisi = p1s1 + p2s2 + :::+ pnsn.
This is known as a contraction. For example,
if p is a point incident to a line s in P2, then
pisi = 0. Vectors are also called 1-valence ten-
sors. 2-valence tensors (matrices) have two in-
dices and the transformation they represent de-
pends on the covariant-contravariant positioning
of the indices. For example, aji is a mapping
from points to points, and hyper-planes to hyper-
planes, because ajip

i = qj and aji sj = ri (in matrix
form: Ap = q and A>s = r); aij maps points
to hyper-planes; and aij maps hyper-planes to
points. When viewed as a matrix the row and
column positions are determined accordingly: in
a
j
i and aji the index i runs over the columns and

j runs over the rows, thus bkj a
j
i = cki is BA = C in

matrix form. An outer-product of two 1-valence
tensors (vectors), aib

j, is a 2-valence tensor c
j
i

whose i; j entries are aibj | note that in matrix
form C = ba>. An n-valence tensor described as
an outer-product of n vectors is a rank-1 tensor.
Any n-valence tensor can be described as a sum of
rank-1 n-valence tensors. The rank of an n-valence
tensor is the smallest number of rank-1 n-valence
tensors with sum equal to the tensor. For exam-
ple, a rank-1 trivalent tensor is aibjck where ai,bj
and ck are three vectors. The rank of a trivalent
tensor �ijk is the smallest r such that,

�ijk =
rX

s=1

aisbjscks: (1)

We will make extensive use of the \cross-product
tensor" � de�ned next. The cross product (vector
product) operation c = a�b is de�ned for vectors
in P2. The vector c is the line joining the points
a; b, or the point of intersection of the lines a; b.
The product operation can also be represented as
the product c = [a]�b where [a]x is called the
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\skew-symmetric matrix of a" and has the form:

[a]� =

0
@ 0 �a3 a2

a3 0 �a1
�a2 a1 0

1
A

In tensor form we have �ijka
ibj = ck represent-

ing the cross products of two points (contravariant
vectors) resulting in the line (covariant vector) ck.
Similarly, �ijkaibj = ck represents the point inter-
section of the to lines ai and bj. The tensor � is
de�ned such that �ijkai produces the matrix [a]�
(i.e., � contains 0;�1; 1 in its entries such that its
operation on a single vector produces the skew-
symmetric matrix of that vector).

3. Tensor Embedding of the Fundamental
Matrix

Our goal is to derive a trivalent tensor representa-
tion (i.e., a 3�3�3 tensor) of the 3�3 fundamental
matrix and to illuminate the advantages of doing
so. In particular, once we have the trivalent ten-
sor representation in our hand we wish to inves-
tigate its contraction properties (as was done for
the trifocal tensor in [22]) and recast them back
in matrix form.
We start with deriving the fundamental matrix

from basic principles. Let A be a 2D homography
(collineation) from image 1 to image 2 due to some
plane �, i.e., if p is a point in image 1, then Ap

is a point coincident with the epipolar line p0 � v0

in image 2, where the exact location of Ap on the
epipolar line is determined by the position of the
plane �. Thus, (v0 � p0)>Ap = 0, or in tensor
notation,

0 = �lj�p
0jv0�piali

= p0j (�lj�v
0�ali)| {z }

Fji

pi

where �lj�p
0jv0� is the cross-product p0 � v0. The

matrix Fji = �lj�v
0�ali is the fundamental matrix

that satis�es the bilinear constraint pip0jFji = 0
(cf. [14, 6]). In matrix form, since �lj�v

0� is the
skew-symmetric matrix [v0]�, then F = [v0]�A.
Next, we begin with the bilinear constraint

pip0jFji = 0 and consider replacing the point p0

with a cross product of any two incident lines
s; r, i.e., p0l = �ljksjrk. The reason for doing so

will be apparent later on. We have therefore a
\point+line+line" relationship pisjrkF

jk
i = 0 as

follows:

pip0lFli = pi (�ljksjrk)| {z }
p0l

Fli

= pisjrk (�
ljkFli)| {z }
F

jk

i

= 0

and the tensor Fjk
i = �ljkFli is a trivalent form of

the fundamental matrix. This form is equivalent
to considering the trifocal tensor of views 1,2,3
where views 2,3 are identical. Thus we obtain a
relationship between three views, but only two of
the views are distinct. We can represent the \bi-
focal" tensor Fjk

i directly as a function of v0 and
A as follows:

Fjk
i = v0jaki � v0ka

j
i :

The importance of the trivalent tensor embedding
of the fundamental matrix (which we will denote
by bifocal tensor from now on) is that we have ar-
rived to an equivalent representation with 3-view
geometry: both the trifocal and bifocal tensors
are 3 � 3� 3 and operate on a con�guration of a
point+line+line. In the case of three views, the
lines are in two distinct views (the line s coin-
cides with p0 and the line r coincides with p00) and
there are 4 such relationships (due to the fact that
there are two choices for each line). In the case
of two views the two lines are in the same view
and therefore there is only one con�guration of
point+line+line.
The advantage of this equivalence in form be-

tween the trifocal and bifocal tensors appears
when one considers contractions into bivalent
forms (matrices). The properties of contractions
of the trifocal tensor are well understood (see
[22, 18] and in the appendix here) and provide
the building blocks for making use of the trifocal
tensor in applications. We can apply now an iden-
tical analysis on the bifocal tensor which we will
do next.

3.1. Bifocal Tensor Contractions

Given an arbitrary vector �, the trifocal tensor
reduces to a matrix of three types: �iT jk

i ; �jT
jk
i
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and �kT
jk
i . Note that when � = (1; 0; 0); (0; 1; 0)

or (0; 0; 1) we obtain \slices" of the tensor. The
�rst type produces a rank-2 correlation matrix,
i.e., a mapping from all 2D lines to collinear
points (where the orientation of collinearity is de-
termined by �) | by slicing the tensor in that way
we obtain the three matrices of \line geometry" in-
troduced in the calibrated context by [23, 24, 28].
The second and third types produce homography
matrices (collineations). The second type is a ho-
mography matrix from view 1 to 3 due to a plane
determined by the line �j in view 2 and the cen-
ter of projection of camera 2. Likewise, the third
type is a homography from view 1 to 2 via a plane
determined by the line �k in view 3 and the center
of projection of camera 3. These homography ma-
trices were introduced in [22] and are described in
more detail in the appendix here.
We wish to consider the same types of contrac-

tions on the bifocal tensor Fjk
i | by equivalence

of form, we should obtain collineations and corre-
lations as well. Consider the contraction

�kF
jk
i

for some arbitrary vector �. By substitution in the
de�nition of Fjk

i we obtain

�kF
jk
i = (�ljk�k)| {z }

[�]�

Fli

which in matrix form becomes [�]�F . Our ques-
tion therefore is about the geometric interpreta-
tion of this matrix (for an arbitrary �). Given the
form-equivalence of the two tensors the answer is
immediate: [�]�F is a homography matrix from
view 1 to view 2 via a plane coincident with the
center of projection O0 of camera 2 and the line
� in view 2. The family of such matrices over all
choices of � corresponds to the family of homogra-
phy matrices whose planes are coincident with O0.
The family is spanned by three matrices (since �

is spanned by three vectors), and for example, the
three slices using � = (1; 0; 0); (0; 1;0) or (0; 0; 1)
will provide the basis for this subgroup of homog-
raphy matrices.
More formally, consider the plane � de�ned by

the point O0 and the line � in view 2. Consider
a point p in view 1 and the ray from the center
of projection O of the �rst camera and the point
p. The ray intersects � at P� which projects to

(a)

Fig. 1. The matrix [�]�F is a homography matrix due
to a plane � coincident with the center of projection
O0 and the line � in view 2. The line s is the epipolar
line and the point P� is at the intersection of the op-
tic ray from the �rst view and the plane �. The point
p0� is the projection of P� onto view 2. Therefore the
point+line+line con�guration of p; �; s satis�es the bi-
focal tensor relation pisj�kF

jk
i = 0, where �kF

jk
i is

the matrix [�]�F .

a point p0� in view 2 which is coincident with the
line � (by construction). Let sj be the epipolar

line of p in view 2, thus pisj�kF
jk
i = 0 because

they provide a point+line+line con�guration, and
this holds for all points p (see Fig. 1). Thus, the

matrix �kF
jk
i maps view 1 onto points along the

corresponding epipolar lines and is therefore a ho-
mography matrix, and since the projected points
are collinear the rank of the matrix is 2. We have
the following result:

Theorem 1. The matrix [�]�F is a homogra-
phy matrix of rank 2 from view 1 to view 2 due to
the plane coincident with the center of projection
of camera 2 and the line � in view 2.

Note that the theorem generalizes the observa-
tion due to [16] that [v0]xF is a homography ma-
trix. We see that this is true for any choice of
skew-symmetric matrix [�]�.
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The same result applies for the contraction
�jF

jk
i (with a change of sign). Note that with

the trifocal tensor there is a di�erence between
the contractions �jT

jk
i and �kT

jk
i in which the

former produces a homography matrix from view
1 to 3 and the latter produces a homography ma-
trix from view 1 to 2. In the case of the bifocal
tensor views 2 and 3 coincide thus the two types
of contractions are equivalent.

The remaining contraction type is �iFjk
i . In the

case of the trifocal tensor the contraction �iT jk
i

produces a correlation matrix which maps the
space of lines from view 2 to a set of collinear
points (on the epipolar line of the point � in view
1) in view 3. The transpose of that matrix is the
same type of mapping, but from view 3 to view
2 (see Appendix). We should obtain something
similar for the bifocal tensor and since view 2 and
3 coincide the matrix �iFjk

i should map the space
of lines in view 2 onto collinear points in view 2
that de�ne the epipolar line, F�, of the point �.
Indeed, by substitution we obtain:

�iFjk
i = �ljk�iFli

= [F�]� (2)

Thus, [F�]�s for all lines s in view 2 is the point of
intersection of the epipolar line F� and the line s.
In other words, the matrix [F�]� is the correlation
matrix we described above. Note that the reason
we have obtained a trivial mapping is due to fact
that this type of contraction is associated with re-
construction for lines. The three matrices �iT jk

i

for � = (1; 0; 0); (0; 1;0) and (0; 0; 1) are known to
arise from considerations of matching lines across
three views (cf. [23, 28, 10]). However, the rel-
ative camera positions cannot be recovered from
matching lines across two views only (only from
matching points), which is why the corresponding

correlation matrices �iFjk
i of the bifocal tensor

become trivial.

To summarize, the embedding of the fundamen-
tal matrix in trivalent tensor format (the bifo-
cal tensor) provides a uni�ed terminology of a
\point+line+line" that applies for both the bi-
focal and trifocal relationships across multiple
views. In particular, as is the case with the trifo-
cal tensor, contractions of the bifocal tensor into
reduced forms (matrices) have a geometric signif-
icance. The contractions properties of the bifocal

tensor are listed in Table 1. We see a clear analogy
to the type of resulting matrices (homography and
correlations) one obtains from the same contrac-
tions applied to the trifocal tensor. Furthermore,
the homography contraction provides the basis for
all rank-2 homography matrices whose planes are
coincident with the center of projection of camera
2. All linear combinations of the rank-2 homogra-
phy matrices are of the form [�]�F for some vector
�.

4. The Primitive Homography Matrices

We have seen that the family of matrices [�]�F
parameterized by the choice of the vector � spans
the family of homography matrices from view 1 to
view 2 due to the planes coincident with the center
of projection O0 of camera 2. The vector � deter-
mines the orientation of the plane and is the line
of intersection of the plane and view 2. Since � is
spanned by three vectors, say (1; 0; 0); (0; 1; 0) and
(0; 0; 1), the bifocal tensor contractions provide
three distinct homography matrices that span the
subgroup of homography matrices (those whose
planes are coincident with O0). Since the entire
group of all homography matrices lies in a 4 di-
mensional subspace [20], i.e., spanned by 4 ho-
mography matrices whose planes do not all co-
incide with a single point, we must produce an
additional homography matrix in order to com-
plete the basis of the subgroup de�ned by [�]�F
to a full basis for the entire group. The elements
(matrices) of the full basis will be called \primi-
tive homographies". The additional homography
matrix we seek must therefore be associated with
a plane coincident with the center of projection O

of camera 1 (and is therefore of rank 1). We have
the following Lemma which is adapted from [17]:

Lemma 1. Given the fundamental matrix F

and the epipole v0 de�ned by F>v0 = 0, then the
family of matrices v0�> are homography matrices
from view 1 to view 2 due to planes coincident
with the center of projection O of camera 1 and
the vector � is the intersection line of the plane
and view 1.

Proof: Let A1; A2 be any two homography
matrices. Thus, A1p;A2p and v0 are collinear for
all points p in view 1. Let q 6= v, where v is
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Table 1. The three types of contractions of the bifocal ten-
sor (embedding of the fundamental matrix F as a trivalent

tensor F
jk
i ), their matrix form, and the property they pro-

duce. Note that the �rst two contractions produce a homog-
raphy matrix of a plane whose orientation is determined
by the vector of contraction �.

Contraction Matrix Form Result

�kF
jk
i

[�]�F Homography Matrix.

�jF
jk
i

[�]�F Same as above.

�iF
jk
i [F�]� Trivial Correlation Mapping.

the epipole in view 1 (Fv = 0), be some point
in view 1 and let � be a scalar de�ned such that
A1q��A2q �= v0. LetH = A1��A2 be a homogra-
phy matrix (because all homography matrices are
closed under linear combinations). Clearly, since
Hq �= v0, then Hp �= v0 for all p (because Hv �= v0

as well). Thus H = v0�> for some vector �.

Therefore, as long as �>v 6= 0, where v is the
epipole in view 1 (i.e., Fv = 0), then the homogra-
phy matrix v0�> does not coincide with O0 (only
with O) and thus can be used to complete the
full basis for the group of homography matrices.
Without loss of generality assume that (1; 0; 0) is
not coincident with v, thus we have a basis of 4 ho-
mography matrices H1; :::;H4, denoted as \prim-
itive homographies", de�ned below:

Hi = [ei]�F; i = 1; 2; 3 (3)

H4 = v0e>1 (4)

where ei are the identity vectors: e1 =
(1; 0; 0); e2 = (0; 1; 0) and e3 = (0; 0; 1).

5. Applications Using Primitive Homog-
raphy Matrices

The primitive homography matrices are a useful
tool for representing geometric data. We will con-
sider two examples here, the �rst on obtaining a
\quasi-metric" representation of 3D space from a
pair of uncalibrated cameras, and the second on
\triangulation" from 3 views.

5.1. Quasi-Metric Reference Plane

Let pi; p0i, i = 1; :::; N , be matching points in view
1 and 2 respectively. Given the fundamental ma-
trix F and the epipole v0 in view 2, then the
3D projective representation of the object space
points Pi can be described relative to a reference
plane �:

p0i
�= A�pi + �iv

0 = [A�; v
0]Pi

where A� is the homographymatrixmapping view
1 onto view 2 due to the plane �. The scalar
�i represents the relative deviation of the point
Pi from the plane � and is called the \relative
a�ne structure"[21]. The choice of the plane �

determines the projective representation of object
space. For purposes of visualization, it is useful
to choose � such that it is situated \in-between"
the space points making it possible to treat �i as
simple depth variable. In other words, let A� =P

j �jHj, we seek to solve for the scalar �j, j =
1; :::; 4, that minimize:

4X
j=1

(�jHj)pi �= p0i i = 1; :::; N

which provides an over-determined linear set of
equations. We will refer to � as the \quasi-metric"
plane. The choice of the quasi-metric plane pro-
vides a better chance that the projective viewing
of the object (treating the coordinates xi; yi; �i as
Euclidean coordinates by the viewing program)
will have less projective distortions than other
choices.

5.2. Triangulation from 3 Views

Hartley and Sturm [11] considered the problem,
they called "triangulation", of modifying the lo-
cations of input matching points p̂; p̂0 that are
given with noise to new locations p; p0 that sat-
isfy p0>Fp = 0 such that (p � p̂)2 + (p0 � p̂0)2 is
minimized. The triangulation problem in 3 views
can be stated in a similar manner: given p in view
1, the matching process produces an error in the
matches in view 2 and 3. The input matches are p̂0

and p̂00 and we wish to �nd new matches p0; p00 with
p such that the triplet p; p0; p00 satisfy the trilinear
equations while (p0�p̂0)2+(p00�p̂00)2 is minimized.
Note that we do not add an error term to p and
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rather take p as a reference. The reason for that is
twofold: �rst due to the asymmetry of the trifocal
tensor with respect to view ordering as it is de�ned
with respect to a reference view (unlike the fun-
damental matrix which remains �xed under view
ordering). Secondly, in most matching approaches
that use a correlation principle, like the popular
Lucas-Kanade [15] method with the coarse-to-�ne
implementation by Sarno� Corp. [4], there is also
an intrinsic asymmetry that assumes one of the
views as a reference. Taken together, we can with-
out loss of generality assume that the e�ect of er-
ror in the matching process is represented in the
displacement of p̂0 and p̂00 from their true locations
p0; p00.
The triangulation process using the trifocal ten-

sor can proceed as follows. We �rst note that the
following relationship exists:

p0 �= Ap+ �v0 (5)

p00 �= Bp+ �v00 (6)

where A;B are two homography matrices from
view 1 to 2 and from view 1 to 3 via some reference
plane � (any plane). Given the trifocal tensor T jk

i

one can recover the epipoles v0; v00 (and fundamen-
tal matrices) [10, 22] and proceed to recover a pair
of homography matrices A;B as described below.
One can solve for A be either choosing some lin-

ear combination of the primitive homographies or
solving for the quasi-metric plane as described in
the previous section. Thus we can assume that
A is known. The corresponding homography B

cannot be chosen arbitrarily because it must be
associated with the same plane � that was associ-
ated with the homography A.
Let �Hl, l = 1; :::; 4, be the primitive homogra-

phies from view 1 to 3. Let the sought after matrix
B be represented by B =

P
l �l

�Hl. We seek a so-
lution of the scalars �l. We have the following
relationship:

T jk
i = v0jbki � v00ka

j
i

= v0j(�4
l=1�l

�Hl)
k
i � �v00ka

j
i (7)

where the left-hand side is known (the trifocal
tensor) and the right-hand side contains 5 un-
knowns which together form an over-determined
linear system. The scalar � �xes the scale because
v0; v00; A are all determined up to scale. Taken to-
gether, from the trifocal tensor and with the use

of the primitive homographies we can extract a set
of compatible homographies (associated with the
same plane) and the epipoles v0; v00.
We are now left with minimizing the following

expression:

min
�
f(x̂0 �

a>1 p + �v01
a>3 p + �v03

)2 + (ŷ0 �
a>2 p+ �v02
a>3 p+ �v03

)2 +

(x̂00 �
b>1 p+ �v001
b>3 p+ �v003

)2 + (ŷ00 �
b>2 p+ �v002
b>3 p+ �v003

)2g

which is minimized with respect to �. This yields
a 4th order polynomial in � which thus has a
closed-form solution. The geometric interpreta-
tion of this minimization process is that the so-
lution � determines the points p0; p00 on their cor-
responding epipolar lines such that the distance
(p0 � p̂0)2 + (p00 � p̂00)2 is minimized. Note that
unlike the case of two views, one cannot place p0

and p00 anywhere on their epipolar lines because
they are coupled together by a 1-parameter de-
gree of freedom. In particular, the projections of
p̂0 and p̂00 on their epipolar lines may not be an
admissible solution.

5.3. Experiments

We have tested the ideas put forward in the pre-
vious section on several real image triplets. We
took a sequence of three images (Fig. 2). In both
triplets we automatically extracted feature points,
and used them to compute the trifocal tensor. In
addition by using optic 
ow methods we have gen-
erated a dense correspondence �eld between the
source images and used the tensor to reproject
the �rst image onto the third image. Fig. 5a dis-
plays the reprojected images and as can be seen
the quality is fairly good (evidence of a good ten-
sor and good correspondence �eld). We then \cor-
rupted" the correspondence �eld by applying the
optic 
ow algorithm on blurred copies of the origi-
nal images with a 7�7 kernel. Reprojection of the
�rst image using the original tensor and the cor-
rupted 
ow �eld is displayed in Fig. 5b. The de-
terioration is solely due to the corrupted matches,
because the tensor has remained unchanged.
We next used the \triangulation" idea derived

above to \correct" for the point matches. Fig. 5c
displays the reprojected third image using the
original tensor and the corrected 
ow �eld. The
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(a-1) (b-1)

(a-2) (b-2)

(a-3) (b-3)

Fig. 2. The \lab" and the \outdoor" sequence used for testing. Each sequence consists of three images.

quality has improved considerably and matches
the quality of the reprojection using the original

ow �eld.
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6. Other Applications of the Bifocal Ten-
sor Representation

In the previous sections we presented applications
of the primitive homographies which in turn are
due to the discovery of [�]�F representing the
family of rank-2 homographies which in turn are
due to the bifocal tensor representation. However,
one could possibly re-derive the result [�]�F from
purely matrix considerations without relying on
the bifocal tensor. Nevertheless, there are applica-
tions that critically rely on the tensor embedding
of the fundamental matrix in the form of the bifo-
cal tensor | and in this section we brie
y discuss
two of them.

6.1. View-Synthesis

The notion of image-based rendering is gaining
momentum both in the computer graphics and
computer vision communities. Using the trifocal
tensor for image-based rendering was proposed by
[2]. In a nutshell, the method links together two
real views of a 3D scene with a third virtual view
of the scene. The tensor is then used to reproject a
point appearing in the �rst two views directly onto
the virtual view, without ever recovering 3D struc-
ture. Moving the virtual camera in space is done
by modifying the tensor to re
ect the change in
the relative position of the virtual view. To boot-
strap the seed tensor one would need three real
views of the object, but only two of them will be
later used for the generation of the virtual view.
However, using the tensor-embedded fundamen-
tal matrix, one can use only two real images to
generate the bifocal \seed tensor".

One starts with the bifocal tensor which is then
transformed using the user speci�ed motion of the
virtual camera to the appropriate trifocal tensor
(of the original two model views and the virtual
view to be synthesized). From there on the trifocal
tensors transform as the virtual camera changes
positions (see Fig. 3). Thus, for this application to
work it is necessary to have a uniform terminology
for handling 2 and 3 views.

Pre−Processing

CCCCC
CCCCC
CCCCC
CCCCC
CCCCC
CCCCC
CCCCC
CCCCC

image 2

CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
image 1

CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC

Dense
Correspondence

Fund. 
Matrix F

Tensor 
<1,2,2>

Rendering

Tensor 
<1,2,2>  R,t

 Tensor
<1,2,ψ>

CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC

Image ψ

CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC

image 2

CCCCC
CCCCC
CCCCC
CCCCC
CCCCC
CCCCC
CCCCC
CCCCC

image 1

CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC
CCCCCCCCCC

Dense
Correspondence

Fig. 3. View synthesis is divided into two parts. In
the pre-processing stage, done only once, we compute
the dense correspondence and the bifocal tensor. The
rendering stage, done for every novel image, trans-
forms the \seed" bifocal tensor to a general three-
view trifocal tensor, using user-speci�ed parameters
R; t and renders the novel view using the transformed
tensor, the model images and the dense correspon-
dence.

6.2. Ego-motion Recovery

When considering the problem of recovering the
camera ego-motion (projection matrices) from a
stream of views, one faces the problem of main-
taining a consistency of pairwise fundamental ma-

(a)

Fig. 4. One can compute two tensors T123; T234 from
the four images of the 3D scene. However, each tensor
can give rise to a di�erent reconstruction of the 3D
structure due to noise or errors in measurements, and
therefor the camera trajectory between images 2 and
3, as captured by the fundamental matrix F23, is in-
consistent between the two tensors. Figure taken from
[3]
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(a-1) (a-2)

(b-1) (b-2)

(c-1) (c-2)

Fig. 5. The �rst row (b-1,b-2) shows the reprojected third image using the original dense point matches and
the tensor recovered from the point matches. The second row (b-1,b-2) shows the reprojected third image, using
the \corrupted" point matches (by blurring the images prior to the computation of 
ow) and the original tensor.
Note that the reprojected image is corrupted due to the corrupted optic 
ow. The bottom row (c-1,c-2) shows
the reprojected third image after correcting the corrupted 
ow using the original tensor.

trices. The consistency requirement arises from
the simple fact that from an algebraic standpoint

a camera trajectory must be concatenated from
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pairs or triplets of images. Therefore, a sequence
of independently computed fundamental matri-
ces or trifocal tensors, maybe optimally consis-
tent with the image data, but not necessarily con-
sistent with a unique camera trajectory (see Fig-
ure 4).

The consistency problem can be approached by
introducing the following equation which relates
the trifocal tensor between views 1,2,3 and the
bifocal tensor between views 1,2 and the elements
of the fundamental matrix between views 2,3:

T jk
i = ckl F

jl
i � v000ka

j
i (8)

where T jk
i is the tensor of views 1,2,3, the matrix

A, whose elements are aji , is a homography from

views 1 to 2 via some arbitrary plane �, Fjl
i is

the bifocal tensor of views 1,2, and C = [C; v000]
is the camera motion from view 2 to 3 where ckl
is a homography matrix from view 2 to 3 via the
(same) plane �.

As a result, given the fundamental matrix be-
tween views 1,2 and (at least) 6 matching points
between views 1,2,3 one can solve for the fun-
damental matrix between views 2 and 3 (i.e.,
[v000]�C) which is consistent with the trifocal rela-
tionship among views 1,2,3. Also, as a byproduct,
the projection matrix [C; v000] is consistent with
the same projective representation due to the fact
that the homographies A;C are of the same refer-
ence plane. The details and demonstration of this
idea can be found in [3].

7. Summary

We have introduced a new representation of the bi-
linear matching constraint between a pair of views
in terms of a 3�3�3 tensor which we termed the
\bifocal" tensor. The motivation for the new rep-
resentation is to establish a uni�ed terminology
between the elements of 2-view and 3-view con-
straints. The uni�ed terminology is achieved by
representing the 2-view constraint in a way analo-
gously (and identical in form) to the trifocal tensor
relationship. As a result, we were able to trans-
fer the properties known today about the trifocal
tensor (especially the contraction into homogra-
phy matrices) to the realm of the 2-view case.

The byproduct of the new representation is
twofold. First, we have derived the family of
rank-2 homographymatrices represented by [�]�F
and introduced the \primitive homographies" and
their applications. Second, we mentioned two
other applications for which the uni�ed terminol-
ogy is necessary.

Taken together, it is useful to have a common
language for analyzing the geometric constraints
arising from multiple-view geometry | both at
the theoretical level for purposes of obtaining a
clean representation and for applications where
the common language is sometimes necessary (as
was shown in Section 6).
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Appendix

A.0.1. Trilinearities and the Trifocal Tensor

Three views, p = [I; 0]x; p0 �= Ax and p00 �= Bx,
are known to produce four trilinear forms whose
coe�cients are arranged in a tensor representing
a bilinear function of the camera matrices A;B:

T jk
i = v0jbki � v00ka

j
i (A1)

where A = [aji ; v
0j] (aji is the 3� 3 left minor and

v0 is the fourth column of A) and B = [bki ; v
00k].

The tensor acts on a triplet of matching points in
the following way:

pis
�
j r

�
kT

jk
i = 0 (A2)

where s
�
j are any two lines (s1j and s2j ) intersect-

ing at p0, and r
�
k are any two lines intersecting p

00.
Since the free indices are �; � each in the range 1,2,
we have 4 trilinear equations (unique up to linear
combinations). If we choose the standard form
where s� (and r�) represent vertical and horizon-
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tal scan lines, i.e.,

s
�
j =

�
�1 0 x0

0 �1 y0

�

then the four trilinear forms, referred to as trilin-
earities [17], have the following explicit form:

x00T 13
i pi � x00x0T 33

i pi + x0T 31
i pi � T 11

i pi = 0;

y00T 13
i pi � y00x0T 33

i pi + x0T 32
i pi � T 12

i pi = 0;

x00T 23
i pi � x00y0T 33

i pi + y0T 31
i pi � T 21

i pi = 0;

y00T 23
i pi � y00y0T 33

i pi + y0T 32
i pi � T 22

i pi = 0:

These constraints were �rst derived in [17]; the
tensorial derivation leading to eqns. A1 and A2
was �rst derived in [19]. The tensor is often re-
ferred to as \trilinear" or \trifocal", and we adopt
here the term trifocal tensor. The trifocal ten-
sor has been well known in disguise in the con-
text of Euclidean line correspondences and was
not identi�ed at the time as a tensor but as
a collection of three matrices (a particular con-
traction of the tensor, correlation contractions,
as explained next) [23, 24, 28]. The link be-
tween the trilinearities and the matrices of line
geometry was identi�ed later by Hartley [9, 10].
Additional work in this area can be found in
[22, 7, 27, 12, 20, 3, 2, 25, 8, 13, 5, 26].
The tensor has certain contraction properties

and can be sliced in three principled ways into ma-
trices with distinct geometric properties. These
properties is what makes the tensor distinct from
simply being a collection of three matrices and will
be brie
y discussed next | further details can be
found in [22, 18].

A.0.2. Contraction Properties and Tensor Slices

Consider the matrix arising from the contraction,

�kT
jk
i (A3)

which is a 3�3 matrix, we denote by E, obtained
by the linear combination E = �1T

j1
i + �2T

j2
i +

�3T
j3
i (which is what is meant by a contraction),

and �k is an arbitrary covariant vector. The ma-
trix E has a general meaning introduced in [22]:

Proposition 1. (Homography Contractions)

The contraction �kT
jk
i for some arbitrary �k is a

homography matrix from image one onto image
two determined by the plane containing the third

camera center C00 and the line �k in the third im-
age plane. Generally, the rank of E is 3. Like-
wise, the contraction �jT

jk
i is a homography ma-

trix from image one onto image three.

For proof see [22]. Clearly, since � is spanned by
three vectors, we can generate up to at most three
distinct homography matrices by contractions of
the tensor. We de�ne the Standard Homography
Slicing as the homography contractions associated
by selecting � be (1; 0; 0) or (0; 1; 0) or (0; 0; 1),
thus the three standard homography slices be-
tween image one and two are T j1

i ; T j2
i and T j3

i ,
and we denote them by E1; E2; E3 respectively,
and likewise the three standard homography slices
between image one and three are T 1k

i ; T 2k
i and

T 3k
i , and we denote them by W1;W2;W3 respec-
tively.

Similarly, consider the contraction

�iT jk
i (A4)

which is a 3�3 matrix, we denote by T , and where
�i is an arbitrary contravariant vector. The matrix
T has a general meaning is well, as detailed below
[18]:

Proposition 2. The contraction �iT jk
i for

some arbitrary �i is a rank 2 correlation matrix
from image two onto image three, that maps the
dual image plane (the space of lines in image two)
onto a set of collinear points in image three that
form the epipolar line corresponding to the point
�i in image one. The null space of the correla-
tion matrix is the epipolar line of �i in image two.
Similarly, the transpose of T is a correlation from
image three onto image two with the null space be-
ing the epipolar line in image three corresponding
to the point �i in image one.

For proof see [18]. We de�ne the Standard Cor-
relation Slicing as the correlation contractions as-
sociated with selecting � be (1; 0; 0) or (0; 1; 0) or
(0; 0; 1), thus the three standard correlation slices

are T jk
1 ; T jk

2 and T jk
3 , and we denote them by

T1; T2; T3, respectively. The three standard corre-
lations date back to the work on structure from
motion of lines across three views [23, 28] where
these matrices were �rst introduced.
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