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Abstract Our goal is to utilize the new source of information in-
duced by the movement of the planar objects relative to
Consider two views of a multi-body scene consisting of each other in order to recover (i) the fundamental matrices
k planar bodies moving in pure translation one relative to F1, ..., Fi, one for each planar object, from the correspond-
the other. We show that the fundamental matrices, one pering homography matriceH,, ..., Hy, and (ii) the affine cal-
body, live in a 3-dimensional subspace, which when repre-ibration between the two cameras.
sented as a step-3 extensor is the common transversal on  As mentioned above, a single homography matrix is
the collection of extensors defined by the homography ma-not sufficient for recovering the fundamental matrix, how-
trices Hy, ..., H;, of the moving planes. We show that as ever, the relative motion among the multiple planes can be
much as five bodies are necessary for recovering the com-arnessed to appropriately introduce additional constraints
mon transversal from the homography matrices, from which from which the fundamental matrix of each planar object
we show how to recover the fundamental matrices and thecan be recovered and, moreover, to recover the homography

affine calibration between the two cameras. at infinity H, (which in turn provides the affine calibration
between the two cameras).
1 Introduction We show that the additional constraints are embedded in

the problem of finding a commanansversalin P# which

In the context of multiple-view geometry it is a well represents the family & x 3 matrices up to scale. Because
known fact that two perspective views of a 3D scene con- the fundamental matrices, , ..., Fj, share the internal pa-
sisting of two planar configurations of points (planar ob- rameters of the two cameras and the relative rotation among
jects) completely determine the projective calibration be- the planes remains fixed, one can show that all such ma-
tween the two cameras. For instance, Fétdenote the trices live in a 3-dimensional subspageof P*, i.e., three
3 x 3 collineation (homography matrix) from image 1 fundamental matrices span the entire family of fundamental
to 2 induced by some planar object, and IEtdenote matrices associated with moving objects under pure transla-
the (unknown) fundamental matrix, théh' F is a skew-  tionalmotion. This 3-dimensional subspace can be captured
symmetric matrix. Therefore, each planar object providesas & common transversal of other 3-dimensional subspaces
6 linear constraints off, thus two planar objects are suffi- i €ach defined from the homography matriégs ..., Hy
cient to uniquely determin&. OnceF is known the cam-  In other words, eacl#f;, i = 1,...,k, defines the corre-
era projection matrices and the projective reconstruction ofSPondingf; up to a null space of dimension three (because
scene points can be recovered (see [10] for a recent detaileé€ skew-symmetry off;" F; provides 6 constraints on the
overview of such material). 9 entries ofF;) denoted byF;. All the spacesF; intersect

Given the growing body of work omlynamicscenes with F, thus the question isow many intersections are re-
[1, 14, 12, 16, 9, 8, 4], i.e., 3D scenes which contain mul- duired in order to uniquely determing?.
tiply moving points or collections of points (bodies) seen It is worthwhile noting that the issue of finding a com-
under multiple views, we wish to extend the basic paradigm mon transversal in the context of dynamic scenes was first
described above to the case where the scene contains mulatroduced in [1]. There the application of transversals was
tiple planar objects moving relative to each other by pure classic, i.e., finding the common intersecting 3D line (the
translational motion while the camera is changing position. trajectory of a moving point) of 4 other lines is a well known



exercise in invariant theory (see for example, [15]). where the scalard ; arek x k minors:

J1seeesJke
We will start with the necessary mathematical tools re-

quired for representing subspaces as a single object (exten- 15y Q1js -e 1,
sors) and the operation of subspace addition (the “join”) a - Azjy  A2jy . Q25
required for the calculation of transversals. We will then Jhendie 70 : ' :

proceed to the general case (translational motion is general)
and show that 5 planar objects are necessary for recovering
(linearly) 7. We will then discuss the recovery of affine cal- Thus the extensad has(}}) coefficients (choices of x k
ibration, special cases (such as collinear motion) and brieflyminors from thek x n matrix whose rows consist of
touch upon the issue of incorporating non-linear constraintsq, , ..., a;). The extensor represents the subspadeas

akjl aka akjk

in the estimation. we note that
2 Mathematical Preliminaries: Extensors A={ueV][Avu=0}
and the Join Operation @l (k + 1) x (k + 1) minors vanish thusu €

span{ay, ..., ax }) while on the other hand the determinant

The mathematical component of our work deals with in- expansions are invariant to a Change of basid .of
tersecting and joining subspaces for the purposes of find- |etA =a;---a;andB = by - - b; be extensors of step
ing common transversals in the 8-th dimensional projec- k, j representing subspacds B andk + j < n. ThenA Vv
tive spaceP®. A convenient way to do so isto treata B = gy ---ayb; - --b; is non-zero (at least one coefficient
k-dimensional subspace as a single object (instead of as @&oes not vanish) iff the set; , - - -, ay, by, - b; is linearly
collection of k basis vectors) which is done using Grass- independent (i.e4 A B = {). In this case,
mann coordinates also known as an “extensor of step k. o
Generally, the algebra of extensors with the operations of A+ B=AV B =span{ai,---,ax, b1, -, b;}
intersection (“meet”) and union (“join”) are also known as o
double algebra or Grassmann-Cayley algebra. These were 1huS, the algebraic join of extensors corresponds to the
first introduced in the context of multiple-view geometry 9€0metric join of linear subspaces. Conversely, in éase
by [3, 7, 6] and also in the context of projection matrices J > 7 the subspaces, B always have a non-vanishing
Pk s P2 [17]. A concise introduction to extensors and the !nt_ersectlt_)n into ai:+_j —n dimensional Im_ear space. _Thus,
operations of meet and join can be found in [15, 2]. Some It IS possible to define a “meet” operatioh A B which
of the material described below, especially Claim 1, is not Would be a linear combination of extensors of step j —
found in the scope of the references above thus it is recom- We will not make use of meet operatidris this paper.
mended to read through the entire section before proceedind Urther details can be found in [15, 2]. o
to the remainder of the paper. It would be useful f_or later to desc_rll_)e the coefficients of

An extensor of stes describes a subspace of dimension ¢ = 4V B as a function of the coefficients;, ... ;, of the
k of some n-dimensional vector spake All extensors of ~ €xtensord and the coefficient®;, ,...;; of the extensoi.
stepk lie in the linear spac¢\k(v) which has the dimen- This function is bilinear and has the following form:

sion (f) The join operator\) is a multilinear antisymmet-  claim 1 Let A — a;---a, andB = b, - - b; be extensors
ric operator that takes two extensors of st¢pmndk and of stepk, j, respectively, wherg + j < n. LetC = AV B
produces an extensor of stgpt- k. The joint extensoris  pe their join. Each coefficieny, ;. ., 1<k <+ <
associated with the direct sum of the linear spaces associz, <y, can be described as follows: ’
ated with the two extensors. This join extensor vanishes if

the _two generating extgnsorskmter_sec_tg]teZ..., én IS _a Z sgn(0)Ar, ., loss o,
basis ofV then the basis fo)\" (V') is given by (}) basis
elements: ¢ 0 € Skt
) o1 < ---< 0O
{6]'1 Vej, V.. Vejk|1 <n<..<g< TL} Ok41 < -+ < Oty

_ _ _ 1)
Let A = span{ay, ..., a;} be a k-dimensional subspace \hereS, is the group of permutations pfletters andy (i),

of V- whereay, ..., a;, is some choice of basis. The step  denoted bys; is the permuted position of the i'th letter.
extensord = a; V- --Vay also denoted byl = aqas - - - ag,

1This may appear at first as counter-intuitive since this paper is about

is an element of the vector spaAé(V): finding a common transversal which requires intersection of subspaces.
However, the meet operation is not definediaer j < n therefore we will
A= Z Aj17---7jk ej, V---Vej, use the faclt thatl v B vanishes in the process of recovering the common
transversal.

1<j1<...<jr<n



Proof: We need to show that the function above is equal to columns ofH ., thenF; = —([h1]xt;, [ha]xti, [h3]xti) .

the determinant expansion Thus,

a’lll a’llg .- a’llk+j _ _ [hl]x

[Fi, .oy Floxk = — | [ho], [t1, s th]3xk
[hs]
agl;  Akly -+ Okl x 49x3
bi, bu, .. by, which makes the point that all such fundamental matri-
. ces live in a 3-dimensional linear subspaceRf. De-
' ' note the step-3 extensor representing that linear subspace

bjty - bjta - bjtes asF = fi1fofs wherefi, fo, f3 is some basis of this sub-

Which in turn is equal to space. Next we will show how to find the extensbras

a common transversal with other extensors induced by the
Z Sgn(0)ais, *** Gkoy, Dioyy, = Djory, (2 known homography matrices, ..., Hy,.

0ESktj Recall thatH," F; is a skew-symmetric matrix, i.e., for
. L every pointp in view 1, H;p is a point along the epipolar
Note that each term of eqn. 1 is a superpositior!sf ba- line Fip — therefore,(H;p)TF;p = 0. We have there-

sic terms (from4; B,,Hl,...,lap) matched to those =

1 ) . fore 6 linear constraints ofy;. Let f{, fi, fi be a basis of
of eqn. 2 multiplied by Fh‘igppfopf'ate sign. The num- e ny|i space of the linear system andfet= f; fifi be
ber of terms in eqn. 1 i4’;") which brings a total of 0 corresponding step-3 extensor. We also know that the
(“3%)4'k! = (k + j)! basic terms. Thus, since each basic join F v F; must vanish (becausg is contained in both
term of eqgn. 1 is distinct and matched to one of the terms subspaces). Therefore, the step-3 extedS@s a common
of egn. 2 and the total number of terms match, we have antransversal on all the step-3 extensdis
equality.[] Recall from Claim 1 that the joiff V. F; can be expressed
as a bilinear function of the coefficients of the extensbrs

3 The Space of Fundamental Matrices of andZ;. Since the coefficients oF; are known, we end up

Translating Bodies with a linear system ofg) = 84 homogeneous equations
on F. Among the 84 equations only 20 are linearly inde-
pendent. To see why this is so, consider the general ques-
tion: given A = a; ---ay a step-k extensor representing
ghe subspacel of the n-dimensional vector spate, how

s log

Consider a collection ok planar point-configurations
undergoing pure translation viewed by two projective im-
ages, and assume that the corresponding homography m X ‘ 3
trices from view 1 to 2 induced by the planar configurations Many Step-j extensoiB, representing subspads, satisfy
have been recovered and denote thenfhy- - -, Hy,. Let A B = 7 Consider a change of coordinateslofuch
H., = K'RK~" be the (unknown) homography induced thatA = e; - - - e. The set of all basis extensors of steis
by the plane at infinity, wher&’, K’ are the matrices rep- {en V- Ve[l <ip < -+ <ij <n}.
resenting the internal parameters of the two cameras and
R is an orthonormal matrix representing the relative rota- The basis extensors which do not intersécmnust satisfy
tional component between the cameras positions. Since irt, - i; & {1,...,k}. Thus we havg"*) basis extensors
the stated problem domaiff, K', R remain fixed as only B which satisfyA A B = . In particular,n = 9,k =
the translational component is changing among planar ob-j = 3 results in(g) = 20 (out of 84). In other words, each
jects, thek fundamental matrices, one per object, have the given extensofF; provides at most 20 linearly independent
form F; = [t;]x Hw, Where[u], is the skew-symmetric  constraints for the common transvergal

matrix of vector products, i.e[u]xv = u x v. Note that The next issue is whether the combined set of 40 linear
if all the planar objects were static, then= ... = ¢, =t equations arising from two extensdgfs andF; on the un-
which is the epipole in view 2 (projection of camera center known extensorF is linearly independent? One can show
1 onto view 2). that the second extensor provides only 19 linearly indepen-

In the general case where all objects are in motion anddent equations on top of the 20 equations provided by the
the motion vectors; span a 3D space, one can easily show first extensor. To see why this is so, consider again the gen-
that the fundamental matrices live in a 3-dimensional sub- eral question: Givel, B extensors of step, 7 which sat-
space of the 9-dimensional spaceBot 3 matrices. Thisis  isfy A A B = (J, how many extensorg of stepq satisfy
shown next. bothAA E = () andB A E = ()? Similar to before, we

Let F' be the vector representing a fundamental matrix select a change of coordinatesiouch thatd = e; - - - ey,

F by scanning the matrix column by column. We wish to andB = ej1, ..., ex+j, thus we have(”*(’“”')) basis ex-
show thatrank[F1, ..., Fi,] < 3. Lethq, ho, hs be the three  tensorsE. In particular,n = 9,k = j = ¢ = 3 results



in (g) = 1. In other words, the additional set of 20 equa- the fundamental matrix¥;, is in the span of both sets of
tions provided by the second extensor has one equation invectors, i.e., there exist coefficients, 3; (up to scale for
common with the previous set of 20 equations from the first eachi) which satisfy:

extensor. Likewise, the third extensor will provide only 18

independent equations because it will have one equation in afitafstagfs=P0ifi+ 6+ Q)

common with the first extensor and another equation with yhjch provides a system of linear equations for those coeffi-
the second extensor, and so forth. Thus 5 intersections argjents (per). The existence and uniqueness of the solution
needed (20+19+18+17+16=90) for a complete system forig guaranteed since we know tHatis unique and is in the
recovering#. To summarize this discussion we have the span of both sets. Once those coefficients have been recov-
following result: ered, therf; = Bi f1 + Bifs + Bifs.

Claim 2 All fundamental matrices associated with trans-
lating moving bodies viewed from two fixed views live in
a 3-dimensional linear subspace &f represented by the ) i )
step-3 extensaF. Given that each bodyjis a planar object Given that the family of fundamental matricé$ asso-
with a known homography matril;, then the contribution ciated with bodies moving in pure translation is of the form
of eachH, is captured by a step-3 extensér which satis- £ = [fi]x Hoo, ONE can easily recovéf, and in turn ob-
fiesF V F; = 0, i.e., F is a common transversal on af;. tain an affine calibration of the camera geometry.

The vanishing join equatio® vV F; = 0,i = 0,1,2,..., k, Note that theTfamin = AHe + tin_T satisfies the
contributes20 — i linearly independent constraints d#, constraint that;’ H[" is a skew-symmetric matrix for all

thus 5 planar bodies are sufficient to uniquely define a so- choices of the scalax and the vecton. Therefore, given
lution for the 84 coefficients JF. that H, is of full rank (which is a valid assumption for

perspective cameras sinég, = K'RK 1) the family of
homography matrices which satisfy this constréimtall
areH” = H,.

The constraint thaf," H,, is skew-symmetric provides
6 linear equations o/, per indexi, however only 5 of
which are linearly independent. To see why this is so, recall
that [13] have first noted that the family of homography ma-
trices H,; over all choices of planes (includingm = o0)

3.2 RecoveringH,

3.1 Recovering the Fundamental Matrices F;
from F

We have shown that 5 moving planes are sufficient for
uniquely (and linearly) recovering the step-3 extengor
which all fundamental matrices (of all moving bodies) live
in. We have recovered; (from the known homography = " ) . .
matrix H;) and we have now. We wish to recover next the live in a 4-_d|men5|ona_1l linear s_ubspat_:e]@?. Therefore,
fundamental matriceB; associated with the moving planes. t_he c_:ollectlon of m_atncesH which .S‘at'SfyFi - [ti]mg

Let f1, fa, f5 € R® be some basis of the 3-dimensional live in a 4-d|TmenS|on$I space. Since each of the linear
subspace represented By i.e., F = fif2f5. In order to gpnstra}ntsl? BI[I + HF; :tho IS ?nfelltlame?'g ofsttrr]]e 5
find such a basis, consider again an application of Claim 1 imensional null space overthe set of afl ma Nes, mere
as follows. Recall that a poin® € span{fi, fo, f3} iff coTuId be aTt most 5 linearly independent constraints from
FVP=0.LetC=FVP, Fy H+H F, =0. .

Thus, to conclude, two fundamental matrices (of two
C = Z Chyo sy VooV €y s bodies) are sufficient to uniquely constrdify,.
1<k <...<ka<9

where from Claim 1 the coefficients ¢f can be described 4 Collinear Motion and Miscellaneous ltems

as a linear combination of the (known) coefficientsFoind

the (unknown) entries aP: So far we considered the general case in which the rela-

tive translations among the various bodies spans a full rank
Chy.oks = Z SE1(0) Fher, g hng Pl space. Considgr thg case where all the motions are along
the same direction, i.ef; = [a;v" + Bit]x He Wheret
is the fixed directionf; is the magnitude of translation of
This provides us witl”(i) = 126 linear constraints on the thei’'th body,' is the epipolar point (projection of the first
9 entries ofP. The measurement matrid of this system camera center onto the image plane of the second camera)
must be of rank 6 becauggéis a step-3 extensor, hence the andc«; accounts for the global scale factor. Therefore, the
three eigenvectors associated with the vanishing eigenvalfamily of such fundamental matrices live in a 2-dimensional
ues of M T M provide us with a basig, f>, fs. subspace, i.ef is a step-2 extensor (instead of step-3).
We are given the basif, f-, f3 and from eachH; we Our calculations are now different. We are looking for
have the null vectorg}, fi, fi. The vectorF;, representing  a common step-2 transversal on step-3 extensors. The join

0€ESy, 01<02<03



FV Fi has(?) = 126 vanishing coefficients (linear con- A v A = 0, the (J) = 84 coefficients of the join are bi-
straints on theég) = 36 coefficients comprising). Among linear products of the coefficients of with itself — thus

the 126 constraints onl{’;*) = 15 are linearly indepen- comprising of 84 second order constraintgmn One can
dent. Each additional extens®t, i = 1,2,...,k addsonly ~ Make use of these second order constraints to reduce the
15 — 3i independent equations. Thus, three moving planesnumber of intersections required for a solution for the com-

are sufficient (5 + 12 + 9 = 36) for a unique solution for ~ Mon transversal (up to a finite-fold ambiguity) from 5 to
F. We summarize all this in the following claim: some smaller number. For example, 4 intersections provide

20 + 19 + 18 + 17 = 74 linear constraints ot leaving
Claim 3 All fundamental matrices associated with trans- 9 parameters to be determined (linear combination of the
lating moving bodies along a fixed direction viewed from null space of the estimation matrix) using the second order
two fixed views live in a 2-dimensional linear subspace of constraints orfF (provided there is a sufficient number of
R? represented by the step-2 extendar Given that each  algebraically independent constraints among them).
bodyi is a planar object with a known homography ma- The second kind of non-linearity arises from the fact that
trix H;, then the contribution of eacH; is captured by a  each fundamental matriX; is a rank 2 matrix. This type of
step-3 extensaf; which satisfiesF v F; = 0, i.e.,Fisa non-linearity appears in two places. First is when we create
common transversal on aff;. The vanishing join equation the step-3 extensors; from the null space of the 6 con-
FVF, =0,i=0,1,2,... k, contributesl5 — 3i linearly straintsH,' F; + F,;" H; = 0 on F;. Given that the rank
independent constraints g, thus 3 planar bodies are suf-  of F; is 2, we have an additional cubic constraint (arising
ficient to uniquely define a solution for the 36 coefficients of from the vanishing determinant d@f;). This implies that

F. the possibler; do not live in a 3-dimensional subspace but
in an algebraic variety — a fact that complicates consider-
4.1 Parallel Planes ably the process of finding a common transversal. Second

is when we recoveF; from eqn. 3 we have an additional

Going back to the general case of translations filling up Subic constraint which can be used to further constrain the
a full rank space, the calculation also changes when planesyStém of equations using a Levenberg-Marquardt type of
are parallel to each other. Consider homography matrices'terative algorithm. . _
Hy, H, induced by two parallel planes. The step-3 extensor 1N this paper we chose to ignore the non-linear con-
F: contributes 20 independent equations far However, ~ Straints and instead obtain a simple and manageable algo-
Fi V F, is a step-5 extensor (instead of 6), and tfgs ~ Mthm. Ultimately it is a matter of a tradeoff between the
would contribute only 16 new constraints (instead of 19). Possibility of achieving higher accuracies in the presence of

To see why this is so, considéf, , H, two homography noise and the resulting added complexity of doing so. The
matrices induced by two distinct but parallel planes, i.e., €xPeriments shown nextindicate that one can obtain reason-

H, = H., +t;n* andH; = H., + t;nt. One can ver- able estimation accuracy using the linear constraints alone.
ify (by substitution) thatF' = [t]«H; = [t]xH», where

t =t; — t;, which means that'" H, and F'' H, are skew- 5 Experiments

symmetric. Thus, the solution space 6r (given H,) and

the solution space faF; (given Hs) intersect a’, which In the experiments below we tested the reconstruction of
in turn means thaf, v 7 is a step-5 extensor. Therefore, he fundamental matrices and the affine calibration under
among the 20 constraints contributed frdf, (*,”) = 4 general translation and translations along a fixed direction.

of them are in common with the previous set of 20 made by ~ |, he first experiment, shown in Fig. 1, four 3D objects
F1. Thus, we will need much more than 5 planes in order to (ith planar parts) are in translational (general) motion and
obtain a sufficient number of constraints to uniquely solve e fifth object is taken from the static background (the ta-

for 7. Nevertheless, there is an alternative way to handle ble). Fig. 1a,b displays the two views of the dynamic con-
this situation (which requires only 4 translating planes) but figuration. The homography matricé , ..., Hs are recov-

due to space limitations we will not introduce here. ered using the matching points displayed in Fig. 1c. The
_ _ fundamental matrice#1, ..., F5 were recovered using the
4.2 Non-linear Constraints algorithm presented in this paper. Fig. 1d displays marked

pointsp on one of the objects and Fig. 1e shows the epipo-
The final issue we address here is the non-linear con-lar linesF'p whereF' is the corresponding fundamental ma-
straints we so far ignored. There are two kinds of non- trix. Note that the epipolar lines pass through the matching
linearities. The first kind is associated with the fact that points at a sub-pixel accuracy.
not every vector of 84 coefficients is an admissible step- The affine calibration was constructed from the recov-
3 extensor. Letd be a step-3 extensor, using Claim 1 on ered H,, and its accuracy was estimated as follows. A



line drawn on one of the planar objects (a book) was recon- [2] M. Barnabei, A. Brini, and G.C. Rota. On the exterior calcu-

structed in 3D using the recovered calibration data - denote
that line asL. Then matching points along parallel lines
were marked in both images and reconstructed in 3D. For

each reconstructed point a 3D line paralleltovas cre-

ated and back-projected to the image. If the calibration is
projective the back-projected lines should not necesserily be
parallel in the image, but when the calibration is affine those [4]
lines should be parallel (on the image of the planar object).
Fig. 1f displays the back-projected lines which are indeed

parallel over the extent of the book (the planar object).

In the second experiment, shown in Fig. 2, the multi-

body configuration moves along a fixed direction.

this particular scene the bodies consist of the person, the
chair, and the static floor. Fig. 2a,b displays two views of
this multi-body configuration. The homography matrices
H,, H,, H; were recovered from point matches — on the
person taken from the chest (approximately planar), on the 7]
chair taken from box, and from points on the floor. The
three fundamental matrices were recovered, and that recov-
ered from the floor was tested on points from the static part
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In Proceedings of the International Conference on Computer
Vision Cambridge, MA, June 1995.

0.D. Faugeras and T. Papadopoulo. Grassmann-Cayley alge-
bra for modeling systems of cameras and the algebraic equa-
tions of the manifold of trifocal tensoréNRIA Rapport de
rechercheno.3225 - july 1997

of the scene as shown in Fig. 2c,d. Note that the points be- [g] a.w. Fitzgibbon and A. Zisserman. Multibody Structure and

ing tested are taken from regions which are far away from
the floor and thus are more susceptible to estimation error
of the fundamental matrix — yet the epipolar lines pass

through the matching points at sub-pixel accuracy.

6 Summary

We have shown that a configuration of multiple planes
moving relatively to each other in pure translation conveys [11]
additional information (beyond the homography matrices)
which can be used to recover the fundamental matrices, on
per object, and in turn recover the affine calibration betwee
the two cameras. The technique for doing so was based on
the observation that all fundamental matrices live in a 3-
dimensional subspace, which when represented as an exterhg]
sor is the common transversal on the extensors defined by
the homography matrices. We have shown that generally 5
intersections are needed for a linear solution, and when the4
multi-body motion is along a fixed direction then 3 intersec-
tions suffice. The affine calibration readily follows once the
fundamental matrices are recovered because the homogra-
phy induced by the plane at infinity is the only homography [15]
matrix shared by all the fundamental matrices, thus can be

extracted linearly from at least two bodies.
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Figure 1. (a),(b) two views of a multi-body scene under general translation. (c) Points used to find the five homography matrices
H,,...,Hs. (d),(e) Some corners pointed on one of the objects, and the corresponding epipolar lines on the other object. (f)
Back-projection of parallel lines for testing accuracy of affine calibration — see text for details.
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Figure 2. (a),(b) two views of a multi-body scene where the objects move along a fixed direction. Homography matrices are
estimated one from the person’s chest, one from the object on the chair, and one from the floor. (c),(d) Some “static” points and their
corresponding epipolar lines.



