
pLSA for Sparse Arrays With Tsallis Pseudo-Additive Divergence: Noise
Robustness and Algorithm

Tamir Hazan Roee Hardoon Amnon Shashua
School of Computer Science and Engineering

Hebrew University of Jerusalem

Abstract

We introduce the Tsallis divergence error measure in the
context of pLSA matrix and tensor decompositions showing
much improved performance in the presence of noise. The
focus of our approach is on one hand to provide an opti-
mization framework which extends (in the sense of a one pa-
rameter family) the Maximum Likelihood framework and on
the other hand is theoretically guaranteed to provide robust-
ness under clutter, noise and outliers in the measurement
matrix under certain conditions. Specifically, the conditions
under which our approach excels is when the measurement
array (co-occurrences) is sparse — which happens in the
application domain of ”bag of visual words”.

1. Introduction

We introduce a robust version of pLSA which is the prob-
lem of factorizing a multi-way array (matrix or tensor) into
a linear combination of rank-1 factors subject to probability
(simplex) constraints. We are mostly interested in appli-
cations where the input array (representing co-occurrances
between features and images, or between words and doc-
uments) is sparse and in this context would like to obtain
decompositions into factors in a way which is insensitive
to additive noise, clutter and outliers. In the context of
feature/image or word/document associations noise takes
the form of clutter images (outside of the object classes
of interest) and irrelevant feature fragments. We also wish
to remain with the Maximum Likelihood (ML) framework
which the original pLSA provides. The line between ob-
taining more robust solutions than original pLSA while not
deviating much from ML solutions can be treaded carefully
by working with an extended divergence measure, known
as the Tsallis divergence [8], which is a one parameter ex-
tension of relative entropy. We will show that optimization
with Tsallis divergence can be done within an Expectation-
Maximization (EM) framework, thus generalizing the origi-
nal pLSA algorithm, and prove robustness claims applicable

to sparse input arrays.
Let X, Y be two observable random variables generating a
co-occurrence matrix Gij = P̂ (X = xi, Y = yj) and let
Z be a hidden variable inducing conditional independence
between X, Y , i.e., X⊥Y | Z. The standard pLSA [3] is
described as the maximum-likelihood factorization of the
co-occurrence matrix G into the product UΣV >:

min
Σ,U,V≥0

D(G || UΣV >) s.t. U>1 = V >1 = 1>Σ1 = 1,

(1)
where Σ is diagonal and D(p, q) =

∑
i pi log(pi/qi) is the

relative entropy measure (a.k.a KL-divergence). The sta-
tistical interpretation of the decomposition is based on the
mixture:

k∑
j=1

P (Z = zj)P (X | Z = zj)P (Y | Z = zj),

where P (Z = zj) form the diagonal of Σ, P (X | Z = zj)
are the column vectors of U , and P (Y | Z = zj) are the row
vectors of V >. Optimization under KL-div error guaran-
tees a maximum-likelihood (ML) estimation and can be ob-
tained via the celebrated Expectation-Maximization (EM)
algorithm [1].

The pLSA algorithm is closely related to non-negative
matrix and tensor factorizations but with two distinctions
(i) ML solution is sought after, and (ii) the decomposition
is governed by simplex constraints required for obtaining
probabilistically valid solutions. The use of pLSA in vi-
sual recognition has been gaining attention and in particu-
lar where visual analogue of the ”bag of words” represen-
tations of image features across multiple object classes is
used. In this context a factor corresponds to an object class
and the factorization of the data matrix, representing co-
occurrences of image features and images, decomposes a
collection of images over multiple object classes into sepa-
rate classes with their associated image features [5] — more
details on this process can be found in Section 4. The bag of
visual words application domain is promising but the level
of success relies on the scalability of the process and in turn
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in the performance in the presence of clutter, noise and out-
liers. The focus of this paper is to show how the pLSA
framework can be extended in order to handle noise in a
satisfactory manner in the domain of sparse co-occurrence
arrays (which is the domain of bag-of-visual-words).
We introduce a matrix/tensor pLSA algorithm governed by
the Tsallis one parameter divergence family Dq(x || y) =
(1−

∑
i xq

i y
1−q
i )/(1− q). A convenient property of Tsallis

divergence is that Dq→1(x||y)→ D(x||y), i.e., it is one pa-
rameter extension of the KL-div. Our contribution is two-
fold: we show that a factorization minimizing the Dq en-
ergy between a sparse measurement tensor and a low-rank
statistically admissible model is largely insensitive to mea-
surement outliers when q → 0. Our second contribution is
to derive an EM extension for Dq optimization thereby in-
troducing a simple locally-optimum iterative scheme using
auxiliary variables.

2. On Tsallis (Non-extensive) Divergence Mea-
sure

Tsallis entropy [7] defined below,

Sq(x) =
1−

∑
i xq

i

q − 1
(x ≥ 0,

n∑
i=1

xi = 1)

where q is a real parameter, is a generalization of the stan-
dard Boltzmann-Gibbs (and Shannon) entropy. In the limit
as q → 1, we have that xq−1

i = e(q−1) ln xi ≈ 1 + (q −
1) ln xi, hence S1 = −

∑
i xi lnxi, which is the normal

Shannon entropy.
Tsallis entropy can also be thought of a q-deformation of
Shannon’s entropy by noting that Sq(x) = −

∑
i xi lnq xi

where lnq(x) = (x1−q − 1)/(1− q) is the q-logarithm with
the property lnq(x)→ lnx when q → 1.
As for properties, Sq ≥ 0, for q > 0, and equals to zero
when all probabilities but one vanishes; like Shannon’s en-
tropy, Sq attains its maximum (for q > 0) for uniform dis-
tribution (xi = 1/n), thus becoming Sq = lnq.
Finally, Sq is not extensive in the sense that given two
independent random variables X⊥Y , i.e., P (X, Y ) =
P (X)P (Y ), then

Sq(X, Y ) = Sq(X) + Sq(B) + (1− q)Sq(X)Sq(Y ).

From this result it is evident that q is a measure of the depar-
ture from extensivity. Tsallis relative entropy [8] Dq(x || y)
can be described as a q-deformation of relative entropy
D(x || y):

Dq(x || y) = −
∑

i

xi lnq
yi

xi
=

∑
i xq

i y
1−q
i − 1

q − 1
(2)

Like the entropy function, Dq → D in the limit when q →
1. It can also be shown that Dq(x || y) ≥ 0, for q > 0, and

vanishes if and only if x = y. Further, for q > 0, Dq is
a convex function of x and of y. Like Tsallis entropy, Dq

satisfies the pseudo-additivity of the form:

Dq(X1, X2 || Y1, Y2) = Dq(X1 || Y1) + Dq(X1 || Y1)
+(q − 1)Dq(X1 || Y1)Dq(X1 || Y1)

where X1, X2 and Y1, Y2 are independent pairs. It is worth-
while noting that the non-extensive nature of Sq and the
pseudo-additivity of Dq is a hindrance to using Sq and Dq

for statistical inference because it does not allow one to take
advantage of the i.i.d. property of observations and thereby
one must work with the distribution over the entire training
set.

To make this point in some detail, the standard EM
algorithm over observations X , model parameters θ and
latent variables Z consists of iterating the two steps:

E-step: Q(θ, θ(t)) =
∑

Z P (Z | X, θ(t)) lnP (X, Z | θ)
M-step: θ(t+1) = argmaxθQ(θ, θ(t)).

If the observation sample X are i.i.d. the conditional expec-
tation can be simplified:

Q(θ, θ(t)) =

kX
j=1

mX
i=1

D(P (zi = j | xi, θ(t)) || P (xi, zi = j | θ))

where xi is the i’th observation and zi ∈ {1, ..., k} is the
value of the hidden variable of the i’th observation. The
M-step becomes a minimization over θ. The posteriors
w

(t)
ij = P (zi = j | xi, θ(t)) are updated using the Bayes

rule. The point about the non-extensive nature of Tsallis en-
tropy and divergence is that although it is completely valid
to replace ln with lnq in the E-step, that does not carry over
in the simplified i.i.d. version of the conditional expecta-
tion, i.e., one cannot replace the relative entropy D with Dq

in the simplified form (can be done only in the limit q → 1).
Therefore, the use of Tsallis entropy in statistical inference
has been limited to the update of the posteriors w

(t)
ij in De-

terministic Annealing EM where the Bayes update rule is
replaced with a MaxEnt principle [9] but where Tsallis en-
tropy is used instead of Shannon’s [6].

In the section below we will derive an EM version of
Dq minimization between a multi-way array (representing
an empirical distribution under i.i.d. data samples or co-
occurrence array) and a low-rank factorization model. We
will argue and prove that the optimization is robust under
sparse co-occurrence arrays subject to sparse random noise
(outliers) in the limit q → 0 — which makes it advanta-
geous for bag-of-words or visterm representations in com-
puter vision.



3. pLSA under Tsallis Divergence
For clarity of presentation we will present first the

derivations for matrix factorizations and later summarize
the main steps for higher-valence arrays. The pLSA prob-
lem written as an algebraic optimization takes the follow-
ing form: Given a d1 × d2 matrix G representing a co-
occurrence array (G ≥ 0, 1>G1 = 1) we wish to find
a low-rank model:

∑k
r=1 λrurv>r under the probabilistic

(simplex) constraints: (i) all parameters are non-negative,
and (ii) ‖λ‖1 = 1, and ‖ur‖1 = ‖vr‖1 = 1 for r = 1, ..., k.
The low-rank model is then found by minimizing the rel-
ative entropy which guarantees a maximum likelihood so-
lution. Instead of relative entropy we will employ Tsallis
relative entropy Dq:

min
λ,ur,vr≥0

Dq(G ||
kX

r=1

λrurv>r ) s.t. ‖λ‖1 = ‖ur‖1 = ‖vr‖1 = 1

(3)
where r = 1, ..., k and 0 < q < 1 is a fixed real parameter.

We show below that if G is sparse and subject to sparse
random additive noise, i.e., G + E for some perturbation
matrix E, then as q → 0 the influence of the perturbation E
diminishes, i.e., we obtain a robust estimation.

3.1. Performance Bounds in the Presence of Noise

We wish to investigate the sensitivity of Dq minimization
in the presence of additive noise as q → 0. The results
below show that if G is sparse and the perturbation matrix
E has its non-vanishing entry locations selected randomly,
then the closest admissible solution to G + E under Dq

is unique and consists of G itself in the limit when q →
0. Conversely, if G is not sparse then minimization of Dq

would lead to multiple global solutions and therefore is not
the right energy error (unless q → 1).

Let P define the set of admissible models (rank-k prob-
abilistic matrices):

P =

{
k∑

r=1

λrurvr :
λ, ur, vr ≥ 0
‖λ‖1 = ‖ur‖1 = ‖vr‖1 = 1

}

Let G ∈ P be an admissible model and let E ≥ 0 be a
perturbation matrix. Note that in case G is sparse, we are
still guaranteed that G + E ≥ 0. Let α = 1/(1 +

∑
ij Eij)

be a normalizing factor and we wish to find P ∈ P that
minimizes Dq(α(G + E) || P ).

Claim 1 Let P ∈ P , then in the limit q → 0 we have:

lim
q→0

Dq(α(G + E)||P ) = 1−
∑

i∈supp(G+E)

Pi,

where we define the support of a non-negative array x as

supp(x)
def
= {i : xi > 0}.

(a) (b) (c)
Figure 1. Illustration of Tsallis-divergence and relative-entropy
rank-k approximation with 60% random noise: (a) G + E, (b)
closest rank-k for Tsallis divergence with q = 0.05, (c) ML solu-
tion.

Proof: follows from the definition of Dq in eqn. 2.
The immediate implication is that if G + E is not sparse
then limq→0 Dq(α(G + E)||P ) = 0 for all P ∈ P . To get
a better glimpse into what really happens when G is sparse,
letHq denote the solution set for a fixed q > 0:

Hq = {P ∗ : P ∗ = argminP∈PDq(α(G + E)||P )}

and let H0 stand for Hq→0. We can state the following
corollary:

Corollary 1

lim
q→0

Dq(α(G + E)||P ) = 0

iff supp(P ) ⊆ supp(G + E) from which it follows that

H0 = {P ∈ P : supp(P ) ⊆ supp(G + E)}

We conclude that in general, even if G is sparse, the solution
space H0 is not unique. In fact any matrix whose support
is equal or contained in the support of G + E would in the
limit q → 0 generate vanishing error to α(G + E):

Corollary 2 ∀P ∈ P , if supp(P ) ⊆ supp(G + E), then
P ∈ H0.

We consider next the situation which guarantees for each
q thatHq to consist of a single member (G itself). LetHg ⊆
H0 be the subset containing all P ∈ P whose support is
contained in the support of G:

Hg = {P ∈ P : supp(P ) ⊆ supp(G)}.

Consider the subset H0 \ Hg which consists of matrices
P ∈ P whose support are contained in supp(G + E) but
not in the support of G. The following claim asserts that G
is the only member ofHq if the setH0 \ Hg is empty:

Claim 2 If E⊥G, i.e., the two matrices are disjoint in the
locations of vanishing entries, and if H0 \ Hg = ∅, then
∀P ∈ H0 we have

Dq (α(G + E)||G) < Dq (α(G + E)||P )

for all q > 0. In particular, in the limit q → 0, G becomes
the unique global minimizer: G = argminP∈PDq(α(G +
E) || P ).



(a) (b)

(c) (d)
Figure 2. Illustration of Tsallis-divergence and relative-entropy
rank-k approximation with 60% random noise where the data was
punctured randomly at 10% of its support: (a) G + E, (b) ML so-
lution, (c) closest rank-k for Tsallis divergence with q = 0.05, (d)
closest rank-k for Tsallis divergence with q = 0.1. We see how
too small q focus on too small support since the data squares are
punctured randomly

Proof: see Appendix.
The material ingredient in Claim 2 is the condition that
H0 \ Hg = ∅. This indirectly implies that E is ”random”
in the sense that ”active”, i.e., non-vanishing, entries are
randomly placed (their actual value is not important). The
requirement that E and G are disjoint, i.e., that the noise
affects only vanishing entries of the signal G, is important
only to make the proof easy but does not seem material in
actual experiments.
To conclude, for sparse co-occurrence input matrices with
”unstructured” additive noise the global minimizer, under
Dq error, reconstructs the original signal in the limit q → 0.

3.2. Iterative Algorithm with Auxiliary Variables

We derive an algorithm, along the lines of the EM ma-
chinery, for the optimization problem described in eqn. 3.
We denote the optimization function by L(θ) where θ stands
for the unknown parameters θ = {λ, ur, vr}, r = 1, ..., k.
We introduce auxiliary variables in the form of matrices
W 1, ...,W k of the same dimensions as G and define A�B
as a product array (A � B)i,j = Ai,jBi,j . The auxiliary
variables are probability vectors in the sense that W r ≥ 0
and

∑k
r=1 W r

i,j = 1 — we denote this by the shorthand
statement

∑
r W r = 1. Define an auxiliary optimization

problem:

min
W,λ,ur,vr≥0

Q(W, θ) s.t.

‖λ‖1 = ‖ur‖1 = ‖vr‖1 = 1,
∑

r

W r = 1 (4)

where

Q(W, θ)
def
=

k∑
r=1

Dq(W r �G || λrurv>r ).

The relationship between minimizing Q(W, θ) versus mini-
mizing our target criterion L(θ) is captured by the following
claims.

Claim 3 L(θ) ≤ Q(W, θ) for any choice of non-negative
W 1, ...,W k which satisfy

∑
m Wm = 1. In particular

L(θ) = Q(W, θ) − f(W, θ) for the non-negative function
f(W, θ)

Proof:

L(θ) = −
∑
i,j

Gi,j lnq

∑
m λmum,ivm,j

Gi,j

= −
∑
i,j

Gi,j lnq

∑
m

Wm
i,j

λmum,ivm,j

Wm
i,jGi,j

≤ −
∑
i,j

Gi,j

∑
m

Wm
i,j lnq

λmum,ivm,j

Gi.jWm
i,j

= Q(W, θ)

The last inequality is a direct result of the convexity of
lnq(x) derived by Jensen’s inequality: − lnq

∑
j pjxj ≤

−
∑

j pj lnq xj when p ≥ 0 and
∑

j pj = 1 implying we
can turn the log-over-sum into sum-over-log.

The strategy of EM is to minimize the upper-bound aux-
iliary function Q(W, θ) with the hope that if we descend on
the upper-bound function we will also descend on L(θ). To
see that this strategy really holds we show that the inequal-
ity above becomes an equality L(θ) = Q(W ∗, θ) for the
optimal W :

Claim 4 Let W ∗ = argminW Q(W, θ). Then

W ∗r
i,j =

λrur,ivr,j∑k
s=1 λsus,ivs,j

(5)

and L(θ) = Q(W ∗, θ).

Proof:

Q(W ∗, θ) =
∑
i,j

Gi,j

∑
m

W ∗m
i,j lnq

λjum,ivm,j

Gi.jW ∗m
i,j

=
∑
i,j

Gi,j

∑
m

W ∗m
i,j lnq

λjum,ivm,j

Gi,j
λmum,ivm,jP

r λrur,ivr,j

=
∑
i,j

Gi,j lnq

∑
r λrur,ivr,j

Gi,j
= L(θ)



(a) (b) (c)
Figure 3. Illustration of Tsallis-divergence and relative-entropy
rank-1 approximation: (a) original image, (b) closest rank-1 for
Tsallis divergence with q = 0.05, (c) ML solution.

It is worthwhile noting that W ∗ is defined by the Bayes rule,
i.e., the value of q does not enter into the formula for updat-
ing the auxiliary variables. Therefore, the auxiliary vari-
ables play the role of posteriors just as in the ML (q → 1)
scenario.
The point of convergence of an alternating scheme on the
unknowns W, θ of Q(W, θ) is shown below to be a station-
ary point of L(θ).

Claim 5 In an iterative update scheme, If θ(t) is a station-
ary point for Q(W (t), θ) then it is a stationary point of
L(θ).

Proof: Consider the function L(θ) = Q(W (t+1), θ) −
f(W (t+1), θ) while taking into account that
f(W (t+1), θ) attains its global minima at θ(t), there-
fore ∂

∂θf(W (t+1), θ(t)) = 0. To estimate θ(t) as a
stationary point of L(θ) we differentiate:

∂L

∂θ

(
θ(t)

)
=

∂

∂θ
Q(W (t+1), θ(t))− ∂

∂θ
f(W (t+1), θ(t))

and vanishing derivative of Q(W (t+1), θ) near θ(t) implies
a vanishing derivative of L(θ) near θ(t).

The alternating optimization over the parameters W, θ of
Q(W, θ) involve updating W via the Bayes rule (eqn. 5)
and θ via the partial derivatives of Q(W, θ) with respect to
the unknowns λ, ur and vr. The update of the parameters
θ benefit from the same feature contained in KL-div (the
case q → 1) whereby the non-negativity constraint comes
”for free”. This is rooted in the result that the minimizer of
minx Dq(b || x) under the simplex constraints x ≥ 0 and∑

i xi = 1 is x∗ = (1/
∑

i bi)b.
Taken together, the algorithm (we refer to as q-EM)

for updating the unknowns until convergence is described
below (we omit the derivations):

q-EM Algorithm:

1. Start with an initial guess for the parameters
λ(1), u(1)

r , v(1)
r

2. for t = 1, 2, ...

(a) W r(t+1)

ij ← λ(t)
r u

(t)
r,iv

(t)
r,jPk

s=1 λ
(t)
s u

(t)
s,iv

(t)
s,j

(b) λ
(t+1)
r ← 1

z
q

qP
i,j(W

r
i,j

(t+1)Gi,j)q(u
(t)
r,iv

(t)
r,j)

1−q

where z is a normalizing factor to make∑
i λ

(t+1)
i = 1.

(c) for r = 1, ..., k, set H = W r(t+1) �G/λ
(t+1)
r

i. u
(t+1)
r,i ← 1

z

q

√∑
j Hq

i,jv
(t)
r,j

1−q
(where z is a

normalizing factor).

ii. v
(t+1)
r,j ← 1

z

q

√∑
i Hq

i,ju
(t+1)
r,i

1−q
(where z

is a normalizing factor).

3.3. Tensor Factorization Update Formulas

The q-EM algorithm for multi-way arrays (tensors) pro-
ceeds as follows. The constrained optimization problem be-
comes:

min
λ,ur

i≥0
Dq(G ||

k∑
r=1

λr⊗i ur
i ) s.t. ‖λ‖1 = ‖ur

i ‖1 = 1 (6)

where G ∈ Rd1×...×dn is an n-way array indexed by
Gi1,...,in

where 1 ≤ ij ≤ dj and ⊗iur
i is a short-hand no-

tation for the outer-product ur
1 ⊗ · · · ⊗ ur

n. Hence, G is
described as a linear combination of k rank-1 tensors. The
update formulas of the q-EM algorithm become:

1. Start with an initial guess for the parameters
λ(1), ur

i
(1), r = 1, ..., k and i = 1, ..., n.

2. for t = 1, 2, ...

(a) W r
i1,...,in

(t+1) ← 1
z λ

(t)
r

∏n
j=1 ur

i,ij

(t) where z is

a normalization factor to
∑

r W r
i1,...,in

(t+1) = 1.

(b) λ
(t+1)
r ← 1

z
q

qP
(W r(t+1) �G)q

s(
Qn

j=1 ur
i,ij

(t))1−q

where z is a normalizing factor and the summa-
tion is over the indexes s = (i1, ..., in).

(c) for r = 1, ..., k, set H = W r(t+1) �G/λ
(t+1)
r

for j = 1, ..., n

ur,i ← 1
z

q

√∑
Hq

s (
∏n

j=1 ur
i,ij

)1−q where z

is a normalizing factor and the summation is
over the indexes s = (i1, ..., in).

4. Experiments
We will begin with a number of experiments whose pur-

pose is didactic in the sense of highlighting the advantages
of Dq versus ML optimization (q → 1). We will then move
our attention to a specific real world application using the
bag of visual words representation and compare the perfor-
mance of q-EM and EM.



Figure 4. For a real image experiment we constructed image-
fragment/images co-occurrences matrix consisting 3000 image-
fragments and 20 images from three image classes — faces, cars
and cows. Here we present image samples from the database.

To illustrate the theoretical results of Section 3.1, con-
sider a matrix with two uniform blocks (two White blocks
in Fig. 1a) with added sparse noise where the amount of
noise is significant and stands around 60% of the number of
entries. The closest rank-2 matrix under KL-div, illustrated
in Fig. 1c, fails to reconstruct the original signal (the two
blocks), whereas the Dq with q = 0.05 succeeds in recon-
structing the original signal (Fig. 1b).

Similar results are obtained when the signal (the two
blocks) is not uniform, i.e., each of the blocks is sparse as
well. Fig. 2 illustrates this experiment where it is shown
that when q is too small the solution focuses only partially
on the signal (Fig. 2c) but with a higher q the original signal
is largely recovered (Fig. 2d). This experiment also makes
the point that the value of q needs to be tuned to the par-
ticular characteristics of the signal. Therefore in practice
one needs to go through some trial-and-error until the right
value of q is found. Note that by setting q → 1 the system
falls back to the ML solution.

As a final didactic illustration, Fig. 3 shows the effect of
recovering the wrong number of factors. The signal consists
of two blocks (without noise) whereas the system is recov-
ering a rank-1 matrix. The ML solution takes the union of
the two blocks (Fig. 3c) whereas Dq recovers one of the
blocks.

Figure 5. An illustration of the 3000 × 20 co-occurrence matrix.
Two sub-matrices correspond to face-fragments/face-images and
cow-fragments/cow-images are more dense than the other parts of
the matrix. The cars fragments add sparse irrelevant cluttered data
to the occurrence matrix.

For real image experiments we constructed a co-
occurrence image-fragments/images matrix (in line with
the work of [2, 4, 5]) where the image fragments con-
sisted of a random selection of 3000 rectangular shaped re-
gions with varying size and aspect ratio from three object
classes: frontal faces, side-view cows and side-view cars
(see Fig. 4). An image-fragment is said to match an im-
age if the cross-correlation between the fragment and the
image at the prescribed location of where the fragment was
extracted is above threshold.

The co-occurrences were computed between each of the
image fragments and 20 images from only two of the ob-
ject classes: Faces and Cows. In other words, the co-
occurrence matrix consisted of a number of irrelevant frag-
ments (corresponding to spurious rows) which occasion-
ally have matches with Faces and Cows. Fig. 5 illustrates
the structure of the input matrix: rows correspond to frag-
ments and columns correspond to images of Faces and
Cows which together form a 3000 × 20 frequency of oc-
currence matrix G. Following factorization into a rank-2
model: λ1u1v>1 + λ2u2v>2 the vectors ui, vi should con-
tain information about object classes and relevance of im-
age fragments to the classes.

In particular, v1, v2 should contain the distribution of the
20 images to object classes. If all goes well one should ob-
serve a concentration of energy (high values) along the en-
tries associated with images of a single object class (Faces
or Cows). Fig. 6a shows v1, v2 as recovered by q-EM where
one can clearly see the sharp split between the two object
classes compared to EM reconstruction shown in Fig. 6b.



(a) (b)
Figure 6. The vectors v1 and v2 of the decomposition G ≈
λ1u1v>1 + λ2u2v>2 where G is the co-occurrence matrix between
fragments (rows) and images (columns). The values of v1 are
marked by ’+’ and those of v2 are marked by ’o’ in the display.
(a) Reconstruction under Dq with q = 0.1 showing a sharp split
between images of Faces and of Cows. (b) Reconstruction un-
der KL-div is much more sensitive to the clutter introduced by the
non-relevant Car fragments.

Figure 7. 20 additional random images of nature and urban scenes
were added, and we assembled a 3000×40 fragments/images ma-
trix by adding the 20 random images to the 3000 × 20 original
co-occurrence matrix.

This result illustrates the robustness of Dq optimization
compared to the sensitivity of the ML solution to the out-
liers introduced by the Car fragments.

We next added spurious images as additional 20 columns
to G creating an extended 3000 × 40 matrix G′. Those
images were taken from various Nature and Urban scenes
(see Fig. 7). The fragments have occasional hits with those
images thus creating an additional disruption to frequency
measurements of our original two classes of Faces and
Cows. The structure of G′ is illustrated in Fig. 8. Fig. 9
shows the recovered vectors v′1 and v′2 corresponding to
the distribution of the 40 images across two factors (ob-
ject classes). If all goes well we expect v′i = (vi, 0) where
the vanishing entries correspond to the additional 20 spuri-
ous images. One can see that the factors recovered by the
Dq optimization largely is invariant to the spurious images
(Fig. 9 top row) compared to the ML solution where v′i is
very different from vi as a result of the disruption intro-
duced by the spurious images.

Figure 8. An illustration of the 3000 × 40 co-occurrence ma-
trix. The 20 random matrices act as distractors and add 20 im-
age columns of random sparse noise into the original 3000 × 20
co-occerrence matrix.

Figure 9. Top row are the Dq factor overlap the small original
factors (marked with +) and large factors after adding noised rows
and columns (marked with o). Bottom row are the ML factors
overlap the small original factors (marked with +) and large factors
after adding noised rows and columns (marked with o).

Next we used the factors (recovered from G) for clas-
sification comparing the classification performance of q-
EM to EM. We followed the classification scheme of [5]
as follows. We used the 20 training images and recov-
ered from the 3000 × 20 fragment/image frequency array
G the leading two factors λjujv>j , j = 1, 2. The vec-
tors uj (representing the fragment axis) form the columns
of a matrix A and each test image forms a vector b where
b contains the fragment frequencies matched to the test
image. Solving minx≥0 D(b||Ax) subject to

∑
i xi = 1

provides a 2D weight vector associating the test image to
each of the object categories. Statistically b represents
P (fragment | test image), the matrix A constructed from
uj are the learned fragment distribution for the latent topics
P (fragment | topic = j) and xj are the posterior of the
topic given the test image P (zj | test image). The classi-



Figure 10. ROC curves of classification over 80 test images. The
success rate of q-EM is 98.75% vs 91.25% the success rate of EM.

fication decision is based on the object associated with the
recovered posteriors. Fig. 10 shows the ROC curve over 80
test images. One can clearly observe that the factors recov-
ered from Dq optimization with q = 0.1 provide a much
better classification performance of 98.75% compared to
91.25% from the factors recovered using ML.

5. Summary

We have introduced an extended pLSA algorithm called
q-EM based on optimization over Tsallis divergence Dq

providing a one-parameter extension of KL-div. We
have shown that application domains generating sparse co-
occurrence matrices, such as when constructing frequency
arrays matching features to images or words to documents,
there is a benefit to Dq for q → 0 in the sense of robust-
ness against additive noise. We have illustrated the theo-
retical analysis with both synthetic and real image experi-
ments showing that factors recovered under Dq error pro-
vide much more meaningful information compared to the
ML solution (when q → 1). The difference is striking in the
presence of clutter generated by spurious images and spuri-
ous image features — a situation which is likely to occur in
real applications. The advantage of the q-EM scheme is that
it is an extension to the existing approaches in the sense of
having a one-parameter tunable dimension to allow the so-
lution to tune into the specific characteristics of the signal.
At the current stage of this work the value of q needs to be
set by trial and error but we believe that with future work
more insight to the relationship between signal characteris-
tics and the value of q can be achieved.
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A. Proof of Propositions
Claim 2 If E⊥G, i.e., the two matrices are disjoint in the
locations of vanishing entries, and if H0 \ Hg = ∅, then
∀P ∈ H0 we have

Dq (α(G + E)||G) < Dq (α(G + E)||P )

for all q > 0. In particular, in the limit
q → 0, G becomes the unique global minimizer:
G = argminP∈PDq(α(G + E) || P ).

Proof:
Orthogonality E⊥G implies decomposability Dq(α(G +
E)||P ) = Dq(αG||P )+Dq(αE||P ). In addition, for every
P ∈ Hg holds Dq(αE||P ) = 0, and by the assumption
H0 \Hq = ∅ we derive Dq(αE||P ) = 0 for every P ∈ H0

and reduce

min
P∈H0

Dq(α(G + E)||P ) = min
P∈H0

Dq(αG||P )

The proof is concluded as the solution of argminxDq(b||x)
under the convex constraints x ≥ 0 and

∑
i xi = 1 is

(1/
∑

i bi)b.


