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Abstract

When we look at images, certain salient structures often attract
our immediate attention, without requiring a systematic scan of
the entire image. In subsequent stages, processing resources can
be allocated preferentially to these salient structures. In many
cases this saliency is a property of the structure as a whele, Le.,
parts of the structure are not salient in isclation.

In this paper we present & saliency measure based on cur-
vature and curvature variation. The structures this measure
emphasizes are also salient in human perception, and they often
correspond to objects of interest in the image.

We present a method for computing the saliency by a sim-
ple iterative scheme, using a uniform network of locally con-
nected processing elements. The network uses an optimization
approach to produce a “galiency map”, which is a representation
of the image emphasizing salient locations. The main properties
of the network are: (i) the computations are simple and local,
(ii) globally salient structures emerge with a small number of it-
erations, (iil} as a by-product of the computation contours are
smoothed, and gaps are filled-in.

1. Introduction

Salient structures can often be perceived in an image at' a
glance. They appear to attract our attention without the need to
scan the entire image in a systematic manner, and without prior
expectations regarding their shape. The processes invelved in
the perception of salient structures appear to play a useful role in
segmentation and recognition, since they allow us to immediately
concentrate on objects of interest in the image.

Figure 1. Three prominent biobs are perceived inmedi-
ately and with little effort. Locally, the blobs aze simi-
lar to ke background contours (adopted from [5]). The
blobs remain salient when intersections are added te the
backgzound curves [11].
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Consider the images in figures I, 2 and 3. Certain objects
in each image somehow attract our attention in a manner of-
ten described as ‘preattentive’. For instance, the large blobs in
Fig. 1 are prominent, although locally the blobs’ contours are
indistinguishable from background contours on the basis of lo-
cal orientation, curvature, contrast, etc. It seems as if one must
somehow capture most of the curve bounding a bleb in order to
perceive it as a prominent structure. The circle in Fig. 2 is im-
mediately perceived although its contour is fragmented, implying’
that gaps do not hinder the immediate perception of such ob-
jects. In this case one must group together several line segments
of the circle to distinguish it from the background. These ex-
amples also demonstrate that these prominent objects need not
be recognized in order for them to be distinguished. The image
in Fig. 3 is an edge image of a car in a cluttered background.
Our attention is drawn immediately to the region of interest in
the image. It seems that the car need not be recognized to at-
tract our attention. When the image is inverted and presented
for short periods, recognition becomes considerably more diff-
cult, yet the same region remains salient.
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Figure 2. A circle in & background of 200 randomly
placed and oriented segments. The circle is still per-
ceived immediately although its contour is fragmented.

The goal of this paper is to suggest what makes structures
such as those in Fig. 1 — 3 salient, and to propose a mechanism
for detecting salient locations in an image. A locally connected
network is proposed that can process images such as the figures
above to construct a “saliency map”, which is a representation
of the image emphasizing salient locations. The computations of
the net are devised to meet the following requirements: (i} the
time it takes to detect a prominent structure does not depend
on the complexity of background curves, (i} curves may have
any nutnber of gaps, and (iii} the number of computations are
restricted to the order of dozens or, at most, about a hundred
steps in order to meet the time constraint involved in immediate
perception.
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Figure 8. An edge image of a car in a cluttered back-
ground. Our attention is drawn immediately to the re-
gion of interest. It seems that the car need not be rec-
ognized to attract our attention. The car also remains
salient when parallel lines and small blobs are removed,
and when the less textured region surrounding paris of
the car is filled in with more texiure.

Tssues related to this problem include segmentation, percep-
tual organization, and figure/ground separation. Segmentation
schemes have been investigated extensively in the field of com-
puter visicn and many algorithms have been suggested. They
will not e reviewed here, since they are only marginally related
to the problem zt hand. Many of the segmentation processes
that have been proposed were more ambitious than what is re-
quired, or what is possible, to achieve in the early stages where
prominent areas are located. For example, they attempt to seg-
ment the entire image instead of just an area of interest. Our
proposal is related to the suggestion made by Ullman [14] that
segmentation should be conducted on an area of interest rather
than applied to the entire image, implying that some preatt..-
tive process is required to detect prominent locations from which
an area of interest is defined, prior to the act of segmentation.

~TLowe’s [4] treatment of percepiual organization is more
closely related to the problem addressed in this paper. The
processes proposed by Lowe detect instances of collinearity, co-
termination and parallelism among straight lines, and will not
be effective in cases (e.g. Fig. 1) where these conditions do not
play a major role. Most past approaches for segmentation also
do not meet the requirements set above. In particular, they do
not meet the time constraint and they depend critically on the
complexity of the background curves.

1.1 Local and Global Saliency

The phenomena related to the perception of salient strue-
tures can be roughly divided into two classes. The first, referred
to as local saliency, occurs when an element becomes conspie-
ucus by having a simple distinguishing local property such as
calor, contrast, orientation, etc. For example, a red item placed
among green ones immediately atiracts attention by virtue of
its unique color [2],{12]. The second case, referred to as strue-
tural saliency, occurs when the structure is perceived in a more
global manner. That is, the local elements of the structure are
not salient as in the former case but instead the arrangement of
the elements is what makes the structure unique and salient.

We focus below on the saliency of curves, based on prop-
erties measured along them (the curves may be continuous or
with any number of gaps). Not all phenomena of global im-
mediate perception are necessarily accounted for by measuring
properties of curyes. For instance, one could measure the com-
pactness of a structure, the degree of symmetry it contains and

other measures that are region-based rather than curve-based.
Nevertheless, properties of curves are often sufficient in order to
separate objects from their background.

The fact that structural saliency requires measures that
have a global extent introduces a severe complexity problem.
The number of possible groupings of local line segments into
curves, where the curves are allowed to have any number of gaps,
explodes exponentizlly. The complexity issue becomes acute
when considering the fact that a salient curve of a given length
is not necessarily composed of salient sub-parts. Thus, contem-
porary pyramid techniques (see [9] for a review) would not be
appropriate for detecting structural saliency, because they con-
tain an implicit assumption that a salient curve is composed of
salient sub-parts.

2. Saliency as an Optimization Problem

Our goal is to construct a saliency map which is a represen-
tation of the image emphasizing salient locations. We seek to
associate, therefore, a measure of saliency denoted by the func-
tion ®(-) to each location in the image. A property that seems
to play a role in structural saliency is the combination of length
and smoothness measured at a particular scale. That is, a mea-
sure of saliency that would account for the type of images above
is one that favors long smooth curves, where the smoothness of
a curve is related to its curvature or its curvature variation. We
therefore face the following problemas:

{1) Defining an appropriate measure P that, when applied

to a point along a given curve, will increase when the
curve increases in length and smoothness.
A selection problem. The measure ®(F) depends on the
curve passing through P. Since the curves we are consid-
ering are either continuous or separated by any number
of gaps, there will usually be many possible curves to
consider. Qur approach to this problem will be to select
the curve that maximizes ®{P) over all curves passing
through P.

We defer the exact formulation of & until we have exam-
ined the manner by which it is computed. The reason is that
the general method of computing @ (using a simple local net-
work) places strong constraints on the possible definition of &.
In the next sections we describe the mechanism by which & is
computed, and then derive an explicit formula for @.

{2)

2.1 The Basic Elements

We assume that @ is computed by a locally connected net-
work of processing elements. Our specific model is that at the

. level of computing saliency the image is represented by a net-
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work of n x n grid peints, where each point represents a specific
x,y location in the image. At each point P there are k o#i-
entation elements coming into P from neighboring points, and
the same number of orientation elements leaving P to nearby
points. Each orientation element p; responds to an input im-
age by signalling the presence of the corresponding line segment
in the image, so that those elements that do not have an under-
lying line segment are associated with an empty area or gap in
the image. We refer to a connected sequence of orientation ele-
ments p;, ..., Pi+ N, each element representing a line-segment or a
gap, as a curve of length IV (note that curves may be continuous
or with any number of gaps). The optimization problem is for-
mnulated as maximizing ®x over all curves of length ¥ starting



Figure {. A discrete approximation to the curvature. B
approximates the radius of curvature, ¢ is the orienta-
tion difference, As is the length of both elements.

where

o
Jorp tan 3%
I

C;,; plays the role of a weight given to each local saliency value
a; along the curve. A measure that gives a high score to long
curves with low total curvature is now defined as:

frxyr=¢" (2.5)

i+N

2 Cigpiic (2.6)
J=1

The measure in (2.6) is a weighted contribution of the local
saliency values o; along the curve. Each weight is a product
of two factors. The first factor is inversely related to the num-
ber of virtual elements along p;, ..., p;, and the second factor is
inversely related to the total curvature of the curve. Curves
that will receive a high measure on {2.6) are leng curves that
are as straight as possible and have the least number of gaps.
The measure in (2.8) is alsc extensible according to the defini-
tion in (2.1). This can be shown by induction on the length of
the curve, and the proof will not be detailed here.

-~ Other functions for measuring the optimality of curves, us-
ing multistage optimization, were suggested by [1],[6],{7]. The
optimal curve in these cases is one that maximizes the sum of
gray levels or edge magnitude along the curve, while minimizing
the sum of orientation difference. In our terminology, the opti-
mization function is:

SN PN
E :"J' - § :0‘3'
=i j=i

This measure, however, is insensitive to the distribution of ori-
entation difference along the curve and in general does not satisfy
the requirement to prefer long and as-straigh{-as-possible curves.

3. The Saliency Network

In this section we summarize the computation performed
by the network and its relation to the saliency measure defined
above. The orientation elements constitute the basic computing
elements of the net. Each element p; is associated with a proces-
gor that can perform some computation based on its state and

the state of its k neighboring processors. This defines a uniform
network containing kn? processing units, with local communica- -

tion. In the current implementation k is equal to 186, providing
a reascnable angular resolution.

3.1 Computation of Elements in the Network
Each element p; is associated with a state variable denoted
by E; and & set of three attributes that includes its local saliency
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g;, its orientation #; and its attenuation factor p;. Each element
p: updates its state varizble E; iterativly through a local com-
putation. At the end of iteration N, E; contains the measure of
saliency derived in (2.6) which will be maximal over all possible
curves of length N starting at p;, where these curves are either
continuous or with any number of gaps.

E; is updated by the following computation:

E{OJ =0y

4+

EMY =g+ p; max E,(n)fe,:'

3.1
PiE6(p:) ( )

where p; is one of k possible neighbors of p;, and f;; are the
“coupling constants” defined in (2.5). To unravel the recur-
rence formula above, we isolate a specified curve -~y represented
by 6;,...,8;+~ where each element along the curve has only a
single neighboring element to communicate with. The following
proposition relates the value of the state varizble of p; with the
measure in {2.6}.

Proposition 1:
N i+ N
B = 3" Cugpi g

I=1

The proof is by induction on the length of the curve and will
not be detailed here. The proposition above together with that
the measure is extensible implies that among all possible curves
~; of length N starting from p;, either continuous or with any
number of gaps, B will be computed along that curve which is
maximal with respect to the measure in (2.6), namely

N
B = n}f_-xz Ci,ji595
-

taken over all ~;. It is worth noting that the fact that the mea-
sure ® is extensible, does not imply that the optimal contour
through P simply extends itself as the iberations proceed. In
fact, the optimal curve at stage N + 1 can be different from the
optimal curve at stage N. Furthermore, note that the saliency
value is defined for an element p; by measuring the saliency of
the ‘best’ curve of length N starting from p;. Hence, two ele-
ments on the same curve may have different saliency values be-
cause both curves, starting from both elements respectively, do
not necessarily have the same properties with respect to (2.6).

The state values of elements in the network form a new
representation of the image which is a ‘biased’ view of the visual
environment, emphasizing interesting or conspicuous locations.
We denote this representation as the saliency map. The term of
saliency map was used by [3] for representing (using our terms)
Iocal saliency.

3.2 Additional Properties of the Network

Convergence Property. The concept of an iterative compu-
tation raises the issue of convergence when the number of itera-
tions goes to infinity. This issue is imoportant in the context of
the saliency network because an element p; might be influenced
by its own state in a feedback loop if it lies on a closed curve.
The following proposition considers a closed curve and evaluates
the state of an element of the curve after an infinite number of
iterations.

proposition 2:
Consider p;,...,picn 2 closed curve where p; = piyn41- The



from p;:

DN (pi, . PitN)

max
(Pitainpern )ESY (pe)

where §% (p;} is the set of all possible curves of length ¥ starting
from p;.

A naive approach to this problem would involve an ex-
haustive enumeration of all combinations of p; ¢, ...
would require an exponential search space of size & for each el-
ement in the network, In what follows, we will show that for a
certain class of measures ® (“extensible” measures), the compu-
tation becomes linear in ;. We will then define a saliency mea-
sure @ that measures length and smoothness, and at the same
time is extensible and can be computed efficiently.

2.2 Multistage Optimization Approach

For a certain class of measures ®(-), the computation of
$x can be obtained by iterating a simple local computation. To
illustrate, let us consider first curves that are only three elements
long. The problem in this case is:

P O P2(pi, Pid1, Piv2)

That is, for a given element p;, determine p;y1 (one of
pi’s k neighbors) and p;1s (a neighbor of p;y{) such that
®2(pi, Pit1, Piye) will be maximal. A naive approach will again
require examining the k? different curves. Assume, however,
that P, satisfies the condition:

max Bo{ps, piv1, Piva) =

max @, (p;, max B (i1, piya))
In this case maximizing ®z can be achieved by repeating the
application of ®1 over shorter curves. The general approach is
formulated in a similar manner:

- 51}51(&)() Q-N(pﬁ 7P:'+N) = .
iy max By p(pita, e, 21
p‘+1eé(p‘ P1(p: IO i w-1(Pit1, o pitn])}  {2:1)

where §(p;) stands for §%(p;). In this manner we reduce the
search space needed for each curve of length N starting from
p; to the size of kN instead of &V that is needed for the naive
approach.. The principle in (2.1) is related to the principle of
optimality underlying all multistage decision processes, and in
particular it is a. special case of Dynamic Programming. We
refer to the family of functions that obey the principle in (2.1)
as extenstble functions. We next derive an extensible function
that prefers long curves that have low total curvature,

2.3 Deriving the Saliency Measure

Two factors play a role in the measure of saliency. The
first factor is related to the length of the curve, and the second
factor is related to its shape. The length of a curve is related to
the number of elements on the curve that have an actual curve
(rather than a gap) passing through them. These elements are

referred to as ective elements, whereas the elements that are
associated with gaps are referred to as virtual elements. To each-

element p; we associate its local saliency ;. If p; is an active
element, then o; is set to be a positive value, which for the
present is set to 1, and for a virtual element ¢; is set to 0. The
measure related to the length of the curve p;, ..., piy & is:

N

Z o
F=4

(2.2)

o Piy.n which
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The measure above is a sum of the local saliency values of the
active elements along the curve. Y, oy i3 in the range of 0 to
N + 1 depending on the number of active elements, implying
that a continuous curve scores higher than a fragmented one of
the same length. It is also possible to ‘penalize’ the existence
of gaps, especially large ones, in order to attenuate the measure
given to the curve when it is too fragmented. Penalizing the
existence of gaps is obtained by associating an attenuation factor
i to each element p;. If p; is active then p; is set to a value
smaller or equal 1 (for the present it is set to 1), If p; is virtual,
then p; = p < 1. We define an attenuation function associated
with the curve py,...,p; as follows:

7
Pig = H Pk

k=il

where p; ; = 1. The measure in (2.2) is modified by the attenu-

ation factors:
i+N

Z Pi 05
Foi

The measure in {2.3) is a weighted contribution of the local
saliency values o; along the curve, where the weights are in-
versely related to the number of virtual elements along p;, ..., p;-
The role of attenuation factors is emphasized in light of the
network’s computation (presented in the sequel) which enables
curves to extend themselves across gaps. In practice we would
like to place a bound on the size of gaps that can be completed
so that remote disconnected curves would not be considerad as
part of one fragmented curve. The measure in (2.3) essentially
achieves this goal.

(2.3)

In order to measure the shape of the curve we use a measure

that is inversely related to the total curvature of the curve. The
. 2

total curvature of a curve « is defined as fq (%) ds, wheze 9{s)

is the slope along the curve, and % at point P i3 known as the
local curvature at that point (the inverse of R, the radius of
curvature). We would like to use the total curvature to obtain
a measure that is bounded, and is inversely related to the total
curvature. The following measure meets these requirements:

o () e

which is confined to values between O and 1. A straight line
receives the value 1, and a meandering curve will approach the
limit 0 as its total curvature grows to infinity. To obtain a dis-
crete approximation to the measure in (2.4) we denote by ay. the
orientation difference between the k’th element and its succes-
sor, and by As the lergth of an orientation element. The local
curvature % to the curve tangent to these elements (see Fig. 4)
is:

(2.4)

2tan 3
As

The arc’s length is ox R, and therefore the total curvature square
is approximated by:

20y tan af-

As

The discrete approximation to the total curvature measure along
Pi, -..py is therefore obtained by:

7—-1

Ci,j = H fic,k+1
k=v+



state of p; converges to the following value:

(N)
B _,._Ez_m_
* 1 - CiitNPiieN

The proof is by induction on the length of the curve. The main
point to notice is that a closed curve (even if it is fragmented)
will increase its value when the number of iterations exceeds the
curve’s perimeter. If we consider a continuous circle of radius r,
for example, then Ci i n = e~ % which is always less than 1. In
practice, the increase is considerably smaller than the limiting
value because we perform a restricted number of iterations.

Curve Following. The computation performed by each ele-
ment include a local preference between neighboring elements.
That is, at each iteration each element p; selects the neighbor p;
that contributes the most to its state. The information regard-
ing local preference can be used to trace a linked curve starting
from g; in a recursive manner, namely, p; is the second element
in the curve, p;’s preferred neighbor is the third element, etc.
Given a conspicuous element as a starting point, we could ex-
tract the curve that is optimal according to (2.6). Examples of
these curves are.given in section 4.

Filling Gaps. The ability to cope with gaps is important for
the applicability of the saliency network to real images. Edge
maps obtained from real images are often corrupted by multiple
gaps, and what seems as a smooth salient curve often turns out
to be fragmented after edge detection has been applied.

A virtual element (that lies in a gap) participates in the
computation of {3.1) in a similar manner to active elements.
Consider for instance a gap starting from p;. and ending at
pj+k That is, p; 1s an active element, but pjii1,--.,Pitk 2are
virtual elements. An element will update its state provided that
it has at least one neighbor with a state value different from 0.
Ft will take at most k iterations for pj4x to update its state. The
network will fillin a curve ~; that will maximize the value of
p11C; jop. That is, the preference is for filled-in curves having
low total curvature C; j+x, while minimizing their overalt length
|l The relative weight of the two factors is controlled by setting
the values of p. In the current implementation g was set to 0.7,
which was found experimentally to give results that are generaily
in agreement with our own perception. The curves generated in
this manner are similar (for orientation difference less than b
to several other methods for completing gaps in contours and for
modeling subjective contours in human perception [10],{13], [15].

3.3 Additional Computations of the Network

The Computation of Low Curvature Variation. The com-
putation of the network summarized i {3.1) produce a saliency
map based on the measure in (2.6). This does not rule out
the possibility of additional properties that mediate structural
saliency. For instance, the blobs in Fig. 1 seem to be prominent
on the basis of low curvature variation rather than low overall
curvature. A second saliency measure was therefore formulated
that prefers long curves with low total curvature variation. De-
tails of this second measure can be found in [L1]. As a result,
the saliency network constructs two saliency maps, one for each
property, from which salient locations can be detected.

Smoocthing the Measured Curves. The input to the saliency
network is an edge map that determines which of the network’s
elements are active. The edges in the edge map are often noisy,
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due to sensor noise, quantization effects, and various effects of
the edge detection process. Reducing noise is important because
what appears to be a smooth curve to our visual system may
furn out to be rather serrated at the edge map level. Smoothing
can be obtained in part by analyzing the same image at different
resclutions. It turns out, however, that some smoothing is often
desired within a given scale of analysis.

A naive approach would be to extract all curves, replace
them by a smocth approximation and then apply the saliency
network to the smoothed curves. However, such an approach
will encounter the same complexity issue regarding the num-
ber of possible curves discussed in section 1.I. We handle the
problem of smoothing curves as a local computation that is per-
formed within the saliency network itself, as an integral part of
computing the saliency measure. In a nutshell, the coordinates
associated with each orientation element are modified in an it-
erative manner, to smooth the curve passing through that ele-
ment. The approach underlying the computation is to associate
an energy level to each curve so that the smooth approximation
is of minimum energy. The energy functional is given by:

i+ N 3 2
1 ()2 {0)y2 1 d'f
EA;((’”'%‘ Pri-dP) - 5 (F) ®

where (2;,%;) § = i,...,i+ N are the coordinates of the smooth
approximation to the curve (27,47) 7 =1,...,¢# + N. A curve
of minimum energy is one that minimizes its total curvature
variation while being as close as possible to the original curve.
The parameter A controls the relative weight between the two
terms (for a similar energy functional see [8]). The energy is low-
ered ah each iteration in a process that involves only local com-
putations. These local computations are combined with those
in (3.1), resulting a network which measures saliency of curves
while smoothing them simultanesusly. The details can be found
in {11].

4, Network Examples

The main issues illustrated by the examples are (i) the
saliency map, and (ii) the by-product creation of linked curves,
which is a by-product of the saliency computation.

Prominent locations in the image are represented as ele-
ments having » high measure of saliency as computed by the
network. For illustration purposes the saliency map will be dis-
played as a gray-level image in which an element p; is displayed
as a bar of width w; and intensity value 7;, which are set propor-
tional to the state value Fi. In other words, increased saliency
measure corresponds to an increase in brightness and in width of
the element in the display. The most salient element is displayed
as a white bar of width four, and the least salient element is
displayed as a black segment.

The first example is a synthetic image (not produced by
edge detection) shown in Fig. 2. It is constructed from a frag-
mented circle placed among a background of randomly placed
and oriented elements. The number of background elements is
200 and the circle consists of 60 elements (active and virtual).
The circle is immediately perceived by our visual system. The
saliency network is applied to this image for ten iterations. Fig.
5 presents the saliency map after that period, and Fig. 6 presents
the selected curve starting from the most salient element.

The result is in agreement with the perception of the circle
by our visual system. The saliency measure of each element of
the circle is significantly higher than the measure given to the



Figure 5. Saliency map of the image in Fig. 2 obtained
by the network after 10 iterations. The saliency measure
of each element of the circle is significantly higher than
of the background elements.

Figure 6, The curve starting from the strongest element
in figure 5. Virtual elements are displayed as dotied
lines.

background elements. In this regard, the circle virtually ‘pops-
out’ from the saliency map.

Figure 7. The same circle as in figure 2 but with 400
background segments.

The second point to notice is that a complete object is sep~
arated from the background although it is initially fragmented.
This agrees with the observation that perception is not severely
affected by the presence of gaps. The final point to notice is
that although the length of the salient curve is 60 elements, the

number of iterations required for distinguishing the circle from -

its background is considerably smaller. This happens because al-
though each element of the circle is not salient by itself, groups
of ten elements already become sufficiently salient. Outside the
circle, the probability of having a low curvature chain of length
ten is low.

In fact, the probability remains small even when the number

Figure 8. Saliency map of the image in Fig. 7 obtained
by the network after 10 iterations.

of background elements increases considerably. To illustrate, we
doubled the number of background elements as shown in Fig. 7.
We applied again ten iterations to produce the saliency map
in Fig. 8. Starting from the most salient element, the curve
extracted by the network is identical with the one in Fig. 6.

The next example is the image in Fig. 3. Fig. 9 shows the
saliency map after 30 lierations. Only the zegion surrounding
the car is displayed. The saliency measure given to most of
the elements of the car is significantly higher than that given to
the background elements. Fig. 10 displays the five most salient
curves obtained by tracing the most salient elements.

Note that the traced curves have been smoothed, and that
the gaps have been filled in. The results suggest that the saliency
computation is usefui for mulshm significant structures in

Figure 9. Fig. 3 obtained
by the network after 30 iterations. The region of interest
virtually ‘pops-out’ from. the display.

Figure 10. The five most salient curves obtained by
tracing the most salient elements of figure 9. The curves
have been smoothed and gaps have been filled in.

the image.
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Figure 11, Saliency map for low curvature variation of
the image in Fig. 1

The firnal example is the image in Fig. 1. The input o the
network was obtained by edge detection from the original hand-
drawn image. We show the results for a part of the image con-
taining one of the blobs. ‘Fig. 11 displays the saliency map for
low curvature variation after 160 iterations, which is twice the
number of elements on the perimeter of the blob. The elements
of the blob become stronger than the background elements af-
ter 70 iterations, in agreement with the observation that one
must capbure almost the entire blob in order to perceive it as
prominent. Interestingly, the results of the low curvature map
are similar, but about 100 iterations are required for the blob to
become prominent. Fig. 12 displays the curve starting from the
most salient element. In this case also the curve is smoothed by
the network while measuring its saliency.

Figure 12. The curve starting from the strongest ele-
ment in figure 11 is traced. The curve is smoothed by
the network while measuring its saliency.

Summary

It is proposed that immediate perception includes processes
for detecting salient structures in the image on which subsequent
processes such as segmentation and recognition can focus. The
saliency of a structure is divided into two sources, local saliency,
and structural saliency. Of the two, structural saliency is more
problematic from a computational peint of view since it requires
the efficient computation of certain global properties.

A locally connected network was devised to produce a

saliency map, which is a representation of the image emphasiz-
ing salient locations. The network exhibits the following prop- -~

erties: (i} the computations are local and simple, (ii) the num-
ber of computations are in the order of dozens or up to about a
hundred, (iii) there is little dependence on the complexity of the
image, (iv) gaps in curves are filled in the course of the compu-
tation, (v} contours are smoothed in the course of producing a
saliency map, (vi) the network produces linking information so
that curve tracing across junctions, branches and gaps is possi-
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ble, and (vii) the network is robust in the sense that malfunction
of some processing units does not affect seriously the perfor-
mance of the network.
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