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AbstractÐThe paper addresses the problem of ªclass-basedº image-based recognition and rendering with varying illumination. The

rendering problem is defined as follows: Given a single input image of an object and a sample of images with varying illumination

conditions of other objects of the same general class, re-render the input image to simulate new illumination conditions. The

class-based recognition problem is similarly defined: Given a single image of an object in a database of images of other objects, some

of them are multiply sampled under varying illumination, identify (match) any novel image of that object under varying illumination with

the single image of that object in the database. We focus on Lambertian surface classes and, in particular, the class of human faces.

The key result in our approach is based on a definition of an illumination invariant signature image which enables an analytic

generation of the image space with varying illumination. We show that a small database of objectsÐin our experiments as few as two

objectsÐis sufficient for generating the image space with varying illumination of any new object of the class from a single input image

of that object. In many cases, the recognition results outperform by far conventional methods and the re-rendering is of remarkable

quality considering the size of the database of example images and the mild preprocess required for making the algorithm work.

Index TermsÐVisual recognition, image-based rendering, photometric alignment.

æ

1 INTRODUCTION

CONSIDER the image space generated by applying a
source of variability, say changing illumination or

changing viewing positions, on a 3D object or scene. Under
certain circumstances the images generated by varying the
parameters of the source can be represented as a function of
a small number of sample images from the image space. For
example, the image space of a 3D Lambertian surface
is determined by a basis of three images, ignoring
cast-shadows [18], [19], [9], [4], [12], [17]. In this case, the
low-dimensionality of the image space under lighting
variations is useful for synthesizing novel images given a
small number of model images or, in other words, provides
the means for an ªimage-based renderingº process in which
sampled images replace geometric entities formed by
textured micropolygons for rendering new images.

Visual recognition and image re-rendering (synthesis)
are intimately related. Recognizing a familiar object from a
single picture under some source of variation requires a
handle on how to capture the image space created by that
source of variation. In other words, the process of visual
recognition entails an ability to capture an equivalence class
relationship that is either ªgenerative,º i.e., create a new
image from a number of example images of an object, or
ªinvariant,º i.e., create a ªsignatureº of the object that
remains invariant under the source of variation under
consideration. For example, in a generative process a set of

basis images may form a compact representation of the
image space. A novel input image is then considered part of
the image space if it can be synthesized from the set of basis
images. In a process based on invariance, on the other hand,
the signature may be a ªneutralº image, say the object
under a canonical lighting condition or viewing position. A
novel image is first transformed into its neutral form and
then matched against the database of (neutral) images.

In this paper, we focus on recognition and image re-
rendering under lighting condition variability of a class of
objects, i.e., objects that belong to a general class, such as the
class of faces. In other words, for the re-rendering task,
given sample images of members of a class of objects and a
single image of a new object of the class, we wish to render
new images of the new object that simulate changing
lighting conditions.

Our approach is based on a new result showing that the
set of all images generated by varying lighting conditions
on a collection of Lambertian objects all having the same
shape but differing in their surface texture (albedo) can be
characterized analytically using images of a prototype
object and a (illumination invariant) ªsignatureº image
per object of the class. The Cartesian product between the
signature image of an object y and the linear subspace
determined by the images of the prototype object generates
the image space of y (Proposition 1). The second result is on
how to obtain the signature image from a data base of
example images of several objects while proving that the
signature image obtained is invariant to illumination
conditions (Theorems 1 and 2).

Our method has two advantages: First and foremost, the
method works remarkably well on real images (of faces)
using a very small set of example objectsÐas few as two
example objects (see Fig. 7). The re-rendering results are, in

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 23, NO. 2, FEBRUARY 2001 129

. The authors are with the Institute of Computer Science, The Hebrew
University, Jerusalem 91904, Israel.
E-mail: shashua@cs.huji.ac.il, tammyr@tiogatech.com.

Manuscript received 15 July 1999; revised 1 Aug. 2000; accepted 2 Aug. 2000.
Recommended for acceptance by D.J. Kriegman.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number 110241.

0162-8828/01/$10.00 ß 2001 IEEE



many cases, indistinguishable from the ªrealº thing and
the recognition results outperform by far conventional
methods. Second, since our approach is based on a simple
and clean theoretical foundation, the limitations and break-
ing points can be clearly distinguished thus further
increasing this algorithm's practical use.

1.1 Related Work

The basic result about the low-dimensionality of the image
space under varying lighting conditions was originally
reported in [18], [19] in the case of Lambertian objects.
Applications and related systems were reported in [9], [4], [8].
Re-rendering under more general assumptions, yet exploit-
ing linearity of light transport, was reported in [12], [17].

Work on ªclass-basedº synthesis and recognition of
images (mostly with varying viewing positions) was
reported in [5], [3], [7], [27], [26], [24], [25], [6], [2], [15].
These methods adopt a ªreconstructionistº approach (also
see Section 3) in which a necessary condition for the process
of synthesis is that the original novel image be generated,
reconstructed, from the database of examples. For example,
the ªlinear classº of [27], [13] works under the assumption
that 3D shapes of objects in a class are closed under linear
combinations (in 3D). Recently, Sali and Ullman [16] have
proposed to carry an additive error term, the difference
between the novel image and the reconstructed image from
the example database. During the synthesis process, the
error term is modified as well, thus compensating for the
difference between the image space that can be generated
from the database of examples and the desired images.
Their error term is somewhat analogous to our signature
image. However, instead of an error term, we look for an
illumination invariant term (signature image) that makes
for the difference (in a multiplicative sense) between the
image space spanned by a single prototype (or reference)
object and the novel image. The database of examples is
used for recovering a number of parameters required for
generating the signature image.

2 BACKGROUND AND DEFINITIONS

We will restrict our consideration to objects with a
Lambertian reflectance function, i.e., the image can be
described by the product of the albedo (texture) and the
cosine angle between a point light source and the surface
normal: ��x; y�n�x; y�>s, where 0 � ��x; y� � 1 is the surface
reflectance (gray-level) associated with point x; y in the
image, n�x; y� is the surface normal direction associated
with point x; y in the image, and s is the (white) light source
direction (point light source) and whose magnitude is the
light source intensity.

The basic result we will use in this paper is that the
image space generated by varying the light source vector s
lives in a three-dimensional linear subspace [18], [19]. To
see why this is so consider three images I1; I2; I3 of the same
object (�; n are fixed) taken under linearly independent light
source vectors s1; s2; s3, respectively. The linear combinationP

j �jIj is an image I � �n>s, where s �Pj �jsj. Thus,
ignoring shadows, three images are sufficient for generating
the image space of the object. The basic principle can be
extended to deal with shadows, color images, nonwhite
light sources, and non-Lambertian surfaces [19], [12], [8],

but will not be considered here as our approach can be
likewise extended. This principle has been proven robust
and successfully integrated in recognition schemes [19], [8],
[4]. See Fig. 7 for an example of using this principle for
image synthesis.

Next, we define what is meant by a ªclassº of objects. In
order to get a precise definition with which we can base
analytic methods on, we define what we call an ªidealº
class as follows:

Definition 1 (Ideal Class of Objects). An ideal class is a
collection of 3D objects that have the same shape but differ in
the surface albedo function. The image space of such a class is
represented by:

�i�x; y�n�x; y�T sj;
where �i�x; y� is the albedo (surface texture) of object i of the
class, n�x; y� is the surface normal (shape) of the object (the
same for all objects of the class), and sj is the point light source
direction, which can vary arbitrarily.

In practice, objects of a class do have shape variations,
although to some coarse level the shape is similar;
otherwise, we would not refer to them as a ªclass.º The
ideal class could be satisfied if we perform pixel-wise dense
correspondence between images (say frontal images) of the
class. The dense correspondence compensates for the shape
variation and leaves only the texture variation. For example,
Vetter et al. [25] have adopted such an approach in which
the flow field and the texture variation were estimated
simultaneously during the process of synthesizing novel
views from a single image and a (pixel-wise prealigned)
database. The question we will address during the experi-
mental section is what is the degree of sensitivity of our
approach to deviations from the ideal class assumption.
Results demonstrate that one can tolerate significant shape
changes without noticeable degradation in performance or,
in other words, there is no need to establish any dense
alignment among the images beyond the alignment of the
center of mass and scale.

From now on when we refer to a class of objects, we
mean an ªidealº class of objects as defined above. We will
develop our algorithms and correctness proofs under the
ideal class assumption. Next, we define the ªrecognitionº
and ªsynthesisº (re-rendering) problems.

Definition 2 (Recognition Problem). Given N � 3 images of

N objects under three lighting conditions and M � N other

objects of the same class illuminated under some arbitrary light

conditions (each), identify the M �N objects from a single

image illuminated by some novel lighting conditions.

Note that we require a small number N of objects, three

images per object, in order to ªbootstrapº the process. We

will refer to the 3N images as the ªbootstrap set.º The

synthesis problem is defined similarly.

Definition 3 (Synthesis (Re-Rendering) Problem). Given

N � 3 images of N objects of the same class, illuminated under

three distinct lighting conditions and a single image of a novel

object of the class illuminated by some arbitrary lighting

condition, synthesize new images of the object under new

lighting conditions.
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To summarize up to this point, given the ideal class and
the synthesis/recognition problem definitions above, our
goal is: to extend the linear subspace result of [19] that deals with
spanning the image space �n>s, where only s varies, to the case
where both � and s vary. We will do so by showing that it is
possible to map the image space of one object of the class
onto any other object, via the use of an illumination
invariant signature image. The recovery of the signature
image requires a bootstrap set of example images, albeit a
relatively small one (as small as images generated from two
objects in our experiments). The remainder of the paper
deals with exactly this problem. We first describe a
ªbrute-forceº approach for addressing the inherent bili-
nearity of the problem, detailed next, and then proceed to
the main body of this paper.

3 A RECONSTRUCTIONIST APPROACH AND ITS

SHORTCOMINGS

We would like to span the image space �n>s, where both �
and s vary. Let s1; s2; s3 be a basis of three linearly
independent vectors, thus s �Pj xjsj for some coefficients
x � �x1; x2; x3�. Let �1; . . . ; �N be a basis for spanning all
possible albedo functions of the class of objects, thus � �P

i �i�i for some coefficients �1; . . . ; �N . Let ys be the image
of some new object y of the class with albedo �y and
illuminated by illumination s, i.e.,

ys � �yn>s �
XN
i�1

�i�i

 !
n>

X3

j�1

xjsj

 !
:

Let A1; . . . ; AN be m� 3 matrices whose columns are the
images of object i, i.e., the columns of Ai are the images
�in
>s1; �in

>s2; �in
>s3. We assume that all images are of the

same size and contain m pixels. Therefore, we have

min
x;�i
j ys ÿ

XN
i�1

�iAix j2; �1�

which is a bilinear problem in the N � 3 unknowns x; �i
(which can be determined up to a uniform scale). Clearly, if
we solve for these unknowns, we can then generate the
image space of object y from any desired illumination
condition simply by keeping �i fixed and varying x.

One way to solve for the unknowns is first to solve for
the pairwise product of x and �i, i.e., a set of 3N variables
z � ��1x; . . . ; �Nx�. Let A � �A1; . . . ; AN � be the m� 3N
matrix (we assume m >> 3N) obtained by stacking the

matrices Ai column-wise. Thus, the vector z can be obtained
by the pseudoinverse A# � �A>A�ÿ1A> as the least-squares
solution z � A#ys. From z, we can decouple x and �i as
follows: Since the system is determined up to scale, letP

i �i � 1. Then, group the entries of z into z � �z1; . . . ; zN�,
where zi is a vector of size 3. We have,

x �
XN
i�1

zi

and

�i � 1

3

X3

j�1

zij
xj
:

There are a number of observations that are worth

making. First, this approach is a ªreconstructionistº one in

the sense that one is attempting to reconstruct the image ys
from the dataset of example images, the bootstrap set (for

example, [25], [24], [7]). In practice, especially when the size

of the bootstrap set is relatively small, Az 6� ys. Moreover,

for the same reasons, the decoupling of the variables xj and

�i from the vector z adds another source of error. Therefore,

before we begin creating synthetic images (by varying xj),

we are faced with the problem of having only some

approximate rendering of the original image ys. This

problem is acute for small bootstrap sets and, therefore,

this approach makes practical sense only for large example

sets. The second point to note is that there is some lack of

ªeleganceº (which inevitably contributes to lack of numer-

ical stability and statistical bias due to overfitting1) in

blowing up the parameter space from N � 3 to 3N in order

to obtain a linear least-squares solution.
We illustrate the reconstructionist approach in practice in

Fig. 1. We use a bootstrap set of 10 objects (30 images)

displayed in Fig. 2, and a bootstrap set of 20 objects (not

displayed here). The results of reconstruction are poor for

both sets, although one notices some improvement with the

larger set of 20 objects. The poor reconstruction is attributed

to two main sources. First, is the size of the database. A

database of 10 (or 20) objects is apparently not sufficient for

capturing the variation among objects in the class. Second,

and probably a more dominant source, is the lack of dense

pixel-wise alignment among the database and the novel

image. Previous work by [26], [24], [25] demonstrate very

good results with large databases (around 100 objects)

under pixel-wise alignment. The bilinear model proposed

by [7] does have implicitly N � 3 parameters for represent-

ing the novel image but requires more parameters for fitting

the database images to the model. Hence, the performance

of the Freeman and Tenenbaum's bilinear model should be

stronger than the simplistic reconstructionist approach

demonstrated above, but weaker than the performance of

the Qimage approach described in the sequel.
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1. Numerical problems due to ªblowingº up parameter space for
purpose of linearization can be reduced by solving a heteroscedastic
optimization problem [10], which could be quite unwieldy for large
systems.

Fig. 1. Illustration of the ªreconstructionistº approach. (a) Original image,
(b) image reconstructed from the the bootstrap set of Fig. 2, and
(c) image reconstructed from a larger bootstrap set of 20 objects
(60 images). The reconstruction is poor in both cases. See text for
further details.



In our approach, detailed below, we achieve two major

goals: First, we do not make a reconstructionist assumption

and thereby tolerate small databases without pixel-wise

alignment. Second, we solve (linearly) for a system of

N � 3 parameters (instead of 3N). As a byproduct of the

method of optimization, we obtain an intermediate image,

an illumination invariant signature image which can also be

used for purposes of visual recognition.

4 THE QUOTIENT IMAGE METHOD

Given two objects a;b, we define the quotient image Q by

the ratio of their albedo functions �a=�b. Clearly, Q is

illumination invariant. In the absence of any direct access to

the albedo functions, we show that Q can nevertheless be

recovered, analytically, given a bootstrap set of images.

Once Q is recovered, the entire image space (under varying

lighting conditions) of object a can be generated by Q and

three images of object b. The details are below.
We will start with the case N � 1, i.e., there is a single

object (three images) in the bootstrap set. Let the albedo

function of that object a be denoted by �a and let the three

images be denoted by a1; a2; a3, therefore, aj � �an>sj,
j � 1; 2; 3. Let y be another object of the class with albedo

�y and let ys be an image of y illuminated by some lighting

condition s, i.e., ys � �yn>s. We define below an illumina-

tion invariant signature image Qy of y against the bootstrap

set (in this case, against a).

Definition 4 (Quotient Image). The quotient image Qy of

object y against object a is defined by

Qy�u; v� � �y�u; v�
�a�u; v� ;

where u; v range over the image.

Thus, the image Qy depends only on the relative surface
texture information and, thus, is independent of illumina-
tion. The reason we represent the relative change between
objects by the ratio of surface albedos becomes clear from
the proposition below:

Proposition 1. Given three images a1; a2; a3 of object a

illuminated by any three linearly independent lighting

conditions and an image ys of object y illuminated by some

light source s, then there exists coefficients x1; x2; x3 that

satisfy

ys �
X
j

xjaj

 !

Qy;

where 
 denotes the Cartesian product (pixel by pixel

multiplication). Moreover, the image space of object y is

spanned by varying the coefficients.

Proof. Let xj be the coefficients that satisfy s �Pj xjsj. The

claim ys � �
P

j xjaj� 
Qy follows by substitution. Since s

is arbitrary, the image space of object y under changing

illumination conditions is generated by varying the

coefficients xj. tu

We see that onceQy is given, we can generate ys (the novel

image) and all other images of the image space of y. The key

is obtaining the quotient image Qy. Given ys, if somehow we

were also given the coefficients xj that satisfy s �Pj xjsj,

then Qy readily follows: Qy � ys=�
P

j xjaj�, thus the key is to

obtain the correct coefficients xj. For that reason, and that

reason only, we need the bootstrap setÐotherwise, a single object

a would suffice (as we see above).
Let the bootstrap set of 3N pictures be taken from three

fixed (linearly independent) light sources s1; s2; s3 (the light

sources are not known). Let Ai, i � 1; . . . ; N , be a matrix

whose columns are the three pictures of object ai with

albedo function �i. Thus, A1; . . . ; AN represent the bootstrap

set of N matrices, each is a m� 3 matrix, where m is the

number of pixels of the image (assuming that all images are

of the same size). Let ys be an image of some novel object y

(not part of the bootstrap set) illuminated by some light

source s �Pj xjsj. We wish to recover x � �x1; x2; x3� given

the N matrices A1; . . . ; AN and the vector ys.
We define the normalized albedo function � of the

bootstrap set as:

��u; v� �
XN
i�1

�2
i �u; v�

which is the sum of squares of the albedos of the bootstrap

set. In cases where there exist coefficients �1; . . . ; �N such

that
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��u; v�
�y�u; v� � �1�1�u; v� � . . .� �N�N�u; v�;

where �y is the albedo of the novel object y, we say that �y is

in the rational span of the bootstrap set of albedos. With

these definitions, we show the major result of this paper: If

the albedo of the novel object is in the rational span of the

bootstrap set, we describe an energy function f�x̂� whose

global minimum is at x, i.e., x � argmin f�x̂�.
Theorem 1. The energy function

f�x̂� � 1

2

XN
i�1

j Aix̂ÿ �iys j2 �2�

has a (global) minimum x̂ � x, if the albedo �y of object y is

rationally spanned by the bootstrap set, i.e., if there exist

�1; . . . ; �N such that

�

�y
� �1�1 � . . .� �N�N:

Proof. Let ŝ �Pj x̂jsj, thus, Aix̂ � �in>ŝ. In vectorized

form:

Aix̂ �

�i1n
>
1

�i2n
>
2

:
:
:

�imn
>
m

26666664

37777775ŝ �Wiŝ;

where �i1; . . . ; �im are the entries of �i in vector format.

The optimization function f�x̂� can be rewritten as a

function g�ŝ� of ŝ:

g�ŝ� � 1

2

XN
i�1

j Wiŝÿ �iWysj2

�
X
i

1

2
ŝ>W>

i Wiŝ�
X
i

�iŝ
>W>

i Wys

�
X
i

1

2
�2
i s
>W>

y Wys;

where Wy is defined similarly to Wi by replacing the

albedo �i by �y. Because the variables of optimization x̂; ŝ

in f�x̂� and in g�ŝ� are linearly related, it is sufficient to

show that the global minimum of g�ŝ� is achieved when

ŝ � s. We have,

0 � @g
@ŝ
�

X
i

W>
i Wi

 !
ŝÿ

X
i

�iW
>
i

 !
Wys:

Hence, we need to show that

X
i

W>
i Wi �

X
i

�iW
>
i

 !
Wy:

We note that,

W>
i Wi � �2

i1n1n
>
1 � . . .� �2

imnmn
>
m:

Thus, we need to show

X
i

�2
i1

 !
n1n

>
1 � . . .�

X
i

�2
im

 !
nmn

>
m

�
X
i

�i�i1

 !
�y1n1n

>
1 � . . .�

X
i

�i�im

 !
�ymnmn

>
m:

Note that the coefficients of the left-hand side are the
entries of the normalized albedo �. Thus, we need to
show that

XN
i�1

�2
ik �

XN
i�1

�i�ik

 !
�yk

for all k � 1; . . . ;m. But this holds, by definition, because
�y is rationally spanned by �1; . . . ; �N . tu
The proof above was not constructive, it only provided

the existence of the solution as the global minimum of the

energy function f�x̂�. Finding min f�x̂� is a simple techni-

cality (a linear least-squares problem), but note that the

system of equations is simplified due to substitution while

decoupling the role of x̂ and the coefficients �i. This is

shown below.

Theorem 2. The global minima xo of the energy function f�x̂� is

xo �
XN
i�1

�ivi;

where

vi �
XN
r�1

A>r Ar

 !ÿ1

A>i ys

and the coefficients �i are determined up to a uniform scale as
the solution of the symmetric homogeneous linear system of

equations

�iy
>
s ys ÿ

XN
r�1

�rvr

 !>
A>i ys � 0

for i � 1; . . . ; N .

Proof.

0 � @f
@x̂
�

X
i

A>i Ai

 !
x̂ÿ

X
i

�iA
>
i

 !
ys

from which it follows that:

x̂ �
X
i

A>i Ai

 !ÿ1 X
i

�iA
>
i

 !
ys �

X
i

�ivi:

We also have

0 � @f

@�i
� �iy>s ys ÿ x̂>A>i ys;

which following the substitution x̂ �Pi �ivi, we obtain a
homogeneous linear system for �1; . . . ; �N :

�iy
>
s ys ÿ �

X
r

�rvr�>A>i ys � 0
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for i � 1; . . . ; N . Written explicitly,

�1�v>1 A>1 ys ÿ y>s ys� � . . .� �Nv
>
NA

>
1 ys � 0

�1v
>
1 A
>
2 ys � . . .� �Nv

>
NA

>
2 ys � 0

: : : :
: : : :
: : : :
�1v

>
1 A
>
Nys � . . .� �N�v>NA>Nys ÿ y>s ys� � 0:

Let the estimation matrix (above) be denoted by F, we
show next that F is symmetric. The entries Fij, i 6� j,
have the form:

Fij � y>s Aj

X
r

A>r Ar

 !ÿT
A>i ys � y>s AjBA

>
i ys:

Note that B is a symmetric matrix (inverse of a sum of
symmetric matrices). Let Eij � AjBA

>
i , then it is easy to

notice that Eji � E>ij due to the symmetric property of B.
Thus, Fij � Fji because

Fij � y>s Eijys � �Eijys�>ys � y>s E>ijys � Fji:
tu

The energy function f�x̂� in (2) consists of a simultaneous
projection of ys onto the subspaces spanned by the columns
of A1, columns of A2, and so on. In addition, during the
simultaneous projection there is a choice of overall scale per
subspaceÐthese choices of scale, the �i, are directly related
to the scaling of the axes represented by �1; . . . ; �N such that
the albedos of the bootstrap set span (rationally) the albedo
of the novel object. When N � 1, the minimum of f�x̂�
coincides with x iff the albedo of the novel object is equal
(up to scale) to the albedo of bootstrap object. The more
objects in the bootstrap set, the more freedom we have in
representing novel objects. If the albedos of the class of
objects are random signals, then at the limit a bootstrap set
of m objects (3m images) would be required to represent all
novel objects of the class. In practice, the difference in the
albedo functions do not cover a large spectrum and instead
occupy a relatively small subspace of m, therefore, a
relatively small size N << m is required and that is tested
empirically in Section 6.

Once the coefficients x have been recovered, the quotient
image Qy can be defined against the average object: Let A be
a m� 3 matrix defined by the average of the bootstrap set,

A � 1

N

XN
i�1

Ai;

and then the quotient image Qy is defined by:

Qy � ys
Ax :

To summarize, we describe below the algorithm for
synthesizing the image space of a novel object y, given the
bootstrap set and a single image ys of y.

1. We are given N matrices, A1; . . . ; AN , where each
matrix contains three images (as its columns). This is
the bootstrap set. We are also given a novel image ys

(represented as a vector of size m, where m is the
number of pixels in the image). For good results,
make sure that the objects in the images are roughly
aligned (position of center of mass and geometric
scale).

2. Compute N vectors (of size 3) using the equation:

vi �
XN
r�1

A>r Ar

 !ÿ1

A>i ys;

where i � 1; . . . ; N .
3. Solve the homogeneous system of linear equations in

�1; . . . ; �N described in (3). Scale the solution such
that

P
i �i � N .

4. Compute x �Pi �ivi.
5. Compute the quotient image Qy � ys=Ax, where A is

the average of A1; . . . ; AN . See [14] for more details
on noise-handling, such as when there is a division
by zero.

6. The image space created by the novel object, under
varying illumination, is spanned by the product of
images Qy and Az for all choices of z.

5 A NOTE ABOUT COLOR

The process described so far holds for black-and-white

images, not color images. We describe a simple approach to

handle color images, while still maintaining a gray-value

bootstrap set. In other words, given a bootstrap set of

gray-value images and a color image (represented by

RGB channels) ys of a novel object, we wish to create the

color image space of that object under varying illumination.

To that end, we will make the assumption that varying

illumination does not affect the saturation and hue

composition of the image, only the gray-value distribution

(shades of color) of the image.
Given this assumption, we first must decouple the hue,

saturation, and gray-value (lightness) components of the

image ys from its RGB representation. This is achieved by

adopting the Hue Saturation Value (HSV) color space [21]

often used for splitting color into meaningful conceptual

categories. The transformation (nonlinear) from RGB to

HSV and vice versa can be found, for example, in MATLAB.

The HSV representation decouples the color information

into three channels (images): Hue (tint or color bias),

Saturation (amount of hue presentÐdecreasing saturation

corresponds to adding white pigment to a color), and Value

(the luminance, or black-and-white information; the diag-

onal from �1; 1; 1� to �0; 0; 0� of the RGB cube). Saturation

can vary from a maximum corresponding to vivid color, to

a minimum, which is equivalent to a black-and-white

image. Once the H, S, and V images are created (from the

R, G, B images), the novel image we work with is simply V .

The algorithm above is applied and a synthetic image V 0 is

created (a new image of the object under some novel

illumination condition). The corresponding color image is

the original H, S, and the new V0. Similar approaches for

augmenting black-and-white images using a color proto-

type image can be found in [15].
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This approach allows using only gray-level images in the
bootstrap set, yet accommodates the synthesis of color
images from a novel color input image. Fig. 8 display
examples on synthesizing color images from a gray-value
bootstrap set.

6 EXPERIMENTS

We have conducted a wide range of experimentation on the
algorithm presented above. We first used a high quality
database prepared by Vetter et al. [25] and Vetter and
Poggio [24]. We have chosen a bootstrap collection of
10 objects shown in Fig. 2. The images of the bootstrap set
and the novel images to be tested are ªroughlyº aligned,
which means that the center of mass was aligned and scale
was corrected (manually).

Our first test, shown in Fig. 3, was to empirically verify
that the quotient image is indeed invariant to illumination
changes. The Q-images where thresholded (above one
standard deviation) for display purposes. One can see that
with a bootstrap set of 10 objects one obtains a fairly
invariant quotient image in spite of the large variation in the
illumination of the novel images tested. The Q-images
should also be invariant to the choice of the light sources
s1; s2; s3 used in the bootstrap set. This is demonstrated in
Fig. 5 where the quotient image was generated against
different choices of s1; s2; s3 for the bootstrap object set
(Vetter's database includes nine images per object thus
enabling us to experiment with various bootstrap sets of the

same 10 objects). Note that the novel image that was tested

was not part of Vetter's database but an image of one of our

lab members.
The next experiment was designed to test the role of the

size of the bootstrap set on the accurate determination of the

coefficients x � �x1; x2; x3�. The accuracy of the coefficient

vector x is measured by the invariance of the quotient

image against varying illumination, hence Fig. 4 displays

Q-images generated by various bootstrap sets, as follows:

We have tested the case N � 1, i.e., bootstrap set of a single

object (row b), compared to a bootstrap set of N � 10 but

where the reference object is the same object used in case

N � 1 (instead of the average object), shown in row f.
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Fig. 3. Testing the invariance of the quotient image to varying
illumination. (a) Original images of a novel face taken under five
different illuminations. (b) The Q-images corresponding to the novel
images above computed with respect to the bootstrap set of Fig. 2.

Fig. 4. Testing accuracy of Theorem 1 against the size of the bootstrap set. (a) Original images taken under four distinct light conditions. (b) Bootstrap
set of N � 1 objects used for generating the Q-images of (a) displayed in row (c). Note that the quotient images are not strictly invariant as they
change with the illumination. (d) Q-images of the bootstrap set (N � 1) displayed in (e). Note that the bootstrap set is blurred in order to test whether
using the ªaverageº object when N > 1 makes a difference compared to the machinery described in Theorem 1. We see that blurred images do not
improve the invariance of the Q-images. (f) Q-images of (a) against the object (b) but where the coefficient vector x was recovered using the N � 10
bootstrap set of Fig. 2. The comparison should be made between rows (c) and (f). Note that in (f), the images are invariant to changing illumination
more so than in (c).



Therefore, the difference between rows c and f is solely due
to the effect of Theorem 1 on computing the coefficient
vector x. The result supports the claim of Theorem 1 in the
sense that the larger the bootstrap set, the more accurate is
the recovery of x. In order to rule out any special influence
the average object has on the process (recall that once x has
been recovered it was suggested to use the average object  
as the reference object for the quotient image), we have also
tested the case N � 1, where the images were deliberately
blurred (to simulate an average object), yet the Q-images
(row d) have not improved (compared to row c).

In Figs. 6 and 7, we demonstrate the results of image
synthesis from a single input image and the bootstrap set.
Note the quality and the comparison between results of

bootstrap size N � 10 and N � 2 (there are differences but

relatively small).
So far, we have experimented with objects and their

images from the same database of 200 objects. Even though
the input image is of an object outside the bootstrap set,
there is still an advantage by having all the images taken
with the same camera, same conditions, and same quality
level. Our next experiments were designed to test the
algorithm on source images taken from sporadic sources,
such as from magazines or from the Web. The bootstrap set
in all experiments is the one displayed in Fig. 2.

Fig. 8 shows four novel (color) images of celebrity people

(from magazines) and the result of the synthesis procedure.

These images are clearly outside the circle of images of the

original database of Vetter, for example, the images are not

cropped for hair adjustment and the facial details are

markedly different from those in the bootstrap set. Finally,

we have experimented with other bootstrap sets shown in

Fig. 9a. A bootstrap set of three objects varying in hair-style,

uncropped, and generally taken under much less attention

compared to the bootstrap set of Fig. 2 is sufficient,

nevertheless, to generate quite reasonable re-renderings,

as shown in Fig. 9d. The degradation is indeed graceful and

affects mainly the degree of illumination changes, not as
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Fig. 5. Q-images should be invariant to the three illumination conditions
of the database images, as long as they span a three-dimensional
subspace. The 3 Q-images were generated against different bootstrap
sets of the same 10 objects but of different triplets of light sources. Note
that the novel object is not part of the original database of 200 objects,
but of a member of our lab.

Fig. 6. Image Synthesis Example. (a) Original image and its quotient image (b) from the N � 10 bootstrap set. The quotient image is generated

relative to the average object of the bootstrap set shown in (c), (d) and (e). Images (f) through (k) are synthetic images created from (b), (c), (d), and

(e) using Proposition 1.

Fig. 7. Image synthesis examples. (a) Original images under three distinct lighting conditions and the synthesized images (b) using linear

combinations of those three images. The synthesized images using the original single image (c) and a N � 10 bootstrap set are shown in (d). Finally,

(e) is an N � 2 bootstrap set for generating the synthesized images (f) from the single original image (c).



much the quality of the resulting image (compared to the

source image).

6.1 When Does the Algorithm Fail?

An inherent assumption throughout the algorithm is that

for a given pixel �x; y�, n�x; y� is the same for all the

imagesÐthe bootstrap set as well as the test images. This

was referred to in the paper as the ideal class assumption. We

have seen that the performance for faces is fairly robust

despite the fact the ideal class assumption does not strictly

hold for roughly aligned images of faces. The performance

degrades when dominant features between the bootstrap

set and the test set are misaligned. This could arise in a

variety of situations such as: 1) the class is of nonsmooth

objects like objects with sharp corners (chairs, for instance),

2) objects are seen from varying viewing positions (see [22]

for handling such cases with the Qimage approach), and

3) the class of objects is smooth (like human faces) but gross

misalignment is caused by facial expressions, mustache,
eye-glasses, etc.

7 OTHER ROUTES FOR A SIGNATURE IMAGE?

The quotient image approach is based on the idea that an

illumination invariant image Q � �y=�a can be used to map

the image space of object a to the image space of object y

using a single image ys of y. The equation �Pj xjaj� 
Q
generates the image space of y (Proposition 1). There are

two points worth making.
First, Q is analogous to an ºerror correction term.º

However, it is important to distinguish between error
correction and an illumination invariant term. For exam-
ple, let ŷ be the reconstructed image of ys from the
bootstrap set (after solving for x; �i that minimize (1) in
the ªreconstructionistº approach), and let �Q be defined
such that ys � ŷ
 �Q. There is no reason to expect that �Q
would be illumination invariant. This is demonstrated in
Fig. 10b showing that the �Q images are not invariant to
changing illumination. In other words, one would not
obtain an admissible image space of y, or correct re-
rendering, if we simply correct for the reconstruction error
by a Cartesian product with �Q.

Second, notice that the optimization criteria described in
Theorem 1 involves a somewhat complex definition of what
constitutes a ªfamilyº of albedo functions (rational span).
This is unlike the more intuitive definition, that one would
typically adopt under such circumstances, that albedo
functions are closed under linear combinations (the definition
adopted in the optimization criteria behind (1) for the
ªreconstructionistº approach). However, the rational span
definition has an important role because through it we were
able to remove of the intrinsic bilinearity among the
illumination parameters x � �x1; x2; x3� and the albedo
parameters �1; . . . ; �N and obtain a linear system for
N � 3 variables (instead of 3N if the linear span definition
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Fig. 8. (a) Original images. (b) Q images and (c) through (g) Synthesized images. (Bill Clinton's image available at http://hopeusa.com/.clinton/
believe.html. Cameron Diaz's image available at http://beautiful-women.simplenet.com/cameron. Michael Jordan's image available at http://
web4.sportsline.com/u/jordan/. Monica Lewinsky's image available at http:// homepages.newnet.co.uk/epm/photos/html.)

Fig. 9. Image synthesis using other, lower quality, bootstrap sets (Yale
data sets). The bootstrap set (N � 3) is shown in (a). Note that the
objects vary considerably in appearance (hair style and facial hair) and
are thus less controlled as in Vetter's data set. The source image (b), its
quotient image (c), and synthesized images (d).



were to be adopted). The importance of all this depends on the

numerical behavior of the system. In principle, however, one

could solve for x from (1) and use it for obtaining the quotient

image as defined in Proposition 1. In other words, in the

algorithm described in the previous section, simply replace

Steps 2 through 4 with the procedure described in Section 3

for obtaining x. We expect a degradation in performance due

to numerical considerations (due to the enlargement of

parameter space). The results of doing so are illustrated in

Fig. 10c. The quotient images clearly show a dependence on

illumination change, indicating that the parameters x1; x2; x3

were not recovered well.
In summary, the combination of an illumination invar-

iant correction term (the quotient image) and a simple
optimization criteria (1)Ðwith the price of somewhat
complicating the definition of when albedos form a
ªfamilyºÐgives rise to both practical and a provenly
correct procedure for class-based re-rendering (under the

terms stated for ideal class definition and Lambertian
surfaces).

8 RECOGNITION

The Q-images are illumination invariant signatures of the
objects in the class. We can therefore make use of the
invariance property for purposes of recognition. Vetter's
database contains 200 faces each under nine lighting
conditions, making a total of 1,800 images. We used a
bootstrap set of 20 objects (60 images) and created the
Q-images of all the 200 objectsÐthese 200 images serve as
the database, we refer to as Q-database, for purposes of
recognition. Given any of the 1,800 source images, its
Q-image is created from the bootstrap set and matched (by
correlation) against the Q-database while searching for the
best match.

We made two tests (summarized in Fig. 11). In the first
test, the Q-database was generated from images under the
same illumination (we have nine images per object in
Vetter's database). The results of recognition was compared
to correlation where the database for correlation where
those images used for creating the Q-database. The match
against the Q-database was error free (0 percent). The match
against the original images, instead of the Q-images, had
142 mismatches (7.8 percent). In the second test, the images
used for creating the Q-database were drawn randomly
from the set of nine images (per object). The match against
the Q-database produced only six mismatches (.33 percent),
whereas the match against the original images produced
565 mismatches (31.39 percent). The sharp increase in the
rate of mismatches for the regular correlation approach is
due to the dominance of illumination effects on the overall
brightness distribution of the image (cf. [19], [1]).

We also made a comparison against the ªeigenfacesº
approach [20], [11] which involves representing the
database by its Principle Components (PCA). In the first
test, the PCA was applied to the bootstrap set (60 images)
and 180 additional images, one per object. In the first test,
the additional images were all under the same illumination
and, in the second test, they were drawn randomly from the
set of nine images per object. The recognition performance
depends on the number of principle components. With
30 principle components (out of 240), the first test had
25 mismatches (1.4 percent), and the second test 120 mis-
matches (6.6 percent). The performance peaks around
50 principle components in which case the first test was
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Fig. 10. Alternatives approaches for a quotient image. (a) Original
images under varying illumination. (b) Quotient images defined as a
multiplicative ºerrorº image, i.e., the ratio of the original image and the
least-squares reconstruced image from the bootstrap set. Note that the
resulting quotient images are not illumination invariant. (c) Quotient
images defined by Proposition 1 where x is the minima of (1) (instead of
(2)). Again, the images are not illumination invariant.

Fig. 11. Recognition results on Vetter's database of 1,800 face images. We compare the Q-image method with correlation and Eigenfaces. See text

for details.



error free (like in the Q-image method), and the second test
had 18 mismatches (1 percent).

To summarize, in all recognition tests, except one test of
equal performance with PCA, the Q-image outperforms
and, in some cases, in a significant manner, conventional
class-based approaches.

9 SUMMARY

We have presented a class-based, image-based, re-rendering
and recognition method. The key element of our approach
was to show that under fairly general circumstances it is
possible to extract from a small set of example images an
illumination invariant ªsignatureº image per novel object of
the class from a single input image alone. We have proven our
results (under the ºimaginaryº world of ideal class assump-
tion) and demonstrated the applicability of our algorithm on
the class of real pictures of human faces. In other words, we
have shown that in practice a remarkably small number of
sample images of human frontal faces (in some of our
experiments, images of two objects were sufficient for making
a database) can generate photo-realistic re-rendering of new
objects from single images.

The ideas presented in this paper can, without too much
difficulty, be turned onto a system for image compositing
and relighting of general faces, with very high quality of
performance. To that end, further implementation elements
may be required, such as using collections of bootstrap sets
(while choosing among them manually or automatically
using sparse optimization approaches like Support Vector
Machines [23]), and automatic or semiautomatic tools for
morphing the bootstrap set onto the novel image in order to
better compensate for changes of shape (such as [25]).
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