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Abstract

Consider two views of a multi-body scene consisting of
k planar bodies moving in pure translation one relative to
the other. We show that the fundamental matrices, one per
body, live in a 3-dimensional subspace, which when repre-
sented as a step-3 extensor is the common transversal on
the collection of extensors defined by the homography ma-
tricesH1; :::; Hk of the moving planes. We show that as
much as five bodies are necessary for recovering the com-
mon transversal from the homography matrices, from which
we show how to recover the fundamental matrices and the
affine calibration between the two cameras.

1 Introduction

In the context of multiple-view geometry it is a well
known fact that two perspective views of a 3D scene con-
sisting of two planar configurations of points (planar ob-
jects) completely determine the projective calibration be-
tween the two cameras. For instance, letH denote the
3 � 3 collineation (homography matrix) from image 1
to 2 induced by some planar object, and letF denote
the (unknown) fundamental matrix, thenH>F is a skew-
symmetric matrix. Therefore, each planar object provides
6 linear constraints onF , thus two planar objects are suffi-
cient to uniquely determineF . OnceF is known the cam-
era projection matrices and the projective reconstruction of
scene points can be recovered (see [10] for a recent detailed
overview of such material).

Given the growing body of work ondynamicscenes
[1, 14, 12, 16, 9, 8, 4], i.e., 3D scenes which contain mul-
tiply moving points or collections of points (bodies) seen
under multiple views, we wish to extend the basic paradigm
described above to the case where the scene contains mul-
tiple planar objects moving relative to each other by pure
translational motion while the camera is changing position.

Our goal is to utilize the new source of information in-
duced by the movement of the planar objects relative to
each other in order to recover (i) the fundamental matrices
F1; :::; Fk , one for each planar object, from the correspond-
ing homography matricesH1; :::; Hk, and (ii) the affine cal-
ibration between the two cameras.

As mentioned above, a single homography matrix is
not sufficient for recovering the fundamental matrix, how-
ever, the relative motion among the multiple planes can be
harnessed to appropriately introduce additional constraints
from which the fundamental matrix of each planar object
can be recovered and, moreover, to recover the homography
at infinityH1 (which in turn provides the affine calibration
between the two cameras).

We show that the additional constraints are embedded in
the problem of finding a commontransversalin P8 which
represents the family of3� 3 matrices up to scale. Because
the fundamental matricesF1; :::; Fk share the internal pa-
rameters of the two cameras and the relative rotation among
the planes remains fixed, one can show that all such ma-
trices live in a 3-dimensional subspaceF of P8, i.e., three
fundamental matrices span the entire family of fundamental
matrices associated with moving objects under pure transla-
tional motion. This 3-dimensional subspace can be captured
as a common transversal of other 3-dimensional subspaces
Fi each defined from the homography matricesH1; :::; Hk.
In other words, eachHi, i = 1; :::; k, defines the corre-
spondingFi up to a null space of dimension three (because
the skew-symmetry ofH>

i Fi provides 6 constraints on the
9 entries ofFi) denoted byFi. All the spacesFi intersect
with F , thus the question ishow many intersections are re-
quired in order to uniquely determineF?.

It is worthwhile noting that the issue of finding a com-
mon transversal in the context of dynamic scenes was first
introduced in [1]. There the application of transversals was
classic, i.e., finding the common intersecting 3D line (the
trajectory of a moving point) of 4 other lines is a well known
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exercise in invariant theory (see for example, [15]).
We will start with the necessary mathematical tools re-

quired for representing subspaces as a single object (exten-
sors) and the operation of subspace addition (the “join”)
required for the calculation of transversals. We will then
proceed to the general case (translational motion is general)
and show that 5 planar objects are necessary for recovering
(linearly)F . We will then discuss the recovery of affine cal-
ibration, special cases (such as collinear motion) and briefly
touch upon the issue of incorporating non-linear constraints
in the estimation.

2 Mathematical Preliminaries: Extensors
and the Join Operation

The mathematical component of our work deals with in-
tersecting and joining subspaces for the purposes of find-
ing common transversals in the 8-th dimensional projec-
tive spaceP8. A convenient way to do so is to treat a
k-dimensional subspace as a single object (instead of as a
collection ofk basis vectors) which is done using Grass-
mann coordinates also known as an “extensor of step k”.
Generally, the algebra of extensors with the operations of
intersection (“meet”) and union (“join”) are also known as
double algebra or Grassmann-Cayley algebra. These were
first introduced in the context of multiple-view geometry
by [3, 7, 6] and also in the context of projection matrices
Pk ! P2 [17]. A concise introduction to extensors and the
operations of meet and join can be found in [15, 2]. Some
of the material described below, especially Claim 1, is not
found in the scope of the references above thus it is recom-
mended to read through the entire section before proceeding
to the remainder of the paper.

An extensor of stepk describes a subspace of dimension
k of some n-dimensional vector spaceV . All extensors of
stepk lie in the linear space

Vk
(V ) which has the dimen-

sion
�
n
k

�
. The join operator (_) is a multilinear antisymmet-

ric operator that takes two extensors of stepsj andk and
produces an extensor of stepj + k. The joint extensor is
associated with the direct sum of the linear spaces associ-
ated with the two extensors. This join extensor vanishes if
the two generating extensors intersect. Ife1; e2:::; en is a
basis ofV then the basis for

Vk(V ) is given by
�
n
k

�
basis

elements:

fej1 _ ej2 _ ::: _ ejk j1 � j1 < ::: < jk � ng

Let �A = spanfa1; :::; akg be a k-dimensional subspace
of V wherea1; :::; ak is some choice of basis. The stepk
extensorA = a1_� � �_ak also denoted byA = a1a2 � � � ak
is an element of the vector space

Vk
(V ):

A =
X

1�j1<:::<jk�n

Aj1;:::;jkej1 _ � � � _ ejk

where the scalarsAj1;:::;jk arek � k minors:

Aj1;:::;jk =

��������

a1j1 a1j2 ::: a1jk
a2j1 a2j2 ::: a2jk

...
...

. . .
...

akj1 akj2 ::: akjk

��������

Thus the extensorA has
�
n
k

�
coefficients (choices ofk � k

minors from thek � n matrix whose rows consist of
a1; :::; ak). The extensorA represents the subspace�A as
we note that

�A = fu 2 V kA _ u = 0g

(all (k + 1) � (k + 1) minors vanish thusu 2
spanfa1; :::; akg) while on the other hand the determinant
expansions are invariant to a change of basis of�A.

LetA = a1 � � � ak andB = b1 � � � bj be extensors of step
k; j representing subspaces�A; �B andk + j � n. ThenA _
B = a1 � � �akb1 � � � bj is non-zero (at least one coefficient
does not vanish) iff the seta1; � � � ; ak; b1; � � � bj is linearly
independent (i.e.,�A ^ �B = ;). In this case,

A+B = A _ B = spanfa1; � � � ; ak; b1; � � � ; bjg

Thus, the algebraic join of extensors corresponds to the
geometric join of linear subspaces. Conversely, in casek +
j > n the subspaces�A; �B always have a non-vanishing
intersection into ak+j�n dimensional linear space. Thus,
it is possible to define a “meet” operationA ^ B which
would be a linear combination of extensors of stepk + j �
n. We will not make use of meet operations1 in this paper.
Further details can be found in [15, 2].

It would be useful for later to describe the coefficients of
C = A _ B as a function of the coefficientsAi1;���;ik of the
extensorA and the coefficientsBi1;���ij of the extensorB.
This function is bilinear and has the following form:

Claim 1 LetA = a1 � � � ak andB = b1 � � � bj be extensors
of stepk; j, respectively, wherek + j � n. LetC = A _B
be their join. Each coefficientCl1;:::;lk+j , 1 � k1 < � � � <
kp � n, can be described as follows:

X

� 2 Sk+j

�1 < � � � < �k
�k+1 < � � � < �k+j

sgn(�)Al�1 ;���;l�k
Bl�k+1 ;���;l�k+j

(1)
whereSp is the group of permutations ofp letters and�(i),
denoted by�i is the permuted position of the i’th letter.

1This may appear at first as counter-intuitive since this paper is about
finding a common transversal which requires intersection of subspaces.
However, the meet operation is not defined fork+j � n therefore we will
use the fact thatA _ B vanishes in the process of recovering the common
transversal.
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Proof: We need to show that the function above is equal to
the determinant expansion

��������������

a1l1 a1l2 ::: a1lk+j
...

...
. . .

...
akl1 akl2 ::: aklk+j
b1l1 b1l2 ::: b1lk+j

...
...

. . .
...

bjl1 bjl2 ::: bjlk+j

��������������

Which in turn is equal to
X

�2Sk+j

sgn(�)a1�1 � � � ak�k b1�k+1 � � � bj�k+j (2)

Note that each term of eqn. 1 is a superposition ofj!k! ba-
sic terms (fromAl�1 ;���;l�k

Bl�k+1 ;���;l�p
) matched to those

of eqn. 2 multiplied by the appropriate sign. The num-
ber of terms in eqn. 1 is

�
j+k
k

�
which brings a total of�

j+k
k

�
j!k! = (k + j)! basic terms. Thus, since each basic

term of eqn. 1 is distinct and matched to one of the terms
of eqn. 2 and the total number of terms match, we have an
equality.

3 The Space of Fundamental Matrices of
Translating Bodies

Consider a collection ofk planar point-configurations
undergoing pure translation viewed by two projective im-
ages, and assume that the corresponding homography ma-
trices from view 1 to 2 induced by the planar configurations
have been recovered and denote them byH1; � � � ; Hk. Let
H1 = K 0RK�1 be the (unknown) homography induced
by the plane at infinity, whereK;K 0 are the matrices rep-
resenting the internal parameters of the two cameras and
R is an orthonormal matrix representing the relative rota-
tional component between the cameras positions. Since in
the stated problem domainK;K 0; R remain fixed as only
the translational component is changing among planar ob-
jects, thek fundamental matrices, one per object, have the
form Fi

�= [ti]�H1, where[u]� is the skew-symmetric
matrix of vector products, i.e.,[u]�v = u � v. Note that
if all the planar objects were static, thent1 = ::: = tk = t

which is the epipole in view 2 (projection of camera center
1 onto view 2).

In the general case where all objects are in motion and
the motion vectorsti span a 3D space, one can easily show
that the fundamental matrices live in a 3-dimensional sub-
space of the 9-dimensional space of3� 3 matrices. This is
shown next.

Let �F be the vector representing a fundamental matrix
F by scanning the matrix column by column. We wish to
show thatrank[ �F1; :::; �Fk ] � 3. Let h1; h2; h3 be the three

columns ofH1, then �Fi = �([h1]�ti; [h2]�ti; [h3]�ti)
>.

Thus,

[ �F1; :::; �Fk ]9�k = �

2
4

[h1]�
[h2]�
[h3]�

3
5
9�3

[t1; :::; tk]3�k

which makes the point that all such fundamental matri-
ces live in a 3-dimensional linear subspace ofR9. De-
note the step-3 extensor representing that linear subspace
asF = f1f2f3 wheref1; f2; f3 is some basis of this sub-
space. Next we will show how to find the extensorF as
a common transversal with other extensors induced by the
known homography matricesH1; :::; Hk.

Recall thatH>
i Fi is a skew-symmetric matrix, i.e., for

every pointp in view 1,Hip is a point along the epipolar
line Fip — therefore,(Hip)

>Fip = 0. We have there-
fore 6 linear constraints on�Fi. Let f i1; f

i
2; f

i
3 be a basis of

the null space of the linear system and letFi = f i1f
i
2f

i
3 be

the corresponding step-3 extensor. We also know that the
join F _ Fi must vanish (because�Fi is contained in both
subspaces). Therefore, the step-3 extensorF is a common
transversal on all the step-3 extensorsFi.

Recall from Claim 1 that the joinF_Fi can be expressed
as a bilinear function of the coefficients of the extensorsF
andFi. Since the coefficients ofFi are known, we end up
with a linear system of

�
9
3

�
= 84 homogeneous equations

onF . Among the 84 equations only 20 are linearly inde-
pendent. To see why this is so, consider the general ques-
tion: givenA = a1 � � � ak a step-k extensor representing
the subspace�A of the n-dimensional vector spaceV , how
many step-j extensorsB, representing subspace�B, satisfy
�A ^ �B = ;? Consider a change of coordinates ofV such
thatA = e1 � � � ek. The set of all basis extensors of stepj is

fei1 _ � � � _ eij j1 � i1 < � � � < ij � ng:

The basis extensors which do not intersectA must satisfy
i1; :::; ij 62 f1; :::; kg. Thus we have

�
n�k
j

�
basis extensors

B which satisfy �A ^ �B = ;. In particular,n = 9; k =
j = 3 results in

�
6
3

�
= 20 (out of 84). In other words, each

given extensorFi provides at most 20 linearly independent
constraints for the common transversalF .

The next issue is whether the combined set of 40 linear
equations arising from two extensorsFi andFj on the un-
known extensorF is linearly independent? One can show
that the second extensor provides only 19 linearly indepen-
dent equations on top of the 20 equations provided by the
first extensor. To see why this is so, consider again the gen-
eral question: GivenA;B extensors of stepk; j which sat-
isfy �A ^ �B = ;, how many extensorsE of stepq satisfy
both �A ^ �E = ; and �B ^ �E = ;? Similar to before, we
select a change of coordinates ofV such thatA = e1 � � � ek
andB = ek+1; :::; ek+j , thus we have

�
n�(k+j)

q

�
basis ex-

tensorsE. In particular,n = 9; k = j = q = 3 results
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in
�
3
3

�
= 1. In other words, the additional set of 20 equa-

tions provided by the second extensor has one equation in
common with the previous set of 20 equations from the first
extensor. Likewise, the third extensor will provide only 18
independent equations because it will have one equation in
common with the first extensor and another equation with
the second extensor, and so forth. Thus 5 intersections are
needed (20+19+18+17+16=90) for a complete system for
recoveringF . To summarize this discussion we have the
following result:

Claim 2 All fundamental matrices associated with trans-
lating moving bodies viewed from two fixed views live in
a 3-dimensional linear subspace ofR9 represented by the
step-3 extensorF . Given that each bodyi is a planar object
with a known homography matrixHi, then the contribution
of eachHi is captured by a step-3 extensorFi which satis-
fiesF _ Fi = 0, i.e.,F is a common transversal on allFi.
The vanishing join equationF _ Fi = 0, i = 0; 1; 2; :::; k,
contributes20 � i linearly independent constraints onF ,
thus 5 planar bodies are sufficient to uniquely define a so-
lution for the 84 coefficients ofF .

3.1 Recovering the Fundamental MatricesFi

from F

We have shown that 5 moving planes are sufficient for
uniquely (and linearly) recovering the step-3 extensorF
which all fundamental matrices (of all moving bodies) live
in. We have recoveredFi (from the known homography
matrixHi) and we have nowF . We wish to recover next the
fundamental matricesFi associated with the moving planes.

Let f1; f2; f3 2 R9 be some basis of the 3-dimensional
subspace represented byF , i.e.,F = f1f2f3. In order to
find such a basis, consider again an application of Claim 1
as follows. Recall that a pointP 2 spanff1; f2; f3g iff
F _ P = 0. LetC = F _ P ,

C =
X

1�k1<:::<k4�9

Ck1;:::;k4ek1 _ ::: _ ek4 ;

where from Claim 1 the coefficients ofC can be described
as a linear combination of the (known) coefficients ofF and
the (unknown) entries ofP :

Ck1;:::;k4 =
X

�2S4; �1<�2<�3

sgn(�)Fk�1 ;k�3 ;k�3
Pk�4

This provides us with
�
9
4

�
= 126 linear constraints on the

9 entries ofP . The measurement matrixM of this system
must be of rank 6 becauseF is a step-3 extensor, hence the
three eigenvectors associated with the vanishing eigenval-
ues ofM>M provide us with a basisf1; f2; f3.

We are given the basisf1; f2; f3 and from eachHi we
have the null vectorsf i1; f

i
2; f

i
3. The vector�Fi, representing

the fundamental matrixFi, is in the span of both sets of
vectors, i.e., there exist coefficients�i

j ; �
i
j (up to scale for

eachi) which satisfy:

�i
1f

i
1 + �i

2f
i
2 + �i

3f
i
3 = �i1f1 + �i2f2 + �i3f3 (3)

which provides a system of linear equations for those coeffi-
cients (peri). The existence and uniqueness of the solution
is guaranteed since we know thatFi is unique and is in the
span of both sets. Once those coefficients have been recov-
ered, then�Fi = �i1f1 + �i2f2 + �i3f3.

3.2 RecoveringH1

Given that the family of fundamental matricesFi asso-
ciated with bodies moving in pure translation is of the form
Fi = [ti]�H1, one can easily recoverH1 and in turn ob-
tain an affine calibration of the camera geometry.

Note that the familyH�
i = �H1 + tin

> satisfies the
constraint thatF>i H

�
i is a skew-symmetric matrix for all

choices of the scalar� and the vectorn. Therefore, given
thatH1 is of full rank (which is a valid assumption for
perspective cameras sinceH1 = K 0RK�1) the family of
homography matrices which satisfy this constraintfor all i
areH�

i
�= H1.

The constraint thatF>i H1 is skew-symmetric provides
6 linear equations onH1, per indexi, however only 5 of
which are linearly independent. To see why this is so, recall
that [13] have first noted that the family of homography ma-
tricesH� over all choices of planes� (including� = 1)
live in a 4-dimensional linear subspace ofR9. Therefore,
the collection of matricesH which satisfyFi = [ti]xH
live in a 4-dimensional space. Since each of the linear
constraintsF>i H + H>Fi = 0 is an element of the 5-
dimensional null space over the set of all matricesH , there
could be at most 5 linearly independent constraints from
F>i H +H>Fi = 0.

Thus, to conclude, two fundamental matrices (of two
bodies) are sufficient to uniquely constrainH1.

4 Collinear Motion and Miscellaneous Items

So far we considered the general case in which the rela-
tive translations among the various bodies spans a full rank
space. Consider the case where all the motions are along
the same direction, i.e.,Fi = [�iv

0 + �it]�H1 wheret
is the fixed direction,�i is the magnitude of translation of
thei’th body,v0 is the epipolar point (projection of the first
camera center onto the image plane of the second camera)
and�i accounts for the global scale factor. Therefore, the
family of such fundamental matrices live in a 2-dimensional
subspace, i.e.,F is a step-2 extensor (instead of step-3).

Our calculations are now different. We are looking for
a common step-2 transversal on step-3 extensors. The join
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F _ Fi has
�
9
5

�
= 126 vanishing coefficients (linear con-

straints on the
�
9
2

�
= 36 coefficients comprisingF). Among

the 126 constraints only
�
9�3
2

�
= 15 are linearly indepen-

dent. Each additional extensorFi, i = 1; 2; :::; k adds only
15� 3i independent equations. Thus, three moving planes
are sufficient (15 + 12 + 9 = 36) for a unique solution for
F . We summarize all this in the following claim:

Claim 3 All fundamental matrices associated with trans-
lating moving bodies along a fixed direction viewed from
two fixed views live in a 2-dimensional linear subspace of
R9 represented by the step-2 extensorF . Given that each
body i is a planar object with a known homography ma-
trix Hi, then the contribution of eachHi is captured by a
step-3 extensorFi which satisfiesF _ Fi = 0, i.e.,F is a
common transversal on allFi. The vanishing join equation
F _ Fi = 0, i = 0; 1; 2; :::; k, contributes15� 3i linearly
independent constraints onF , thus 3 planar bodies are suf-
ficient to uniquely define a solution for the 36 coefficients of
F .

4.1 Parallel Planes

Going back to the general case of translations filling up
a full rank space, the calculation also changes when planes
are parallel to each other. Consider homography matrices
H1; H2 induced by two parallel planes. The step-3 extensor
F1 contributes 20 independent equations forF . However,
F1 _ F2 is a step-5 extensor (instead of 6), and thusF2

would contribute only 16 new constraints (instead of 19).
To see why this is so, considerH1; H2 two homography
matrices induced by two distinct but parallel planes, i.e.,
H1

�= H1 + t1n
t andH1

�= H1 + t2n
t. One can ver-

ify (by substitution) thatF = [t]�H1
�= [t]�H2, where

t = t1 � t2, which means thatF>H1 andF>H2 are skew-
symmetric. Thus, the solution space forF1 (givenH1) and
the solution space forF2 (givenH2) intersect atF , which
in turn means thatF1 _ F2 is a step-5 extensor. Therefore,
among the 20 constraints contributed fromF2,

�
9�5
3

�
= 4

of them are in common with the previous set of 20 made by
F1. Thus, we will need much more than 5 planes in order to
obtain a sufficient number of constraints to uniquely solve
for F . Nevertheless, there is an alternative way to handle
this situation (which requires only 4 translating planes) but
due to space limitations we will not introduce here.

4.2 Non-linear Constraints

The final issue we address here is the non-linear con-
straints we so far ignored. There are two kinds of non-
linearities. The first kind is associated with the fact that
not every vector of 84 coefficients is an admissible step-
3 extensor. LetA be a step-3 extensor, using Claim 1 on

A _ A = 0, the
�
9
6

�
= 84 coefficients of the join are bi-

linear products of the coefficients ofA with itself — thus
comprising of 84 second order constraints onA. One can
make use of these second order constraints to reduce the
number of intersections required for a solution for the com-
mon transversal (up to a finite-fold ambiguity) from 5 to
some smaller number. For example, 4 intersections provide
20 + 19 + 18 + 17 = 74 linear constraints onF leaving
9 parameters to be determined (linear combination of the
null space of the estimation matrix) using the second order
constraints onF (provided there is a sufficient number of
algebraically independent constraints among them).

The second kind of non-linearity arises from the fact that
each fundamental matrixFi is a rank 2 matrix. This type of
non-linearity appears in two places. First is when we create
the step-3 extensorsFi from the null space of the 6 con-
straintsH>

i Fi + F>i Hi = 0 on Fi. Given that the rank
of Fi is 2, we have an additional cubic constraint (arising
from the vanishing determinant ofFi). This implies that
the possibleFi do not live in a 3-dimensional subspace but
in an algebraic variety — a fact that complicates consider-
ably the process of finding a common transversal. Second
is when we recoverFi from eqn. 3 we have an additional
cubic constraint which can be used to further constrain the
system of equations using a Levenberg-Marquardt type of
iterative algorithm.

In this paper we chose to ignore the non-linear con-
straints and instead obtain a simple and manageable algo-
rithm. Ultimately it is a matter of a tradeoff between the
possibility of achieving higher accuracies in the presence of
noise and the resulting added complexity of doing so. The
experiments shown next indicate that one can obtain reason-
able estimation accuracy using the linear constraints alone.

5 Experiments

In the experiments below we tested the reconstruction of
the fundamental matrices and the affine calibration under
general translation and translations along a fixed direction.

In the first experiment, shown in Fig. 1, four 3D objects
(with planar parts) are in translational (general) motion and
the fifth object is taken from the static background (the ta-
ble). Fig. 1a,b displays the two views of the dynamic con-
figuration. The homography matricesH1; :::; H5 are recov-
ered using the matching points displayed in Fig. 1c. The
fundamental matricesF1; :::; F5 were recovered using the
algorithm presented in this paper. Fig. 1d displays marked
pointsp on one of the objects and Fig. 1e shows the epipo-
lar linesFp whereF is the corresponding fundamental ma-
trix. Note that the epipolar lines pass through the matching
points at a sub-pixel accuracy.

The affine calibration was constructed from the recov-
eredH1 and its accuracy was estimated as follows. A
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line drawn on one of the planar objects (a book) was recon-
structed in 3D using the recovered calibration data - denote
that line asL. Then matching points along parallel lines
were marked in both images and reconstructed in 3D. For
each reconstructed point a 3D line parallel toL was cre-
ated and back-projected to the image. If the calibration is
projective the back-projected lines should not necesserily be
parallel in the image, but when the calibration is affine those
lines should be parallel (on the image of the planar object).
Fig. 1f displays the back-projected lines which are indeed
parallel over the extent of the book (the planar object).

In the second experiment, shown in Fig. 2, the multi-
body configuration moves along a fixed direction. In
this particular scene the bodies consist of the person, the
chair, and the static floor. Fig. 2a,b displays two views of
this multi-body configuration. The homography matrices
H1; H2; H3 were recovered from point matches — on the
person taken from the chest (approximately planar), on the
chair taken from box, and from points on the floor. The
three fundamental matrices were recovered, and that recov-
ered from the floor was tested on points from the static part
of the scene as shown in Fig. 2c,d. Note that the points be-
ing tested are taken from regions which are far away from
the floor and thus are more susceptible to estimation error
of the fundamental matrix — yet the epipolar lines pass
through the matching points at sub-pixel accuracy.

6 Summary

We have shown that a configuration of multiple planes
moving relatively to each other in pure translation conveys
additional information (beyond the homography matrices)
which can be used to recover the fundamental matrices, one
per object, and in turn recover the affine calibration between
the two cameras. The technique for doing so was based on
the observation that all fundamental matrices live in a 3-
dimensional subspace, which when represented as an exten-
sor is the common transversal on the extensors defined by
the homography matrices. We have shown that generally 5
intersections are needed for a linear solution, and when the
multi-body motion is along a fixed direction then 3 intersec-
tions suffice. The affine calibration readily follows once the
fundamental matrices are recovered because the homogra-
phy induced by the plane at infinity is the only homography
matrix shared by all the fundamental matrices, thus can be
extracted linearly from at least two bodies.
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(a) (b) (c)

(d) (e) (f)

Figure 1. (a),(b) two views of a multi-body scene under general translation. (c) Points used to find the five homography matrices
H1; :::; H5. (d),(e) Some corners pointed on one of the objects, and the corresponding epipolar lines on the other object. (f)
Back-projection of parallel lines for testing accuracy of affine calibration — see text for details.

(a) (b) (c) (d)

Figure 2. (a),(b) two views of a multi-body scene where the objects move along a fixed direction. Homography matrices are
estimated one from the person’s chest, one from the object on the chair, and one from the floor. (c),(d) Some “static” points and their
corresponding epipolar lines.
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