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Abstract
We consider the problem of wrapping around an ob-

ject, of which two views are available, a reference sur-
face and recovering the resulting parametric 
ow using
direct computations (via spatio-temporal derivatives).
The well known examples are a�ne 
ow models and
8-parameter 
ow models | both describing a 
ow �eld
of a planar reference surface. We extend those classic

ow models to deal with a Quadric reference surface
and work out the explicit parametric form of the 
ow
�eld. As a result we derive a simple warping algorithm
that maps between two views and leaves a residual 
ow
proportional to the 3D deviation of the surface from a
virtual quadric surface. The applications include im-
age morphing, model building, image stabilization, and
disparate view correspondence.

1 Introduction
Visual motion estimation is an essential ingredient

for applications across the hierarchy of visual levels.
Applications range from 3D model building from mul-
tiple views, segmentation of the scene based on motion
cues, object tracking, image stabilization, 3D repre-
sentation of the scene with respect to a reference sur-
face, recovery of camera ego-motion from image se-
quences, visual recognition by alignment and by learn-
ing networks methods, and morphing applications in
vision and graphics | and the list is by no means
complete.

The image 
ow �eld induced by the camera (or
scene) motion is a product of the 3D structure of the
scene, the 3D camera motion parameters and its in-
trinsic parameters. While e�cient factorization of the

ow into structure and motion is an active area of
research, in many cases an implicit parametric form
of the optic 
ow is su�cient, say for motion segmen-
tation, image stabilization, coarse correspondence for
model building, and for establishing reference surfaces

for 3D scene representation. To that end, a hierar-
chy of parametric 
ow models have been developed
in the past (whose most elegant description can be
found in [3]) starting from pure global translation, im-
age plane rotation, 2D a�ne, and 2D homography (8-
parameter 
ow, also known as quadratic 
ow). These
models have been used extensively and have been es-
timated directly from image spatio-temporal deriva-
tives (known as direct estimation) using coarse-to-�ne
estimation via Laplacian (or Gaussian, or wavelets)
pyramids. These methods search for the best (para-
metric) 
ow model out of the family of constrained

ows (described above) that minimizes the square of
change of image intensities (SSD) over the whole im-
age | thus gaining robustness due to very highly over-
constrained linear systems (each pixel contributes a
linear constraint).

However, these models are applicable to scenes that
are approximately planar or have small variations in
depth, relative to the distance from the camera. The
residual 
ow, followed by the nominal planar warp, is
proportional to the depth variation from the scene to
the virtual planar surface. In other words, the virtual
surface plays a role of a reference surface and the resid-
ual 
ow represents the scene structure relative to the
reference surface. In many of the applications men-
tioned above one would like the reference surface to
approximate the structure of the scene. For example,
a planar scene with a small number of objects pro-
truding from the plane (such as a moving vehicle) is
ideal for an a�ne or homography 
ow that will stabi-
lize the plane and thereby enhance the position of the
protruding objects. Small residual 
ow is also conve-
nient for establishing correspondence (alignment) be-
tween disparate views. Since the nominal 
ow (cor-
responding to the parametric 
ow model) is highly
over-constrained large image distances can be toler-



ated, and if the residual 
ow is small then a second
round of optic 
ow (now unconstrained) can handle
the remaining displacements.

These examples naturally suggest considering
higher-order parametric 
ows in order to account for
non-planar virtual reference surfaces. For example, by
placing a virtual quadric surface (allowing for all de-
generate forms including a plane) on the object would
give rise to a smaller residual 
ow and in more general
circumstances. Consider for example Fig. 3 displaying
two widely separated views of a face. Notice the ef-
fect of a planar warp �eld, compared to the e�ect of
a Quadric-based 
ow �eld. The image warped by the
nominal 
ow is much less distorted and the residual

ow is much smaller.

The idea of extending the planar models to quadric
models was originally suggested in [14] but in the con-
text of discrete motion. The quadric reference surface
was recovered using explicit point matches, including
the computation of the epipolar geometry, whereas
here we wish to establish a \quadric warp �eld" using
in�nitesimal motion models and direct estimation. In
[14] special attention was payed on how to overcome
the multiple solution problem since a general ray from
the camera meets a quadric twice, thus for every pixel
in the �rst image there would be two candidate projec-
tions in the second image. Also special attention was
payed to the type of image measurements that are suf-
�cient for a solution (point matches only, points and
an outline conic, see also [6]).

In this paper we introduce the derivation of a
quadric-based nominal 
ow �eld, we call Q-warping,
using the in�nitesimal motion model and direct esti-
mation. The multiple solution problem addressed by
[14] via \opacity" constraint is approached di�erently
here. Instead of using an opacity assumption, which
is problematic to enforce in a parametric 
ow repre-
sentation, we enforce the family of quadrics to include
the center of projection of the �rst camera. We show
that the assumption does not reduce the generality
of the approach due to existence of hyperboloids of
two-sheet (one sheet includes the camera center and
the other wraps around the object), and that planar
surfaces are included in this model in a general man-
ner, i.e., the plane may be generally located in space.
Therefore, our model extends the hierarchy of direct
estimation parametric models of [3] without sacri�cing
\backward compatibility".

2 Background: Small Motion and
Parametric Flow

The parametric 
ow models are based on combin-
ing three elements: (i) in�nitesimal motion model, (ii)

planar surface assumption being substituted into the
motion model, and (iii) the parametric 
ow is inte-
grated with the \constant brightness constraint". We
will describe these elements in detail below.

2.1 Small Motion Model

We describe below a compact form of the Longuett-
Higgins and Prazdny motion model [11]. Let p =
[x; y]t = [X=Z; Y=Z]t where P = [X; Y; Z]t is a world
point in the coordinate system of the �rst (calibrated)
camera and p is it's corresponding image point. Let
P 0 be the coordinates of the same world point in the
second camera coordinate frame. Since the camera
motion is rigid, we have P 0 = RP + t where R and t
are the rotation and translation between the coordi-
nate frames.

The rotation matrix R can be written as

R = I � cos� + (1� cos�)wwt + sin� � [!]�

where ! is a unit vector representing the screw axis,
[!]x is the skew-symmetric matrix of vector products,
i.e., [!]xv = ! � v for all vectors v, and � is the angle
of rotation around the screw axis. When � is small,
cos� ! 1 and sin� ! �, and in turn R = I + [!]�
where the magnitude of ! is the angle of rotation.
Given the instantaneous rotation, the instantaneous
motion of P is:

_P =
dP

dt
� P 0

� P = RP + t� P =

= (I + [!]�)P + t� P = [!]�P + t (1)

Let [u; v]tdenote the image velocity from p to p0. We
use _X and _Z, as de�ned by (1) to get the following:

u =
dx

dt
=

d

dt
(
X

Z
) =

=
_XZ �X _Z

Z2
=

1

Z
( _X � x _Z) =

=
1

Z
[1; 0;�x]t([!]�P + t)

and v = dy

dt
is similarly derived. To summarize we

have,

u =
1

Z
st1t+ st1[!]�p

v =
1

Z
st2t+ st2[!]�p (2)

where s1 = [1; 0;�x]t and s2 = [0; 1;�y]t.



2.2 Direct Estimation Equation
Assume the brightness constancy assumption,

I0(x; y) = I(x � u; y � v);

where I(x; y); I0(x; y) are the observed grey-scale im-
ages at two successive time frames. Since the displace-
ment u; v are assumed to be small (in�nitesimal mo-
tion assumption), then the equation above can be sim-
pli�ed through the truncated (�rst-order) Taylor series
expansion of I(x; y) to what is known as the "constant
brightness equation" [8]:

uIx + vIy + It = 0

where Ix; Iy are the x; y spatial derivatives, respec-
tively, and It = I0(x; y)�I(x; y) is the temporal image
derivative. By substituting u; v with equations 2 we
obtain a linear constraint on the 
ow u; v as a function
of the spatio-temporal derivatives, the camera motion
parameters !; t and the depth variable Z:

1

Z
(I�s1 + Iys2)

tt+ (Ixs1 + Iys2)
t[!]�p + It = 0;

which after simpli�cation becomes [9]:

1

Z
stt + st[!]�p+ It = 0 (3)

where

s =

2
4

Ix
Iy

�xIx � yIy

3
5 :

2.3 Parametric Model: Planar Case

One can eliminate the parameter Z from equation 3
by assuming that the scene is planar [1], i.e., there
exist scalars A,B,C such that AX + BY + CZ = 1
for all points [X; Y; Z]t. By de�nition of p we have
X = xZ, Y = yZ and so we can rewrite it as 1

Z
=

Ax+ By + C. Substituting this in (2) yields:

u = (Ax+By + C)st1t + st1[!]�p

v = (Ax+By + C)st2t + st2[!]�p

Written more explicitly, let t = [�1; �2; �3]
t and ! =

[�; �; 
]t we get:

u = (A�1 �C�3)x+ (B�1 � 
)y +C�1 + � �

(B�3 + �)xy + (� �A�3)x
2

v = (A�2 + 
)x + (B�2 � C�3)y +C�2 � �+

(� �A�3)xy � (B�3 + �)y2

Origin

First Image

Second Image

Quadric

3D Object

Figure 1: Q-warping �ts a quadric around a general ob-
ject, however the family of quadrics must contain the ori-
gin (the �rst camera center). A hyperboloid of two sheets
meets this requirement by having one sheet coincide with
the origin and the other sheet wrap around the object. All
rays from the �rst camera intersect the quadric uniquely
and the projection of the intersection point onto the sec-
ond view is the result of the Q-warping 
ow. The residual

ow is thus proportional to the deviation of the physical
surface from the virtual quadric.

The terms above can be collected to give the 8-
parameter 
ow model used for estimating the instan-
taneous motion of a plane:

u = ax+ by + c+ gxy + hx2

v = dx+ ey + f + hxy + gy2 (4)

The direct estimation readily follows by substituting
the above in uIx + vIy + It = 0 we obtain a linear
constraint on the parameters a; b; :::; h. Every pixel
with a non-vanishing gradient contributes one linear
constraint for 8 unknowns, thus, making a highly over-
constraint least-squares system for solving the warping
function 4.

3 The Quadric Flow: Q-warping
Consider the family of quadric surfaces that con-

tains the origin [0; 0; 0], i.e., the center of projection
of the �rst camera:

AX +BY + Z +DXY +EXZ + FY Z +

+GX2 +HY 2 +KZ2 = 0 (5)

Note that we have normalized the coe�cients assum-
ing that the coe�cient of Z is non-vanishing, one could
choose other forms of normalization.

The reason we include the origin is to have a sin-
gle intersection between the optical rays emanating
from the �rst camera and the quadric surface. A sin-
gle intersection is a necessary condition for obtaining



a warping function. It is important to note that the
inclusion of the origin does not limit the generality of
the quadric because quadrics can break apart into two
pieces, known as the hyperboloid of two sheets. Thus,
one sheet will include the origin and the other sheet
will wrap around the object. The location and shape
of the sheet (parabolic, elliptic, and degenerate forms
like cylinders and cones) will be determined by the im-
age measurements of spatio-temporal derivatives (see
Fig. 1). What is also important to show is that the in-
clusion of the origin is not a constraint that is carried
to the degenerate form of a planar surface. In other
words, a planar warping function, corresponding to
any general position of a plane, should be a partic-
ular case of the Q-warping function | otherwise we
will not be able to include Q-warping in the hierar-
chy of parametric models. We will show later that in
case of planar objects, the quadric breaks down into
two planes, one coincides with the physical plane in
the scene and the other is the plane Z = 0. Taken
together, there is no loss of generality by having the
origin live inside the family of quadrics.

Using X = xZ, Y = yZ and dividing by Z2 and
rearranging terms, we get:

1

Z
=

Dxy + Ex+ Fy +Gx2 +Hy2 +K

Ax+ By + 1

By substituting Z in equations 2 we obtain a paramet-
ric 
ow model (with 17 distinct parameters), which is
our Q-warping function:

u =
�(x; y; a; :::; p)

Ax+ By + 1
(6)

v =
�(x; y; a; :::; p)

Ax+By + 1
(7)

where,
�(�) = ax+by+c+dxy+ex2+fy2+gyx2+hxy2+px3

�(�) = jx+ky+l+mxy+nx2+oy2+pyx2+gxy2+hy3

And:

a = �A �K�3 +E�1 b = �B � 
 + F�1
c = K�1 + � d = ���D�1 � 
A � F�3
e = � + G�1 � E�3 f = H�1 � 
B
g = �B �D�3 �A� h = �H�3 � B�
j = 
 �A�+ E�2 k = F�2 �K�3 � B�
l = K�2 � � m = B
 + � +D�2 � E�3
n = G�2 +A
 o = H�2 � �� F�3
p = �A � G�3

Before we continue to the direct estimation equa-
tion, consider the case of a planar object. We would
like to show the following:

Proposition 1 The Q-warping 
ow model includes
as a particular case the planar parametric model of
equations 4.

Proof: Consider the quadric: EXZ+FYZ+KZ2+
Z = 0. By dividing by Z2 followed by substitution in
equations 2, we obtain:

u = ax+ by + c+ dxy + ex2

v = jx + ky + l +mxy + oy2

where d = o = ��� F�3 and e = m = � � E�3.
In order to obtain a direct estimation using spatio-

temporal derivatives, we multiply both sides of the
Q-warping equations by Ax+By + 1 and obtain:

�(x; y; a; :::; p)Ix+�(x; y; a; :::; p)Iy+(Ax+By+1)It = 0:
(8)

This is a linear equation in A;B; a; b; :::; p per pixel
with non-vanishing gradients. The least-squares es-
timation requires some care which will be described
next. Also note that the motion model has 17 param-
eters, yet the minimal number of parameters required
for describing a moving quadric passing through the
camera center is 14 = 6 + 8, where 6 comes from pa-
rameters of rotation and translation and 8 comes from
the number of parameters representing the quadric
(passing through the origin). Therefore, the 17 pa-
rameters must satisfy algebraic constraints, i.e., not
every set of 17 numbers is admissible. However, this
is a topic which will not be covered in the scope of this
paper.

4 Issues of Implementation
The direct estimation equation 8 in the parame-

ters a; :::; p;A;B holds only for in�nitesimal motion
| both due to the motion model assumed and to the
application of the constant brightness equation. In
other words, the parametric 
ow model is a �rst-order
approximation and, thus, the implementation frame-
work must include a Newton iterative re�nement, of
the style suggested in [2, 3, 4, 12]. The iterative re-
�nement procedure for parametric models up to the
planar model are typically integrated with a coarse-to-
�ne framework (Laplacian pyramid [5], for example)
with an image warping step | will be discussed later.
In addition, the Q-warping model requires special care
on how the iterative re�nement should be de�ned. We
will start with the latter issue and then proceed with
the coarse-to-�ne implementation issues.

4.1 Iterative Re�nement
The iterative re�nement process [2, 4] (and de-

scribed in more detail later) gradually brings the two
original images closer to each other, such that in the



ideal case of constant brightness and a quadric sur-
face, It ! 0 at the limit. Considering the estimation
equation 8, the diminishing It is a serious problem be-
cause the coe�cients A;B become under-determined.
In other words, as we get closer to the solution, our
system of equations gets increasingly unstable numer-
ically.

We adopt the line of approach described in [7, 15]
which is to rewrite the direct estimation equation 8 as
a function of the �nal output 
ow instead of the in-
cremental 
ow, shown next. Let u(x; y); v(x; y) be the
�nal 
ow (describing the displacement �eld between
the original two images I(x; y); I0(x; y) as a function
of a quadric model) described parametrically in eqns. 6
and 7.

Let ~u(x; y); ~v(x; y) be the 
ow �eld established in
the last iteration (the initial guess for the current it-
eration). The incremental 
ow is de�ned by

�u = u� ~u

�v = v � ~v

and satis�es the constant brightness equation:

�uIx +�vIy + It = 0:

After substitution we obtain the new direct estimation
equation for the parameters A;B; a; :::; p below:

�(�)Ix+�(�)Iy+(Ax+By+1)(It�~uIx�~vIy) = 0: (9)

Initially, ~u = ~v = 0. As the iterations proceed ~u; ~v
approach the desired 
ow u; v (eqns. 6,7).

Another issue worth noting regarding the iterative
re�nement concerns the correction of the statistical
bias caused by the product with Ax+By+1 which was
necessary for linearizing the Q-warp function to obtain
equation 9. The product with the term Ax+ By = 1
can be viewed as a weight, thus making the overall
least-squares process (by collecting all the measure-
ments per pixel) a weighted least-squares. The weights
however may cause a bias in the solution. One way to
\undo" the bias, is to \renormalize" by dividing equa-
tion 9 by the term ~Ax + ~Bx + 1 where ~A; ~B are the
corresponding coe�cients determined from the previ-
ous iteration. Taken together, the direct estimation
equation has the form:

�(�)Ix + �(�)Iy + (Ax+ By + 1)(It � ~uIx � ~vIy)
~Ax+ ~Bx+ 1

= 0:

(10)

In each iteration, the system of equations for the
parameters a; :::; p; A;B is de�ned by minimizing the

least squared error:

Err =
X
x;y

=
1

~Ax+ ~Bx+ 1
[�(�)Ix + �(�)Iy

+ (Ax +By + 1)(It � ~uIx � ~vIy)]
2 (11)

where the sum is over the entire image. The system
of linear equations is obtained by setting the partial
derivatives of ( 11) with respect to each of the param-
eters a; :::; p; A;B to zero.

4.2 Alignment (warping) Steps
Iterative steps are implemented by image align-

ment, referred to as "warping" steps. After an ini-
tial estimate of motion �eld u(x; y); v(x; y) is made
(through the least-squares system that minimize equa-
tion 11), the second image is shifted towards the �rst
to compensate for the estimated displacement. The
motion estimation procedure is then repeated between
the original �rst image and the shifted second image
to obtain the new updated estimate of the parame-
ters a; :::; p;A;B (which in turn determine the new
updated motion �eld u(x; y); v(x; y)). These shift and
estimate steps are iterated to bring the second image
into alignment with the �rst, thereby progressively re-
ducing the frame-to-frame displacement.

Let uk; vk be the motion �eld estimate after the k'th
iteration of the alignment process. Let uo; vo be the a
priori estimate before the analysis begins | typically
we assume that uo = vo = 0. Steps of the alignment
procedure during the k'th iteration are as follows:

1. The original second image I0(x; y) is warped to-
wards the �rst image I(x; y) in accordance with
the displacement uk�1; vk�1 obtained on the pre-
vious iteration:

Ik�1(x; y) = I0(x� uk�1(x; y); y � vk�1(x; y)):

2. The motion estimator (minimizing equation 11)
is applied to the original �rst image I(x; y) and
the shifted second image Ik�1(x; y) to obtain the

ow �eld uk; vk. In other words, the new It(x; y)
is Ik�1(x; y)� I(x; y).

4.3 Hierarchical Motion Estimation
The above estimation algorithm is meaningful only

when the frame-to-frame displacements are a fraction
of a pixel so that the �rst-order order term of the
Taylor series is dominant. The range of displacements
can be extended to large displacements by implement-
ing the procedure within a multiresolution (pyramid)
structure [5, 13].

A multiresolution pyramid is a sequence of copies of
the original image in which both resolution and sample



density are reduced by a power of 2. In a Gaussian
pyramid, let Gl be the l'th pyramid level for image
I(x; y), where Go = I(x; y), obtained by convolving
the l � 1 level with a small kernel �lter w followed by
sub-sampling by 2 in both x and y, i.e., every other
row and column are discarded.

A Gaussian (or Laplacian) pyramid is constructed
for each of the original frames I(x; y) and I0(x; y). The
motion analysis begins at the lowest resolution level
of the pyramids. The sample distance at level l is 2l

times that of the original image, which in turn means
that correspondingly larger image displacements can
be estimated. At each successive iteration, the shift
and estimate steps (described above) are performed
on the next higher resolution level l� 1. Thus, if level
l is processed at iteration k with estimated 
ow-�eld
uk; vk, then the warp step is applied to the pyramid
level l � 1 with the estimated 
ow 2uk; 2vk (twice the
magnitude). Warping insures that the residual dis-
placements remains less than a sample distance as the
procedure moves to each higher resolution pyramid
level until full resolution is reached.

Given uk; vk the estimated 
ow at level l of the
pyramid, the 
ow 2uk; 2vk for the warp step at level
l � 1 can be estimated analytically as follows. Let
ak; :::; pk; Ak; Bk be the estimated parameters that de-
termine the 
ow uk; vk. Instead of computing explic-
itly the 
ow uk; vk and expanding it down the pyra-
mid, one can compute ak+1; :::; pk+1; Ak+1; Bk+1 that
represent the 
ow 2uk; 2vk:

ak+1 = ak bk+1 = bk ck+1 = 2ck

dk+1 = dk=2 ek+1 = ek=2 fk+1 = fk=2
gk+1 = gk=4 hk+1 = hk=4 pk+1 = pk=4
jk+1 = jk kk+1 = kk lk+1 = 2lk

mk+1 = mk=2 nk+1 = nk=2 ok+1 = ok=2
Ak+1 = Ak=2 Bk+1 = Bk=2

Thus, the estimated 
ow-�eld need not be represented
explicitly only the estimated parameters a; :::; p; A;B
need to be represented during the process.

Finally, another implementation issue worth noting
is that it is often recommended to apply low complex-
ity motion models (pure translation, a�ne, etc.) to
correspondingly low resolution levels of the pyramid.
For example, when the lowest resolution level of the
pyramid consists of a relatively small image, then the
numerical support for a 17 parameter motion model
would be rather weak. In that case a lower complexity
model, like pure translation or a�ne would be more
appropriate. Details on various schemes for moving
across the pyramid structure with corresponding lev-
els of motion model complexities can be found in [10].

5 Experiments

We have conducted a number of experiments both
on quadrics and general objects. In our �rst example
we have wrapped a poster on an approximately cylin-
drical surface. Here we expect the parametric 
ow re-
covered from the Q-warping function to match closely
the true 
ow. Fig. 2 displays the results: the edges of
the second view are overlayed on the �rst view in or-
der to visualize the magnitude of displacements. The

ow �eld recovered by our algorithm is displayed in
Fig. 2c and the edges of the warped image overlayed
on the second view shown in Fig. 2d match their true
position up to sub-pixel accuracy. Note that this also
demonstrates that the real surface need not contain
the center of projection of the �rst camera because
the Q-warping function can feet a hyperboloid of two
sheets with one of the sheets wrapping around the
physical surface.

We next apply Q-warping on a planar scene used
for stabilization examples. Fig. 6 shows a sequence of
images of a helicopter hovering above a planar scene.
Typically, planar warp stabilizes the motion of the
plane and thus enhances the region containing the he-
licopter. Q-warping applied to this sequence has re-
duced to a planar 
ow �eld (as shown in Proposition
1), thus illustrating the point that Q-warping is "back-
ward" compatible | it will adjust the complexity of
the warping function to the complexity of the scene.

The remaining examples are on general objects.
Fig. 3 shows two disparate views of a face. One can see
from the edge overlay that the distance between the
views is fairly signi�cant. Note the di�erence between
the Q-warping and the planar warping. We have ap-
plied to versions of a planar warping. First, in the
bottom row 4 matching points were selected (coming
from an approximately planar con�guration in space)
and the 2D projective transformation determined by 4
matching points) was recovered. Note that the edges
on the center of the face are closely aligned at the ex-
pense of the boundary curves (as the boundary curves
away from the plane determined by the 4 matching
points). Second, we applied the in�nitesimal planar
motion model (eqn. 4) in a direct estimation frame-
work (row 3). Note that the planar warping has cho-
sen a plane �tting the center of the face (where most
of the strong gradients are) rotated around the verti-
cal axis | the result is a distorted warped image due
to the large deviation of the object from a planar sur-
face. The Q-warping on the other hand has aligned
the warped image with the second view, up-to a few
pixels distance. Fig 4 demonstrates the application of
Q-warping on another face | note that the warped



(a) The �rst view. (b) Edges of the second
view overlayed on the �rst.

(c) Optical 
ow induced
by the quadric surface

(d) Edges of the warped

(�rst) view overlayed on
the second.

Figure 2: A poster was wrapped around a cylindrical surface. The recovered 
ow matches the true 
ow to sub-pixel
accuracy.

image is closely aligned with the second view. Finally,
Fig. 5 is an example of another general object, this
time the statue of Venus. Note again that the over-
layed edges of the warped image are closely aligned
with the second view.

Taken together, the Q-warping algorithm generates
a parametric 
ow �eld that performs well on general
objects as well as on quadric surfaces (in the latter
case the 
ow �eld is exact).

6 Summary
We have extended the parametric 
ow hierarchy to

include 
ows induced by a virtual quadric. We have
shown that the extension can be made feasible in the
sense that the warping function is unique and includes
planar warping as a particular case, when the family
of quadrics contain the center of projection of the �rst
camera. We have shown that containing the origin
does not limit the generality of the quadric �tting and
have proven that the planar case is included within the
model. Experiments on real images of general objects
illustrate the applicability of our method. Q-warping
provides more 
exibility in �tting 
ow �elds to the
scene than existing planar models, yet reduces to pla-
nar warping when the scene requires so.
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(a) First view (b) Second view (c) Edge overlay for Com-
parison.

(d) Optical 
ow induced
by the Quadric surface.

(e) The Q-warped image (f) Edges of warped im-
age overlayed on top of the
second view.

(g) Enlarged section of (f)

(h) Optical 
ow induced
by the planar surface.
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age overlayed on top of the
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Figure 3: Application of Q-warping on general objects. Row 1 displays the original two views and the edge overlay in
order to appreciate the distance between matching features. Row 2 displays the Q-warping results. Note that the features
are aligned up-to a few pixels. The alignment is not expected to be accurate because the object is not a quadric, but the
small residual 
ow suggests that the �tted quadric was wrapped closely around the object. Row 3 compares the results
with a direct estimation planar 
ow (eqn. 4). Bottom Row compares the results with a planar 
ow recovered from discrete
4 point matches from the center of the face.



(a) First view (b) Edges of the �rst view
overlayed on the second
view.

(c) The Q-warped image. (d) Edges of warped im-
age overlayed on top of the
second view.

Figure 4: Another face example. Note that the warped image is in most regions closely aligned with the second view.

(a) First view (b) Second image (c) Edges of the
�rst view overlayed
on the second view.

(d) Optical 
ow
induced by the
quadric.

(e) Edges of warped
image overlayed on
top of the second
view.

Figure 5: Another example on a general object. Note that the warped image is in most regions closely aligned with the
second view.

(a) The �rst image in the
sequence

(b) The average of (a) and
the last image in the se-
quence

(c) The average of (a) and
the stabilized last image
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(d) Detected motion for
the �rst frame

Figure 6: The Chopper sequence.
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