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Abstract

This paper presents a general family of algebraic positive definite simi-
larity functions over spaces of matrices with varying column rank. The
columns can represent local regions in an image (whereby images have
varying number of local parts), images of an image sequence, motion tra-
jectories in a multibody motion, and so forth. The family of set kernels
we derive is based on a group invariant tensor product lifting with param-
eters that can be naturally tuned to provide a cook-book of sorts covering
the possible "wish lists” from similarity measures over sets of varying
cardinality. We highlight the strengths of our approach by demonstrat-
ing the set kernels for visual recognition of pedestrians using local parts
representations.

1 Introduction

In the area of learning from observations there are two main paths that are often mutually
exclusive: (i) the design of learning algorithms, and (ii) the design of data representations.
The algorithm designers take pride in the fact that their algorithm can generalize well given
straightforward data representations (most notable example is SVM [11]), whereas those
who work on data representations demonstrate often remarkable results with sophisticated
data representations using only straightforward learning algorithms (e.g. [5, 10, 6]). This
dichotomy is probably most emphasized in the area of computer vision, where image under-
standing from observations involve data instances of images or image sequences containing
huge amounts of data. A straightforward representation treating all the measurements as
a single vector, such as the raw pixel data, or a transformed raw-pixel data, places un-
reasonable demands on the learning algorithm. The "holistic” representations suffer also
from sensitivity to occlusions, invariance to local and global transformations, non-rigidity
of local parts of the object, and so forth.

Practitioners in the area of data representations have long noticed that a collection of local
representations (part-based representations) can be most effective to ameliorate changes of
appearance [5, 10, 6]. The local data representations vary in their sophistication, but share
the same principle where an image corresponds to a collection of points each in a relatively
small dimensional space — instead of a single point in high-dimensional space induced
by holistic representations. In general, the number of points (local parts) per image may
vary and the dimension of each point may vary as well. The local representations tend
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to be robust against occlusions, local and global transformations and preserve the original
resolution of the image (the higher the resolution the more parts are generated per image).

The key for unifying local and holistic representations for inference engines is to design
positive definite similarity functions (a.k.a. kernels) osets(of vectors) of varying cardi-
nalities. A Support Vector Machine (SVM) [11] can then handle sets of vectors as a single
instance via application of those "set kernels”. A set kernel would be useful also to other
types of inference engines such as kernel versions of PCA, LDA, CCA, ridge regression and
any algorithm which can be mapped onto inner-products between pairs of data instances
(see [8] for details on kernel methods).

Formally, we consider an instance being represented by a collection of vectors, which for
the sake of convenience, form the columns of a matrix. We would like to find an algebraic
family of similarity functionssim (A, B) over matrices4, B which satisfy the following
requirements: (iyim(A, B) is an inner product, i.esim(A, B) = ¢(A) " ¢(B) for some
mapping¢() from matrices to vectors, (ijim(A, B) is built over local kernel functions
k(a;,b;) over columnsa; andb; of A, B respectively, (iii) The column cardinality (rank

of column space) oft and B need not be the same (humber of local parts may differ from
image to image), and (iv) the parametersofi( A, B) should induce the properties of in-
variance to order (alignement) of parts, part occlusions, and degree of interactions between
local parts. In a nutshell, our work provides a cook-book of sorts whicklamentally
covers the possible algebraic kernels over collections of local representations built on top
of local kernelsby combining (linearly and non-linearly) local kernels to form a family of
global kernels over local representations.

The design of a kernel over sets of vectors has been recently attracting much attention in the
computer vision and machine learning literature. A possible approach is to fit a distribution
to the set of vectors and define the kernel as a distribution matching measure [9, 12, 4].
This has the advantage that the number of local parts can vary but at the expense of fitting
a distribution to the variation over parts. The variation could be quite complex at times,
unlikely to fit into a known family of distributions in many situations of interest, and in
practice the sample size (number of columnsddfis not sufficiently large to reliably fit

a distribution. The alternative, which is the approach taken in this paper, is to create a
kernel over sets of vectors in a direct manner. When the column cardinality is equal it is
possible to model the similarity measure as a function over the principal angles between the
two column spaces ([14] and references therein) while for varying column cardinality only
heuristic similarity measures (which are not positive definite) have so far been introduced
[13].

It is important to note that although we chose SVM over local representations as the appli-
cation to demonstrate the use of set kernels, the need for adequately working with instances
made out of sets of various cardinalities spans many other application domains. For exam-
ple, an image sequence may be represented by a set (ordered or unordered) of vectors,
where each vector stands for an image, the pixels in an image can be represented as a tuple
consisting of position, intensity and other attributes, motion trajectories of multiply mov-

ing bodies can be represented as a collection of vectors, and so on. Therefore, the problem
addressed in this paper is fundamental both theoretically and from a practical perspective
as well.

2 The General Family of Inner-Products over Matrices

We wish to derive the general family of positive definite similarity measuies(A, B)
over matricesA, B which have the same number of rows but possibly different column
rank (in particular, different number of columns). Ldtbe of dimensions: x k and

B of dimensionn x ¢ wheren is fixed andk, ¢ can vary at will over the application of
sim(-,-) on pairs of matrices. Let» = max{n, k, ¢} be the upper bound over all values



of k, ¢ encountered by the data. Lat b; be the column vectors of matrices B and

let k(a;,b;) be the local kernel function. For example, in the context where the column
vectors represent local parts of an image, then the matching furigtion between pairs

of local parts provides the building blocks of the overall similarity function. The local
kernel is some positive definite functidiix,y) = #(x) " ¢(y) which is the inner-product
between the "feature”-mapped vectary for some feature mag(-). For example, ifs(-)

is the polynomial map of degree updothenk(x,y) = (1 + x"y).

The local kernels can be combined in a linear or non-linear manner. When the combination
is linear the similarity becomes the analogue of the inner-product between vectors extended
to matrices. We will refer to the linear family asm (A, B) =< A, B > and that will be

the focus of this section. In the next section we will derive the general (algebraic) non-
linear family which is based on "lifting” the input matrices B onto higher dimensional
spaces and feeding the result onto the, - > machinery developed in this section, i.e.,
sim(A, B) =< (A),(B) >.

We will start by embeddingd, B ontom x m matrices by zero padding as follows. Let

e; denote the i'th standard basis vectér..,0,1,0,..,0) of R™. The the embedding is
represented by linear combinations of tensor products:

n k n o q
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Note thatA, B are the upper-left blocks of the zero-padded matrices.SLe¢ a positive
semi definiten? x m? matrix represented by = >°?_ | G, ® F, whereG,., F, arem x m

matriced. Let F, be theq x k upper-left sub-matrix of".", and letG, be then x n
upper-left sub-matrix of7,.. We will be using the following three identities:

GX1 ® Fxy = (G ® F)(X1 ® X2),

(G F)(GoF)=GG" ®FF',

<X @ X2, Yy @Yy >= (X[ Y1)(X3 Ya).
The inner-produck A, B > over all p.s.d. matriceS has the form:
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We have represented the inner prodectd4, B > using the choice ofn x m matrices
G., F. instead of the choice of a singte? x m? p.s.d. matrixS. The matricess,, F.

1Any S can be represented as a sum over tensor products: given column-wise ordering, the matrix
G ® F'is composed of: x n blocks of the formf;;G. Therefore, také7,. to be then x n blocks of
S andF;. to be the elemental matrices which have "1” in coordinate (4, j) and zero everywhere
else.



must be selected such thel’_, G, ® F is positive semi definite. The problem of decid-
ing on the the necessary conditionsBnandG,. such that the sum over tensor products is
p.s.d is difficult. Even deciding whether a giverhas a separable decomposition is known
to be NP-hard [3]. The sufficient conditions are easy — choo&ipgF,. to be positive
semi definite would mak&~"_, G, ® F, positive semi definite as well. In this context
(of separables) we need one more constraint in order to work with non-linear local ker-
nelsk(x,y) = ¢(x)T¢(y): the matrices?, = M,” M, must "distribute with the kernel”,
namely there exist/,. such that

k(M,x, M,y) = ¢(M,x) " ¢(My) = ¢(x) " M, M, p(y) = o(x) " Gro(y).

To summarize the results so far, the most general, but seperable, analogue of the inner-
product over vectors to the inner-product of matrices of varying column cardinality has the
form:

< A,B>= Ztrace(HTﬁ'T) Q)

Where the entries dff,. consists of:(M,.a;, M,.b;) over the columns ofl, B after possibly

undergoing global coordinate changesMy (the role ofG,.), andF, are they x k upper-
left sub-matrix of positive definitex x m matricesF, .

The role of the matrice§!,. is to perform global coordinate changeskf before applica-
tion of the kernek() on the columns of4, B. These global transformations include pro-
jections (say onto prototypical "parts”) that may be given or "learned” from a training set.
The matrices,. determine the range of interaction between columnd ahd columns of

B. For example, wheti, = I then< A, B >= trace(AT BF') whereF is the upper-left
submatrix with the appropriate dimension of some fixeck m p.s.d matrixt’ = 5" F,.

Note that entries ofA" B arek(a;, b;). In other words, wheitz, = I, < A, B > boils
down to a simple linear super-position of the local kernﬂ% k(a;,b;) fi; where the en-
tries f;; are part of the upper-left block of a fixed positive definite mafriwhere the
block dimensions are commensurate with the number of columAsaoid those of3. The
various choices of" determine the type ahvariancesone could obtain from the simi-
larity measure. For example, whéh = I the similarity is simply the sum (average) of
the local kernels:(a;, b;) thereby assuming we have a stréddignmentbetween the local
parts represented by and the local parts represented By On the other end of the in-
variance spectrum, wheR = 117 (all entries are "1") the similarity measure averages
over all interactions of local partga;, b;) thereby achieving aimvarianceto the order of

the parts. Adecayingweighted interaction such g§; = o~ l"=3l would provide a middle
ground between the assumption of strict alignment and the assumption of complete lack of
alignment. In the section below we will derive the non-linear versiogiof( A, B) based

on the basic machinery ef A, B > of eqn. (1) and lifting operations ao#, B.

3 Lifting Matrices onto Higher Dimensions

The family of sim(A,B) =< A,B > forms a weighted linear superposition of the
local kernelk(a;,b;). Non-linear combinations of local kernels emerge using map-
pingsi(A) from the input matrices onto other higher-dimensional matrices, thus forming
sim(A, B) =< ¢(A),v(B) >. Additional invariance properties and parameters control-
ling the perfromance afim(A, B) emerge with the introduction of non-linear combina-
tions of local kernels, and those will be discussed later on in this section.

Consider the general d-fold lifting(A) = A®? which can be viewed asi& x k¢ matrix.
Let F, be a p.s.d. matrix of dimension? x m? andE, be the upper-lef§® x k< block of

F,. LetG, = (G,)®? be a p.s.d matrix of dimensiaif’ x n? whereG, is p.s.d.n x n
matrix. Using the identitf A®4)T B®4 = (AT B)®? we obtain the inner-product in the



lifted space:
< A®d ol 5 — Ztmce ((ATGTB)@’dFT) .

By taking linear combinations of A®! B®! > [ = 1,...,d, we get the general non-
homogenous d-fold inner-produetm®( A, B). A this point the formulation is general but
somewhat unwieldy computational-wise. The key for computational simplification lay in
the fact that choices af;. determine not only local interactions (as in the linear case) but
alsogroup invariancesThe group invariances are a resulegiplying symmetric operators

on the tensor product spaee we will consider two of those operators here, known as the
the d-fold alternating tensot”® = A A ... A A and the d-fold symmetric tensot?¢ =
A-...- A. These lifting operations introduce tbeterminanandpermanenbperations on

submatrices oA T G, B, as described below.

The alternating tensor is a multilinear map®t, (A A ... A A) (X1 A ... AXg) = AX1 A
... N AXq4, where

1 .
X1 Ao AXg = a Z S’Lgn(O')Xa(l) @ e @ Xy (d)s
" 0€Sy

where S, is the symmetric group ovet letters andr € S; are the permutations of the
group. Ifxy, ...,x, form a basis ofR™, then the("}) elementsx;, A ... A x;,, wherel <

i1 < ... < iq < nform a basis of the alternating— fold tensor product o2, denoted
asAMR™. If A € R™* is a linear map onk" sending points tak*, then A" is a
linear map onA“R™ sendingx; A ... A Xq t0 AX; A ... A AXq, i.e., sending points in
AYR™ to points inAYR*. The matrix representation of\¢ is called the "d’th compound
matrix” Cy(A) whose(iy, ..., 44|71, ..., Ja) €ntry has the valudet(Aliy, ..., %4 : J1, -, Jd])
where the determinant is of thex d block constructed by choosing the rows..., iq
and the columngy, ..., jq of A. In other wordsCy(A) has () rows and(¥) columns
(instead ofn? x k¢ necessary forl®?) whose entries are equal to the< d minors of A.
Whenk = d, Ci(A) is a vector known as the GrasmanianAfand whemn = k = d
then Cy(A) = degA). Finally, the identity(A®?) T B®4 = (AT B)®¢ specializes to
(ANYT BN = (AT B) which translates to the identity;(A)TCy(B) = C4(AT B)
known as the Binet-Cauchy theorem [1]. Taken together, the "d-fold alternating kernel”
A4(A, B) is defined by:

AY(A,B) =< A, B >=< Cy(A),Ca(B) >= ) _trace (Cd(ATG‘TB)FT> )

where £, is the (%) x (%) upper-left submatrix of the p.s.d;) x (’/) matrix F,.. Note

that the local kernel plugs in as the entries{ﬁfTG‘,.B)ij = k(M,a;, M,b;) whereG,. =

M M,.

Another symmetric operator on the tensor product space is via the d-fold symmetric tensor
spaceSym?R™ whose points are:

1
X1 Xg = E Z Xo(1) X .... ®Xg(d).
" oESy

The analogue of';(A) is the "d’th power matrix’R;(A) whose(iy, ..., i4|j1, ..., ja) €NtrY
has the valugerm(Aliy, ...,i4 : j1,---, ja]) @nd which stands for the map?

(A"‘A)(Xl"'xd):Axl"'Axd-

In other words Ry(A) has("*9~") rows and(**%~') columns whose entries are equal to

thed x d permanentsf A. The analogue of the Binet-Cauchy theoremRigA) " Ry(B) =



R4(AT B). The ensuing kernel similarity function, referred to as the "d-fold symmetric
kernel” is:

Sym(A, B) =< AL, B4 =< Ry(A), Ru(B) Ztmce (Rd(ATG B)E, ) 3)

whereF; is the(77% ") x ("79=1) upper-left submatrix of the positive defini& /") x

("*j 1) matrix F.. Due to lack of space we will stop here and spend the remainder of this

section in describing in laymen terms what are the properties of these similarity measures,
how they can be constructed in practice and in a computationally efficient manner (despite
the combinatorial element in their definition).

3.1 Practical Considerations

To recap, the family of similarity functionsim(A, B) comprlse of the linear version

< A, B > (eqn. 1) and non-linear versiond(A, B d} Sym!(A, B) (egns. 2,3) which are
group projections of the general kernelA®d B® >. These dlfferent similarity func-
tions are controlled by the choice of three itera§:, F,. and the parametet representing

the degree of the tensor product operator. Specifically, we will focus on thatasel

and onA?(A, B) as a representative of the non-linear family. The rol&ofis fairly in-
teresting as it can be viewed as a projection operator from "parts” to prototypical parts that
can be learned from a training set but we leave this to the full length article that will appear
later.

Practically, to computé?(A, B) one needs to run over allx d blocks of thek x ¢ ma-

trix AT B (whose entries ark(a;, b,)) and for each block compute the determinant. The
similarity function is a weighted sum of all those determinants weightefj byBy appro-

priate selection of” one can control both the complexity (avoid running over all possible

d x d blocks) of the computation and the degree of interaction between the determinants.
These determinants have an interesting geometric interpretation if those are computed over
unitary matrices — as described next.

Let A = QaR4 and B = QpRp be the QR factorization of the matrices, i.€.4 has
orthonormal columns which span the column spacd athen it has been recently shown
[14] that RATl can be computed from using only operations oveét(a;, a;). Therefore,

the product) | Q 5, which is equal toRgTATBRgl, can be computed using only local
kernel applications. In other words, for eaghcomputeR ;' (can be done using only
inner-products over columns of), then when it comes to computé’ B compute in-

steadR ;" AT BR;' which is equivalent to computin@ } Q5. Thus effectively we have
replaced every with @ 4 (unitary matrix).

Now, A%(Q 4, Qp) for unitary matrices is the sum over the product of the cosine principal
angles betweewr-dim subspaces spanned by columnsdofind B. The value of each
determinant of thel x d blocks of @ @ is equal to the product of the cosine principal
angles between the respectialim subspaces determined by corresponding selection of
d columns fromA andd columns fromB. For example, the case = ¢ = d produces
A(Qa,Qp) = det(Q }Qp) which is the product of the eigenvalues of the ma@iXQ .
Those eigenvalues are the cosine of the principal angles between the column sgace of
and the column space &f [2]. Thereforedet(Q } Q) measures the "angle” between the
two subspaces spanned by the respective columns of the input matrices — in particular is
invariant to the order of the columns. For smaller valueg o obtain thesum over such
productsbetween subspaces spanned by subsetsofumns between andB.

The advantage of smaller valuescdis two fold: first it enables to compute the similarity
whenk # ¢ and second breaks down the similarity between subspaces into smaller pieces.
The entries of the matri¥’ determine which subspaces are being considered and the inter-
action between subspacesAnand B. A diagonal F' compares corresponding subspaces



(@) (b)

Figure 1: (a) The configuration of the nine sub-regions is displayed over the gradient image. (b)
some of the positive examples — note the large variation in appearance, pose and articulation.

betweend and B whereas off-diagonal entries would enable comparisons between differ-
ent choices of subspaceshand in B. For example, we may want to consider choices
of d columns arranged in a "sliding” fashion, i.e., column stts.., d}, {2, ...,d + 1}, ...

and so forthjnstead of the combinatorial number of all possible chaic€kis selection

is associated with a sparse diagohalvhere the non-vanishing entries along the diagonal
have the value of "1” and correspond to the sliding window selections.

To conclude, in the linear version A, B > the role of F' is to determine the range of
interaction between columns df and columns of3, whereas with the non-linear version

it is the interaction betweed-dim subspacesather than individual columns. We could
select all possible interactions (exponential number) or any reduced interaction set such as
the sliding window rule (linear number of choices) as described above.

4 Experiments

We examined the performance @fn(A, B) on part-based representations for pedestrian
detection using SVM for the inference engine. The dataset we used (courtesy of Mobileye
Ltd.) covers a challenging variability of appearance, viewing position and body articulation
(see Fig. 1). We ran a suit of comparative experiments using A, B) =< A,B >

with three versions of = {1,117, decay} with local kernels covering lineadth degree
polynomial @ = 2, 6) and RBF kernel, and likewise witim(A, B) = AY(A, B) withd =

2, sparse diagondl (covering a sliding window configuration) and with linear, polynomial

and RBF local kernels. We compared our results to the conventional down-sampled holistic
representation where the raw images were down-sampled t@&ize20 and 32 x 32.

Our tests also included simulation of occlusions (in the test images) in order to examine
the sensitivity of oursim(A, B) family to occlusions. For the local part representation,
the input image was divided into 9 fixed regions where for each image local orientation
statistics were were generated following [5, 7] with a total of 22 numbers per region (see
Fig 1a), thereby making 82 x 9 matrix representation to be fed intém(A, B). The

size of the training set was 4000 split evenly between positive and negative examples and
a test set of 4000 examples was used to evaluate the performance of each trial. The table
below summarizes the accuracy results for the raw-pixel (holistic) representation over three
trials: (i) images down-sampled &) x 20, (ii) images down-sampled 82 x 32, and

(iii) test images were partially occluded2 x 32 version). The accuracy figures are the
ratio between the sum of the true positives and true negatives and the total number of test
examples.

raw linear | polyd =2 | polyd =6 | RBF
20 x 20 78% 83% 84% 86%
32 x 32 78% 84% 85% 82%
occlusion| 73.5% 72% 77% 76.5%

The table below displaysim (A, B) with linear and RBF local kernels.

localkernel| <A,B>,F=1 | <A,B>F=11T | <A, B>, f; =2"1"771 | A%(4,B)
linear 90.8% 85% 90.6% 88%
RBF 91.2% 85% 90.4% 90%




One can see that the local part representation provides a sharp increase in accuracy com-
pared to the raw pixel holistic representation. The added power of invariance to order of
parts induced by A, B >, F = 11" is not required since the parts are aligned and there-
fore the accuracy is the highest for the linear combination of local RBE, B >, F' = I.

The same applies for the non-linear versibf( A, B) — the additional invariances that

come with a non-linear combination of local parts are apparently not required. The power
of non-linearity associated with the combination of local parts comes to bear when the
test images have occluded parts, i.e., at random one of the columns of the input matrix is
removed (or replaced with a random vector), as shown in the table below:

local kernel| < 4,B>,F=1 | A2(A, B)
linear 62% 87%
RBF 83% 88%

One can notice that a linear combination of local parts suffers from reduced accuracy
whereas the non-linear combination maintains a stable accuracy (compare the right-most
columns of the two tables above). Although the experiments above are still preliminary
they show the power and potential of thian(A, B) family of kernels defined over local
kernels. With the principles laid down in Section 3 one can construct a large number (we
touched only a few) of algebraic kernels which combine the local kernels in non-linear
ways thus creating invariances to order and increased performance against occlusion. Fur-
ther research is required for sifting through the various possibilities with this new family

of kernels and extracting their properties, their invariances and behavior under changing
parametersK., G.., d).
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