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Abstract

We consider the problem of learning with instances defined
over a space of sets of vectors. We derive a new positive
definite kernel f�A�B� defined over pairs of matrices A�B
based on the concept of principal angles between two lin-
ear subspaces. We show that the principal angles can be re-
covered using only inner-products between pairs of column
vectors of the input matrices thereby allowing the original
column vectors of A�B to be mapped onto arbitrarily high-
dimensional feature spaces.

We demonstrate the usage of the matrix-based kernel
function f�A�B� with experiments on two visual tasks. The
first task is the discrimination of “irregular” motion trajec-
tory of an individual or a group of individuals in a video se-
quence. We use the SVM approach using f�A�B� where an
input matrix represents the motion trajectory of a group of
individuals over a certain (fixed) time frame. We show that
the classification (irregular versus regular) greatly outper-
forms the conventional representation where all the trajec-
tories form a single vector. The second application is the vi-
sual recognition of faces from input video sequences repre-
senting head motion and facial expressions where f�A�B�
is used to compare two image sequences.

1. Introduction
The paper is about developing a similarity function that op-
erates on pairs ofsets of vectors — where a vector can rep-
resent an image and a set of vectors could represent a video
sequence for example — in such a way that the function
can be plugged into a variety of existing classification en-
gines. The crucial ingredients are therefore (i) the function
can be evaluated in high dimensional spaces using simple
functions (kernel functions) evaluated on pairs of vectors in
the original (relatively low-dimensional) space, and (ii) the
function describes an inner-product space, i.e., is a positive

�This paper should be referenced as “Hebrew University, School of
CSE, Technical Report TR-2002-48, Nov. 2002”.

definite kernel.
It would be natural to ask why would one need such a

function to begin with? The conventional approach to repre-
senting a signal for classification tasks — be it a 2D image,
a string of characters or any 1D signal — is to form a one-
dimensional attribute vectorxi in some spaceRn defined as
the instance space. Whether the instance space is a vector
space or not is not really crucial for this discussion, but the
point being is that instances are essentially 1-dimensional
objects.

However, there are situations which call for representing
an instance as aset of vectors. For example, in a visual
interpretation task the models themselves may be obtained
from sets of images (such as a video sequence), and in ma-
chine learning when a training set is pre-expanded to con-
tain virtual examples in order to incorporate prior knowl-
edge about invariances of the input data. To be concrete, we
will describe three such situations below.

The first situation is a classical face detection problem.
Face recognition has been traditionally posed as the prob-
lem of identifying a face from a single image. On the other
hand, contemporary face tracking systems can provide long
sequences of images of a person, thus for better recognition
performance it has been argued ([18, 22], for example) that
the information from all images should be used in the clas-
sification process. One is therefore faced with the problem
of matching between two sets of images (where each image
is represented by a vector of pixel values).

The second situation is also related to visual interpreta-
tion but in a different setting. Consider for example a visual
surveillance task of deciding whether a video sequence of
people in motion contains an “irregular” trajectory. The ap-
plication can vary from detection of shop-lifting, breaking-
and-entry or the detection of “irregular” movements of an
individual in a crowd. Given that the motion trajectory of an
individual can be modeled as a vector of positions over time,
then the most natural representation of the entire video clip
is a set of vectors. We would be looking, therefore, for an
appropriate set-matching measure which could be plugged-
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in into conventional classification engines. More details are
provided in Section 6.

The third situation occurs when conventional classifica-
tion engines are incorporated with prior knowledge about
invariances of the input vectors. By invariances we mean
certain transformations which leave class membership in-
variant. In digit recognition, for example, typical invari-
ances include line thickness and image plane translation and
rotation. It has been observed that an effective way to make
a classifier invariant is to generate synthetic training exam-
ples by transforming them according to the desired invari-
ances (cf. [2, 8, 16, 19]). For instance the “kernel jitter-
ing” of [8] performs the synthetic transformations within
the matching process between pairs of training examples,
thereby effectively matching between two sets of vectors
(or between a vector and a set).

We could for convenience represent the collection of
vectors inRn as columns of a matrix, thus our instance
space is the space over matrices. In all three examples
above, the order of the columns of a training matrix is unim-
portant, thus the similarity metric over a pair of matrices
we wish to derive should ideally match between the two
respective column spaces, rather than between the individ-
ual columns. Another useful property we desire is to in-
corporate the similarity metric with a non-linear “feature
map” � � Rn � F with a corresponding kernel satisfy-
ing k�x� x�� � ��x����x��. A typical example is a fea-
ture map of dimension

�
n�d��

d

�
representing the d’th or-

der monomial expansion of the input vector with the cor-
responding kernelk�x� x�� � �x�x��d. Working with fea-
ture maps allows one to represent non-linearities, as for ex-
ample the linear subspace defined by the column space of
the matrixA � ���a��� ���� ��ak�� is a surface in the orig-
inal input spaceRn. Therefore, the measure of similar-
ity between two matrices undergoing a feature map trans-
lates to a measure between the two underlying surfaces in
Rn. Because of the prohibitly high dimension of the feature
space, we would not like to ever evaluate the function���
thereby the “kernel trick” is possible only if the similarity
metric f�A�B� can be implemented usinginner products
only between the columns ofA � ���a��� ���� ��ak�� and
B � ���b��� ���� ��bk��. Finally, to make general use of the
similarity function, we also desire thatf�A�B� forms a pos-
itive definite kernel on its own accord (for reasons described
later).

In this paper we propose a measure over the principal
angles between the two column spaces of the input matri-
cesA�B. The principal angles are invariant to the column
ordering of the two matrices thereby representing a mea-
sure over two unordered sets of vectors. The challenge in
this work is two fold: the first challenge is to compute the
principal angles in feature space using only inner-products
between the columns of the input matrices, i.e., using only

computations of the formk�ai� bj�� k�ai� aj� andk�bi� bj�
for i� j � �� ���� k. The second challenge is to introduce
an appropriate function over the principal angles such that
f�A�B� forms a positive definite kernel.

1.1 Related Work

The idea of using principal angles as a measure for match-
ing two image sequences was proposed in [22] with dissim-
ilarity between the two subspaces measured by the smallest
principal angle — thereby effectively measuring whether
the subspacesintersect which is somewhat similar to a
“nearest neighbor” approach. However, the assumption that
a linear subspace is a good representation of the input set of
vectors is somewhat restrictive with decreasing effective-
ness for low dimensionn and large input set sizek. In our
approach, the dimension of the feature space is very high
and due to the use of the kernel trick one effectively matches
two non-linear surfaces inRn instead of linear subspaces.

Another recent approach proposed by [18] to match two
image sequences is to compute the covariance matrices of
the two input sets and use the Kullback-Leibler divergence
metric (algebraically speaking, a function ofAA�� BB�

assuming zero mean column spaces) assuming the input set
of vectors form a Gaussian distribution. The fact that only
input space dimensionRn is used constrains the applicabil-
ity of the technique to relatively small input sets, and the as-
sumption of a Gaussian distribution limits the kind of vari-
ability along the input sequence which can be effectively
tolerated.

Other ideas published in the context of matching image
sequences are farther away from the concepts we propose
in this paper. The common idea in most of the published lit-
erature is that recognition performance can be improved by
modeling the variability over the input sequence. Most of
those ideas are related to capturing “dynamics” and “tem-
poral signatures” [9, 12, 4].

Finally, in the “kernel jittering” [8] approach for obtain-
ing invariances over a class of transformations, two instance
vectorsxi andxj are matched by creating additional syn-
thetic examplesxip andxjq centered around the original in-
put instances and selectingk�x�� x��� as the output measure
of the two sets based on a nearest neighbor concept. The
problem with this approach is that the measure does not
necessarily form a positive definite kernel and the nearest
neighbor approach is somewhat ad-hoc. In our approach,
the two subspaces spanned by��xip� and��xjq�, respec-
tively, would be matched using a positive definite kernel. In
Section 5 we will demonstrate the superiority of our simi-
larity measure over sets against a nearest neighbor approach
in the context of a jittering experiment.
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2 Kernel Principal Angles

Let the columns ofA � ���a��� ���� ��ak�� and B �
���b��� ���� ��bk�� represent two linear subspacesUA� UB

in the feature space where��� is some mapping from in-
put spaceRn onto a feature spaceF with a kernel function
k�x� x�� � ��x����x��. The principal angles� � �� �
��� � �k � ���	� between the two subspaces are uniquely
defined as:

cos��k� � max
u�UA

max
v�UB

u�v (1)

subject to:

u�u � v�v � �� u�ui � �� v�vi � �� i � �� ���� k � �

The concept of principal angles is due to Jordan in 1875,
where [13] is the first to introduce the recursive definition
above. The quantitiescos��i� are sometimes referred to
ascanonical correlations of the matrix pair�A�B�. There
are various ways of formulating this problem, which are all
equivalent, but some are more suitable for numerical sta-
bility than others. A numerically stable algorithm was pro-
posed by [5] based on the QR factorization and SVD, as
follows.

Let A � QARA andB � QBRB whereQ is an or-
thonormal basis of the respective subspace andR is a upper-
diagonalk � k matrix with the Gram-Schmidt coefficients
representing the columns of the original matrix in the new
orthonormal basis. The singular values��� ���� �k of the ma-
trix Q�

AQB are the principal anglescos��i� � �i.
The challenge of computing the principal angles is that

the matricesQA� QB should never beexplicitly evaluated
because the columns of theQ matrices are in the high di-
mensional feature space.Our task therefore is to compute
Q�
AQB without computing the individual matrices QA� QB.
Consider the result of the Gram-Schmidt orthogonaliza-

tion process of the matrixA: Let vj � F be defined as:

vj � ��aj��
j��X
i��

v�i ��aj�
v�i vi

vi (2)

Let VA � �v�� ���� vk� and

sj � �
v�� ��aj�

v�� v�
� ����

v�j����aj�

v�j��vj��
� �� �� �� ���� ��� (3)

Then,
A � VASA� (4)

whereSA � �s�� ���� sk� an upper diagonalk�k matrix. The
QR factorization is therefore:

A � �VAD
��

A ��DASA�� (5)

whereDA is a diagonal matrixDii �jj vi jj�. Assuming
the columns ofA are linearly independent (this assumption
will be removed later) thenS��A is well defined, and

A � AS��A D��

A DASA� (6)

from which we obtain:QA � AR��A andRA � DASA.
The last step taking us from (5) to (6), although may ap-
pear somewhat artificial, is actually the key to making the
kernel-based computation of principal angles work. All
we will need is to computeDA andS��A (both of which
are k � k), and likewiseDB � S

��

B . Then, Q�
AQB �

R�TA A�BR��B , whereA�B involves only inner products
between the columns ofA andB and thus can be computed
by using the kernel:�A�B�ij � k�ai� bj�.

What remains to show is thatDA� S
��

A can be computed
with only inner-products of the columns ofA. We will
describe now an interleaving algorithm for computing the
columnssi of the matrixSA and the columnsti of S��A one
at a time.

From (4) we haveVA � AS��A , thusvj � Atj and due
to the nature of the Gram-Schmidt process (SA is upper di-
agonal) we have:

vj �
jX

q��

tqj��aj��

wheretqj is the q’th element of the vectortj . The inner
productsv�j ��ai� andv�j vj can be computed via a kernel:

v�j ��ai� �

jX
q��

tqjk�ai� aq� (7)

v�j vj �

jX
p��

jX
q��

tpjtqjk�ap� aq� (8)

The inner-products above are the building blocks ofDA —
whose diagonal consists of the norm ofvj which is com-
puted via (8). From (3), the columnssj of SA are defined
as:

sj � �
t��k�a�� aj�
t���k�a�� a��

� ���

Pj��
q�� tqjk�aj � aq�Pj��

p�q�� tpjtqjk�ap� aq�
� �� �� ���� ���

(9)
We see that the columnssj depends ontl from l � 	� ���� j,
and converselytj depends onsj as well. However, the way
to break the cycle of dependency is by noticing thatt j can
be represented as a function oft�� ���� tj�� and ofsj as fol-
lows. From (2) we have:

vj � ��v�� �����vj��� ��aj�� �� ���� ��sj � (10)

and sincevj � Atj we have by substitution in (10):

vj � A��t�� �����tj��� ej � �� ���� ��sj �

3



whereej is defined such thatI � �e�� ���� ek� is thek � k
identity matrix. As a result,

tj � ��t�� �����tj��� ej � �� ���� ��sj � (11)

We have described all the elements of the algorithm for
computing the principal angles betweenA�B using only
inner-products between the column vectors. We summarize
below the algorithm:

� Given two sets of vectorsai� bi, i � �� ���� k in
Rn, we would like to find the principal angles be-
tween the two matricesA � ���a��� ���� ��ak�� and
B � ���b��� ���� ��bk�� where ��� is some high-
dimensional mapping with a kernel functionk�x� x �� �
��x����x��.

� Compute thek � k matrixR��

A as follows:

� Let s� � t� � e�

� Repeat forj � 	� ���� k:

– Computesj using Equation (9).

– Computetj using Equation (11).

� Compute the diagonal matrixDA using Equation (8).

� R��A � �t�� ���� tk�D��

A .

� Follow the previous steps and computeR��

B .

� LetMij � k�ai� bj� be the entries of thek � k matrix
M � A�B.

� The cosine of the principal angles are the singular val-
ues of the matrixR�

AMR��B .

It is worthwhile noting that the two sets of vectors need
not be of the same size, i.e., the column spaces ofA and
B need not be of the equal dimensions. The requirement
of equal dimensions is necessary only in the context of ob-
taining a positive definite kernel from the principal angles
— which is the topic of the next section. Finally, note that
if the column space ofA is not full rank then we can omit
thosetj for which�DA�jj � � and obtainR��

A whose num-
ber of columns are equal to the rank ofA. Likewise forB.

3 Alternative Formulations

The algorithm above for computing the principal angles is
based on “kernalizing” the “QR-SVD” formulation which
on one hand is known to be the most numerically stable (in
the non-kernel case) and on the other hand is computation-
ally efficient where the most intensive part consisting of a
single application of SVD on ak � k matrix.

For the sake of completeness, in the following two sec-
tions we will describe two other approaches for kernalizing
the computation of principal angles. The first approach is
based on the Lagrange formulation [13] where the princi-
pal angles are the generalized eigenvalues of an expanded
	k� 	k matrix. The second approach is based on an eigen-
decomposition formulation for generatingQA andQB in-
stead of the QR step. Both approaches are less efficient than
the QR-SVD approach where the Lagrange formulation suf-
fers from numerical instability as well.

3.1 The Lagrange Formulation

The original formulation by [13] was based on Lagrange
multipliers generating the principal angles as the set of gen-
eralized eigenvalues of a block diagonal matrix. The ap-
proach suffers from numerical stability issues, however, the
extension to computation in feature space isimmediate as
shown next. Problem (1) can written as

max
x�y

fy�B�Axg s�t� kAxk � �� kByk � ��

The Lagrangian of the problem is:

L�x� y� �� 	� � y�B�Ax���kAxk�����	�kByk�����

After differentiating with respect tox� y� �� 	 we obtain that
� � 	 and the following condition should hold:
�

� B�A
A�B �

��
y
x

�
� �

�
B�B �
� A�A

��
y
x

�
�

subject tox�A�Ax � y�B�By � �. The general-
ized eigenvalues��� ���� ��k are related to the principal an-
gles by�� � cos����� ���� �k � cos��k�, and�k�� �
�cos��k�� ���� ��k � �cos����. The extension to feature
space is immediate since the matricesA�A�B�A�B�B
involve only inner products of the columns ofA andB.
The draw-back of this approach is two-fold: on one hand
the generalized eigenvalue problem involves a	k� 	k sys-
tem compared to ak � k system with the SVD approach,
and second the solution of a generalized eigenvalue system
is prone to numerical instabilities — which were confirmed
in our experiments.

3.2 The Eigen-decomposition Approach

The QR-SVD formulation was based on generating an or-
thonormal basisQA� QB for the column spaces ofA�B re-
spectively followed by the SVD ofQ�

AQB to obtain the
singular values. An orthonormal basis forA, for example,
can be generated from the eigen-decomposition ofAA� in-
stead of via a QR decomposition. Kernalizing an eigen-
decomposition is immediate, but at a price of efficiency: the
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overall process for finding the principal angles will consist
of 3 applications of SVD ofk � k matrices instead of a
single SVD.

Consider the matrixA � ���a��� ���� ��ak�� and letQA

be the orthonormal basis of the column space ofA as gen-
erated by the SVD process ofA: AA� � QADAQ

�
A where

DA is a diagonal matrix containing the square eigenvalues
of A and the columns ofQA are the corresponding eigen-
vectors. SinceAA� is not-computable (as the columns of
A are in the feature space), consider instead the eigenvec-
tors of thek � k matrixA�A whose entries arek�ai� aj�:
A�A � UADAU

�
A . The connection betweenUA andQA

is easily established as follows:

A�AUA � UADA�

followed by pre-multiplication byA:

AA��AUA� � �AUA�DA�

from which we obtain thatAUA is an orthogonal set (un-
normalized eigenvectors). Therefore:

QA � AUAD
� �

�

A

is the orthonormal set of eigenvectors ofAA� which span
the column space ofA. The derivation above is a well
known “trick” used to compute the Principal Components
of a matrix whose number of columns is much smaller than
the number of rows (see for example, [20]).

The matrixQA is not-computable, but the product:

Q�
AQB � D

� �

�

A U�
A �A�B�UBD

� �

�

B

is computable. To conclude, the kernel principal angles
based on eigen-decompositions is summarized below:

� Given two sets of vectorsai� bi, i � �� ���� k in
Rn, we would like to find the principal angles be-
tween the two matricesA � ���a��� ���� ��ak�� and
B � ���b��� ���� ��bk�� where ��� is some high-
dimensional mapping with a kernel functionk�x� x �� �
��x����x��.

� Let UA� DA be the eigen-decomposition using the
SVD formulationA�AUA � UADA and likewise let
UB� DB be the eigen-decomposition ofB�BUB �
UBDB . Note that the entries ofA�A andB�B in-
volve the evaluations ofk�ai� aj� andk�bi� bj� only.

� LetMij � k�ai� bj� be the entries of thek � k matrix
M � A�B.

� The cosine of the principal angles are the singular val-

ues of the matrixD
� �

�

A U�
AMUBD

� �

�

B .

This algorithm requires between twice to three times the
computational resources of the QR based algorithm since
it consists of three applications of SVD. Empirical studies
we conducted show that the two algorithms have similar nu-
merical stability properties with slight benefit to the QR ap-
proach.

4 Making a Positive Definite Kernel

We have shown so far that given two sets of vec-
tors ai� bi, i � �� ���� k in Rn one can com-
pute cos��i�, the cosine of the principal angles, be-
tween the two subspacesspanf��a��� ���� ��ak�g and
spanf��b��� ���� ��bk�g where��� is a high dimensional
mapping with kernelk�x� x�� � ��x����x�� using only
computations of the formk�ai� bj�� k�ai� aj� andk�bi� bj�
for i� j � �� ���� k. In fact, the two sets of vectors may be of
different sizes, but for the material discussed in this section
we must assume that the column spaces ofA�B are of equal
dimension.

In this section we address the issue of constructing a pos-
itive definite kernelf�A�B� and consider a number of can-
didate functions. Specifically, we propose and prove that


k
i��cos��i�

�

is a positive definite kernel. The reason we would like a sim-
ilarity measure that can be described by an inner-product
space is for making it generally applicable to a wide family
of classification and clustering tools. Existing kernel algo-
rithms like the Support Vector Machine (SVM) and “kernel-
PCA” (to mention a few) rely on the use of a positive def-
inite kernel to replace the inner-products among the input
vectors. Our measuref�A�B� can be “plugged-in” as a
kernel function provided that for any set of matricesA i,
i � �� ����m and for any (positive) integerm, them � m
matrixK:

Kij � f�Ai� Aj�

is (semi) positive definite, i.e.,x�Kx � � for all vectors
x � Rm. This property enhances the usefulness off�A�B�
for a wider variety of applications, and in some applications
(like optimal margin algorithms) it is a necessary condition.

To avoid confusion, the computation ofcos�� i� involves
the use of some kernel function as was described in the pre-
vious section — but this does not necessarily imply that
any functiond��i� of cos��i� is a positive definite kernel,
i.e., that there exist some canonical mapping
�A� from the
space of matrices to a vector space such thatd���� ��� �k� �

�A��
�B�. The result we will need for the remainder
of this section is the Binet-Cauchy theorem on the product
of compound matrices ([1],pp.93) attributed by Binet and
Cauchy in 1812 — described next.
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Definition 1 (Compound Matrices) Let A be an n�k ma-
trix. The matrix whose elements are the minors of A of
order q constructed in a lexicographic order is called the
“q’th compound of A” and is denoted by Cq�A�.

In other words, the q’th order minors are the determi-
nants of the sub-matrices constructed by choosingq rows
andq columns fromA, thusCq�A� has

�
n
q

�
rows and

�
k
q

�
columns. The priority of choosing the rows and columns for
the minors is based on a lexicographic order: minors from
rows 1,2,4 for example will appear an in an earlier row in
Cq�A� than those from 1,2,5 or 1,3,4 or 2,3,4; and likewise
for columns. Of particular interest for us is theGrassman
vector defined below:

Definition 2 (Grassman Vector) Let A be an n�k matrix
where n � k. The k’th compound matrix Ck�A� is a vector
of dimension

�
n
k

�
called the Grassman vector of A denoted

by 
�A�.

For example, forn � �� k � 	 the two columns ofA
may represent two points in the 3D projective space and

�A� represents the 6 Grassman (Plucker) coordinates of
the line spanned by the two points. The Grassman coor-
dinates are invariant (up to scale) to the choice of the two
points on the line. In general, the Grassman coordinates
represent the subspace spanned by the columns ofA in-
variantly to the choice of points (basis) of the space. The
Binet-Cauchy theorem is described next:

Definition 3 (Binet-Cauchy Theorem) Let A�B be rect-
angular matrices of size n�k and n�p, respectively. Then,

Cq�A
�B� � Cq�A�

�Cq�B��

In other words, the
�
k
q

�
�
�
p
q

�
matricesCq�A

�B� and

Cq�A�
�Cq�B� are element for element identical. Of par-

ticular interest to us is the case wherep � k � q, thus
Ck�A

�B� is a scalar equal todet�A�B� (becauseA�B
is ak � k matrix and

�
k
k

�
� �) from which we obtain the

following corollary:

Corollary 1 Let A�B be matrices of size n� k. Then,

det�A�B� � 
�A��
�B��

As a result, the measuredet�A�B� is positive definite.
Since the entries ofA�B are the inner-products of the
columns ofA�B thus the computation can be done in the so
called feature space with kernelk�ai� bj� � ��ai����bj�
where��� is the mapping from the originalRn to some
high dimensional feature space. However,det�A�B� de-
pends on the choice of the columns ofA�B rather than on
the respective column spaces (as principal angles do), thus
is not likely to be a good candidate for a positive definite
kernelf�A�B� over pairs of matrices.

The next immediate choice forf�A�B�, is det�Q�
AQB�

since from Corollary 1 we havedet�Q�
AQB� �


�QA�
�
�QB�. The choicef�A�B� � det�Q�

AQB� is
better thandet�A�B� because it is invariant to the choice
of basis for the respective column spaces ofA�B. Since
QA� QB are orthonormal matrices, a change of basis would
result in a product with a rotation matrix:�QA � QAR� and
�QB � QBR� whereR�� R� are some rotation matrices.
Then

det� �Q�
A
�QB� � det�R�� �det�R��det�Q

�
AQB� � det�Q�

AQB��

The problem, however, is thatdet�Q�
AQB� can receive

both positive and negative values making it a non-ideal
candidate for a measure of similarity. For example, by
changing the sign of one of the columns ofA, results
in det�Q�

AQB� changing sign, yet the respective column
spaces have not changed. On the other hand, the absolute
valuejdet�Q�

AQB�j may not be positive definite (in fact it
isn’t as one can easily show by creating a counter example).
Nevertheless, the product of two positive definite kernels is
also a positive definite kernel (see [17] for example), then

f�A�B� � det�Q�
AQB�

� � 
k
i��cos��i�

�

is ourchosen positive definite kernel function.
Finally, for purposes of clarity only it may be worth-

while to show the connection between the inner product

�QA�

�
�QB� and the inner product
�A��
�B�:

Theorem 1 LetA�B be matrices of size n�k where n � k.
Then,

cos�
�A�� 
�B�� � 
�QA�
�
�QB��

Proof: This is a result related to a theorem by [6] and
[15] which follows directly from the Binet-Cauchy theo-
rem, as follows: LetA � QARA andB � QBRB rep-
resent the QR factorization of both matrices. Note that
det�RA� and det�RB� are positive (using the algorithm
in the previous section). From the Binet-Cauchy theorem
we have:k
�QA�k � k
�QB�k � � (becausedet�I� �

�Q�

AQA� � 
�QA�
�
�QA�). Likewise,
�A��
�A� �

det�R�ARA�, thus k
�A�k � det�RA�. Also note that

�QARA� � det�RA�
�QA�. Then,

cos�
�A�� 
�B�� �

�A��
�B�

k
�A�k 	 k
�B�k

�
det�RA�det�Rb�
�QA�

�
�QB�

det�RA�det�RB�

� 
�QA�
�
�QB�

Note that that if the QR factorization does not produce
positive determinants for theR components, the theorem
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above is defined up to absolute value only. To conclude,
among the possible positive definite kernels we have pro-
posed (which can be computed in feature space) the one
which makes the most sense is:

f�A�B� � det�Q�
AQB�

� � 
k
i��cos��i�

� (12)

wherecos��i� are computed in feature space according to
the Algorithm described in the previous section.

5 A Case Against Nearest Neighbor
Approach

In the context of “kernel jittering”, where synthetic copies
of the input vectors are created in order to simulate invari-
ances of interest, the matching measurement over sets (or
over a vector against a set of vectors) is based on the near-
est neighbor principle ([8]). In this section we compare the
performance, on a toy problem, of such an approach to our
positive definite kernel based on principal angles.

Consider the case of generating virtual examples in or-
der to train the classifier to become invariant to line width
(in the context of digit recognition). As an example, we
are given three example vectors, each representing an im-
age, and we generate two additional vectors per example by
artificially thinning and thickening the lines using morpho-
logical operators (see Fig. 1). As a result we obtain three
sets of vectors with three vectors each. A good matching-
over-sets is one which will be invariant to line width. Note
that unlike the case of invariance to translation, since these
morphological operators are not symmetrical (information
is lost) the matching has to be done between two sets rather
than between a vector and a set. Finally note that the nearest
neighbor approach is not positive definite (due to the asym-
metry of the invariance relation).

We have computed a distance based on our positive defi-
nite kernel between every two sets based on underlying ker-
nels of linear and polynomial types. We also computed the
nearest neighbor distance between the sets as the minimal
distance between points in the sets using the same underly-
ing kernels. The nearest-neighbor approach picked the pair
“short comb” and “lines” as the most similar — regardless
of the kernel being used (rows (a) and (c) in Fig. 1). The
kernel principal angles approach made the same judgment
when using the original image space (consistent with the
notion that the strength of the approach is based on the abil-
ity to work in feature space) but made the correct judgment
with the 6’th degree monomial expansion kernel, i.e., deter-
mined that rows (a),(b) are the closest pair.

(a)

(b)

(c)

Figure 1:Each row contains an image, the image after a morpho-
logical thick operator, and the image after a morphological thin
operator. Nearest neighbor approach on this set yields that the set
in the first row is closer to the set in the third row then to the set
in the second row. Our positive definite kernel, which takes into
account all the image space identified that the sets in the first and
second row are more similar.

6 Experimental Results

6.1 Detecting Irregular Behavior

Our first experimental example simulates the detection of
“irregular” behavior. We note that a behavior is not irregu-
lar by itself, but is considered so with respect to some more
common “normal” behaviors. Each example in the training
and test sets is given as a set of trajectories. Each trajectory
is represented by a vector which simulates the location of
a person over time. Our goal is to learn to distinguish be-
tween homogeneous sets (negative examples) and inhomo-
geneous sets (positive examples). An inhomogeneous set
would contain a trajectory that is different in a sense from
the other trajectories in the set. However, the trajectories
themselves are not labeled.

Building a real system that would track people over time,
and creating a real world test and training sets are outside
the scope of our current work. Instead we have simulated
the situation using the rules stated below. We define six
behavior models. Each behavior model has some freedom
with respect to certain parameters. The first model, shown
in Figure 2(a) is of straight trajectories. This model, as
well as the other more complex models, has the freedom to
choose starting and ending points. The next two models,
shown in Figures 2(b), 2(c), change their direction once
or twice respectively. The exact location of the change can
vary slightly as does the orientation of the new direction.
The fourth model, shown in Figure 2(d), has a small arc.
The starting point of the arc and its length can vary to some
extent. The fifth model, shown in Figure 2(e), has a much
wider arc, while the last model, shown in Figure 2(f), com-
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(a) (b) (c)

(d) (e) (f)

Figure 2:Six models of trajectories. Each figure illustrates some
of the variability within one specific model. (a) Straight trajecto-
ries. (b) Direction changes once along the trajectories. (c) Direc-
tion changes twice. (d) Trajectories with an arc. (e) Trajectories
with a wide arc. (f) Trajectories which complete an almost full
circle.

pletes almost a full circle before continuing to its original
direction. The exact parameters of the circular motion and
its starting point can vary.

We used the Support Vector Machine (SVM) [3, 21] al-
gorithm for our classification engine. The SVM was given a
training set of inputmatricesA�� ���� Al with labelsy�� ���� yl
whereyi � 
�, where the columns of a matrixAi represent
the trajectories of the i’th “instance” example. The input to
the SVM algorithm is a “measurement” matrixM whose
entriesMij � yiyjf�Ai� Aj� and the output is a set of “sup-
port vectors” which consist of the subset of instances which
lie on the margin of the positive and negative examples. In
our case, the support vectors are matrices. The classifica-
tion of a new test exampleA is based on the evaluation of
the function:

h�A� � sgn�
X

	iyif�A�Ai�� b�

where the sum is over the support matrices and	 i are the
corresponding Lagrange multipliers provided by the algo-
rithm. Note that it is crucial that our measuref�� is a pos-
itive definite kernel because otherwise we could not have
plugged it in the SVM.

In the first set of experiments we used a different model
for each experiment. In each experiment, all trajectories be-
long to the same single model, but are oriented in one of the
following four directions: left to right, right to left, top to
bottom and bottom up. Each example contains seven trajec-
tories. A homogeneous set is considered to be a set where
all trajectories lie in one direction. An inhomogeneous set
is considered to be a set where six trajectories lie in one di-
rection and one trajectory lies in some other direction. We

used 400 training examples and 100 test examples for each
experiment. The results are shown in Table 1.

Model det�Q�
A
QB�� det�Q�

A
QB�� Vector Vector

linear Deg 6 linear Deg 6
(a) F 1% F F
(c) 39% 6% 55% F
(d) 17% 7% 52% F
(f) 8% 3% 57% F

Table 1:

The values in the table entries are of error rates for the
test set. The experiment was done using our proposed ker-
nel for sets (“det�Q�

AQB�
�”) over a linear kernel and over

a polynomial kernel of degree 6, and for vector (“Vector”)
representation of the sets learned using the same kernels.

Each row represents an experiment made using a differ-
ent model of trajectories. “F” means that the SVM classi-
fier failed to converge. Other kernels suggested in section 4
where also tested but failed to converge or gave very poor
results.

The second experiment was similar to the first one, but
here we used the first three models together. In this experi-
ment, a homogeneous set includes seven trajectories of the
same randomly picked model of the three. All trajectories in
a homogeneous set were oriented along the same direction.
In an inhomogeneous set, on the other hand, there exists
a single trajectory of a different model whose motion was
oriented at a random direction which might or might not
coincide with the direction of the other six trajectories (see
Table 2, first row). We tried a “tougher” variation along the
same experimental theme where all the trajectories (regular
and irregular) extent from left to right (a single direction).
As a result, the irregular trajectory is expressed only by the
trajectory model and not by direction (see Table 2, second
row).

Directions det�Q�
A
QB�� det�Q�

A
QB�� Vector Vector

linear Deg 6 linear Deg 6
4 26% 19% 60% F
1 F 40% F F

Table 2:

The third experiment was similar to the second one, only
this time we used all six models as possible types of trajec-
tories. Error rates are given in Table 3.

6.2 Face Recognition

In our second experimental example the goal was to rec-
ognize a face by matching video sequences. We ran a
face tracker on 9 persons who were making head and fa-
cial movements in front of a camera. The result of the face
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Directions det�Q�
A
QB�� det�Q�

A
QB�� Vector Vector

linear Deg 6 linear Deg 6
4 27% 15% 47% F
1 F 35% F F

Table 3:

Figure 3:Each pair of rows contains some of the extracted face
images of the same person on different shots taken under different
illumination. The sequences on the top two rows is a hard example
that was not recognized by any method.

tracker is an area of interest bounding the face which was
scaled (up or down) to a fixed size of� � �� per frame
per person. The number of images per set varied from 30
to 200 frames per set. Since the tracker is not perfect (none
of them are) especially against strong pose changes of the
head, some of the elements of the set were not positioned
properly on the face (Fig. 3 second row).

The training set consisted of 9 sets (one per person),
while the testing set consisted of 7 new sets (of the same
people). We performed a matching over sets in order to se-
lect the closest two sets between the test set and the 9 train-
ing sets. The kernel principal angles was applied once on
the original image space and once using a feature space rep-
resenting the 6’th order monomial expansion of the original
input vectors. Since we are not constrained in this experi-
ment to use a positive definite measure, we used the mean
of the smallest 20 principal angles as the similarity mea-
sure between two video sequences (labeled as “mean�” in
the sequal). Note also that in this kind of experiment, the
length of the video sequences can vary.

We compared our results to four other approaches for
obtaining a similarity measure over sets. In the second ap-
proach (labeled “alt”), instead of computing the principal
angles, we chose the angle between the closest vectors in
the two sets. At first the two vectors (one from each set)
which had the largest inner-product were picked. They were
removed and we then picked the next pair and so on. This
method is used as a “low cost substitute” for principal an-

gles. The third method (labeled “NN”) measured the dis-
tance between every two sets as the distance in feature space
between their closest elements. Recall that the distance in
feature space between two vectors is:

d���x�� ��x���� � k�x� x� � k�x�� x��� 	k�x� x���

The fourth method (labeled “20NN”) examined the 20 vec-
tors in the union of the training sets which were closest
to the vectors of the test set. The recognition process was
based on a vote - the training set which contributed the most
of these vectors was chosen. The last method we compared
to was the method based on Kullback-Leibler divergence
presented in [18].

One can see from Table 4, that our approach based on
computing the principal angles in a feature space of 6’th
order monomials made only a single error out of 7 tests (the
first two rows of Fig. 3, where as all four other approaches
performed poorly.

Linear Deg 6
mean� 2 1
Alt 4 4
NN 5 5
20NN 3 3
[18] 4 NA

Table 4:

7 Summary

In this paper we have made three contributions:

� A case in favor of using instance space over matrices
(sets of vectors) for classification. We have shown that
the need arises especially in the context of computer
vision applications, but not exclusively so as we noted
that “kernel jittering” is another case for similarity over
sets of vectors.

� A kernel approach for the computation of principal an-
gles in feature space. We noted that principal angles
in the original input space is a fairly limited tool for
comparing subspaces because of the linearity assump-
tion. However, the linearity assumption in the high-
dimensional feature space allows for non-linearities in
the input space thereby making the principal angles ap-
proach for matrix similarity a powerful tool for match-
ing over sets.

� Introducing the functionf�A�B� which forms a posi-
tive definite kernel. This result is important for making
use of the similarity measure over matrices as a metric
for optimal margin classifiers.
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Applications of principal angles are found in numerous
branches of science including data analysis [11], random
processes [14, 10] and stochastic processes (cf. [7]). The
power to map the observation onto a high dimensional fea-
ture space while working through the process of finding
principal angles via simple kernel functions in the origi-
nal input space would no doubtly become useful beyond
the scope of this paper. As for visual understanding appli-
cations, the range of examples is not limited to the scope
presented here — in fact any visual classification or clus-
tering task applied to non-rigid shapes may benefit from the
approach of matching over sets. Finally it is worth noting
that the algorithm presented in this paper is general in the
sense it holds for any type of sets, i.e., not only sets made
out of vectors. Any set for which one can present a kernel
function operating on the elements of the set could serve
as an input to the algorithm — for some types of sets it is
possible to obtain interesting interpretations as to what the
algorithm actually does, but that is out of the scope of this
paper.
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