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Norm-Product Belief Propagation: Primal-Dual
Message-Passing for Approximate Inference

Tamir Hazan and Amnon Shashua

Abstract—Inference problems in graphical models can be rep-
resented as a constrained optimization of a free-energy function.
In this paper, we treat both forms of probabilistic inference, esti-
mating marginal probabilities of the joint distribution and finding
the most probable assignment, through a unified message-passing
algorithm architecture. In particular we generalize the belief
propagation (BP) algorithms of sum-product and max-product
and tree-reweighted (TRW) sum and max product algorithms
(TRBP) and introduce a new set of convergent algorithms based
on “convex-free-energy” and linear-programming (LP) relaxation
as a zero-temperature of a convex-free-energy. The main idea
of this work arises from taking a general perspective on the
existing BP and TRBP algorithms while observing that they all
are reductions from the basic optimization formula of
where the function is an extended-valued, strictly convex but
nonsmooth and the functions are extended-valued functions
(not necessarily convex). We use tools from convex duality to
present the “primal-dual ascent” algorithm which is an extension
of the Bregman successive projection scheme and is designed to
handle optimization of the general type . We then map
the fractional-free-energy variational principle for approximate
inference onto the optimization formula above and introduce
the “norm-product” message-passing algorithm. Special cases
of the norm-product include sum-product and max-product
(BP algorithms), TRBP and NMPLP algorithms. When the
fractional-free-energy is set to be convex (convex-free-energy) the
norm-product is globally convergent for the estimation of marginal
probabilities and for approximating the LP-relaxation. We also
introduce another branch of the norm-product which arises as the
“zero-temperature” of the convex-free-energy which we refer to
as the “convex-max-product”. The convex-max-product is conver-
gent (unlike max-product) and aims at solving the LP-relaxation.

Index Terms—Approximate inference, Bethe free energy,
Bregman projection, convex free energy, dual block ascent,
Fenchel duality, graphical models, linear programming (LP) re-
laxation, Markov random fields (MRF), max-product algorithm,
maximum a posteriori probability (MAP) estimation, sum-product
algorithm.

I. INTRODUCTION

P ROBABILISTIC graphical models present a convenient
and popular tool for reasoning about complex distribu-

tions. The graphical model reflects the way the complex dis-
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tribution factors into a product of potential func-
tions, each defined over a small number of variables, and re-
ferred to as factors. A graphical model, which defined in terms
of factor graphs, represents the incidence between factors and
the variables by a bipartite graph with one set of nodes corre-
sponding to the variables of the joint distribution and another
set of nodes standing for the factors. An edge exists between a
variable node and a factor node if the variable is contained in
the set of variables represented by the factor. In many applica-
tions of interest the factor graph is sparse. In other words, in the
modeling of the joint behavior of a set of interacting variables
it is often the case that only a small subset of variables interact
directly. For example, in the domain of image processing, if we
think of each pixel as a variable in a joint distribution over all
image pixels then, typically the intensity value of a single pixel
will depend most strongly on neighboring pixels in the image,
rather than on those at a distant location. Without the local inter-
action assumption, i.e., if each variable interacts directly with all
other variables, then the inference of the joint behavior would
be a hopeless task.

Problems involving inference using graphical models comes
up in a wide range of applications covering a variety of disci-
plines. Those include digital communications (error correcting
codes [13]), computer vision [55], medical diagnosis [25], pro-
tein folding [69], computer graphics [14], [9], clustering [49], as
well as other broad disciplines which include signal processing,
artificial intelligence and statistical physics [15], [27].

Probabilistic inference comes in two distinct forms and
typically involve two slightly different algorithmic thrusts.
One form of inference task is to obtain one global state of the
joint distribution that is most probable, i.e., find the values
of which maximizes . This form of
inference is typically referred to as the maximal a-posteriori as-
signment, or in its abbreviated form, the MAP assignment. The
second type of inference has the objective of obtaining marginal
probabilities for some subset of variables given evidence (value
of) about other variables. For example, if then

comes out of summing exponentially many elements
resulting in the likelihood of

to obtain each of its possible values. In this paper, we
will focus on both inference problems with the objective of
introducing a unifying algorithmic thrust.

Exact inference is NP-hard [50], thus introducing the need to
derive algorithms for approximate inference. One of the most
popular class of methods for inference over (factor) graphs
are message-passing algorithms which pass messages along
the edges of the factor graph until convergence is reached.
The belief-propagation (BP) algorithms [44] come in two
variations: the sum-product algorithm for computing marginal
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probabilities and the max-product algorithm for computing
the MAP assignment. Citing [70], the centrality of inference
using graphical models and the utility of the BP algorithms
for solving them is reflected in the fact that equivalent or very
similar message-passing algorithms have been independently
derived under different disciplines. Those include the Viterbi
algorithm [60], Gallager’s sum-product algorithm for decoding
low-density parity check codes [16], the turbo-decoding algo-
rithm [3], the Kalman filter for signal processing [28], and the
transfer-matrix approach in statistical mechanics [1].

The BP algorithms are exact, i.e., the resulting marginal
probabilities and the MAP assignments are the correct ones,
when the factor graph is free of cycles—a state of affairs that
considerably limits the application of those algorithms to solve
real world problems. Nevertheless, an intriguing feature of BP,
which most likely is the source for its great popularity, is that it
is well-defined and often gives surprisingly good approximate
results for graphical models with cycles. However, in this con-
text there are no convergence guarantees (except under some
special cases [56], [41]) and the algorithms fail to converge in
many cases of interest.

During the past decade there has been much progress in
putting forward a framework for approximate inference using
variational principles. It has been shown that the fixed-points
of the sum-product algorithm (for estimating marginal proba-
bilities) correspond to the fixed-points of a constrained energy
function called the Bethe free energy [70]. The free energy
arises from the expansion of the KL-divergence between the
input distribution and its product form. The Bethe approxima-
tion replaces the entropy term in the free energy by the Bethe
entropy. The investigation of the stationary points of the Bethe
free energy yields conditions for convergence of BP [20], and
lower bounds for the free energy in some special cases [54].
These lower bounds are based on the loop calculus framework
which considers the Bethe free energy as a first-order approx-
imation for the free energy [8]. The Bethe free energy is exact
for factor graphs without cycles, as well as convex over the set
of constraints (representing validity of marginals). When the
factor graph has cycles the Bethe energy is nonconvex and the
BP algorithms may fail to converge. Although it is possible to
derive convergent algorithms to a local minima of the Bethe
function [71], [22] the computational cost is large and thus has
not gained popularity.

To overcome the difficulty with the nonconvexity of the Bethe
approximation, several authors have introduced a class of ap-
proximations known as convex free energies which are convex
over the set of constraints for any factor graph. An important
member of this class is the tree-reweighted (TRW) free energy
which consists of a linear combination of free energies defined
on spanning trees of the factor graph [62]. It is notable that for
this specific member of convex free energies a convergent mes-
sage-passing algorithm, applicable to pairwise factors only, has
been recently introduced [17]. However, a convergent message
passing algorithm for the general class of convex free energies
is still lacking. The existing algorithms either employ damping
heuristics to ensure convergence in practice [63] or focus on a
subclass of free energies where the entropy term is a positive
combination of joint entropies [22].

The MAP assignment problem has been shown to be approx-
imated by a Linear-Programming (LP) relaxation scheme [64]
with message-passing algorithmic attempts as a solution [31],
[66], [18], [67], [37]. Some of these attempts guarantee con-
vergence only under special cases (such as binary variables),
[31], [66]. Others, such as [18], arises as a special case of our
algorithm. We refer to [37] for detailed account on the connec-
tions between these message-passing algorithms. A double-loop
of message passing using a proximal minimization technique
proposed recently by [45] is convergent but at a considerable
computational expense. Dual decomposition techniques were
recently proposed [30], [33], which are related to dual subgra-
dient methods for the LP relaxation.

In this paper, we derive a class of approximate inference
message-passing algorithms, which we call norm-product
algorithms, using the notion of free-energy approximation.
The norm-product is an inference engine covering both the
estimation of marginal probabilities and the MAP assignment.
When the Bethe free energy is used as a substitution for the
free-energy, the norm-product reduces to the sum-product and
max-product algorithms where the latter emerges as a “zero
temperature” version of the former. When a convex-free-en-
ergy is used the norm-product becomes a convergent family
of algorithms along three strains: (i) a globally convergent
algorithm, which we call convex-sum-product, for estimating
marginal probabilities, (ii) a locally convergent algorithm
emerging as a zero-temperature version of the former strain, we
call convex-max-product, for estimating the MAP assignment,
and (iii) a globally convergent algorithm for the LP-relaxation
problem.

The convex-sum-product algorithm was published in [19]
with only a brief sketch of the detailed derivation. In this
paper we have chosen to put a large amount of material in
appendices. Due to the complexity of the presented material
and the extensive use of modern optimization infrastructure,
the body of the paper contains the main “storyline”, statements
and algorithms whereas the detailed proofs and the required
mathematical infrastructure are contained in appendices.

II. NOTATIONS, PROBLEM SETUPAND BACKGROUND

Let be the realizations of discrete random
variables where the range of the random variable is

, i.e., . We consider a joint distri-
bution and assume that it factors into a product
of nonnegative functions (potentials)

(1)

where the functions represent “local evidence” or prior
data on the states of , and the functions have argu-
ments that are some subset of and is a nor-
malization constant, typically referred as the partition function.
For example has
two factors with indices and

, , and uniform local evidence
for every and every .
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The factorization structure above defines a hypergraph whose
nodes represent the random variables and the subsets of vari-
ables correspond to its hyperedges. For example, if all factor
functions are defined on pairs of random variables then the fac-
torization is represented by a graph. A convenient way to rep-
resent hypergraphs is by a bipartite graph with one set of nodes
corresponding to the original nodes of the hypergraph and the
other set corresponds to its hyperedges. In the context of graph-
ical models, such a bipartite graph representation is referred to
as a factor graph [35] with variable nodes representing
and a factor node for each function . An edge connects
a variable node with factor node if and only if , i.e.,

is an argument of . We adopt the terminology where
stands for all factor nodes that are neighbors of variable node ,
i.e., all the nodes for which , and stands for all
variable nodes that are neighbors of factor node .

We shall focus on the two inference tasks of computing
marginal probabilities and maximum a priori (MAP) as-
signment. The computation of the marginal probabilities

and , requires the
summation over the states of all the variable nodes not in or

, respectively. This computation is generally hard because
it may require summing up exponentially large number of
terms—thus one seeks efficient ways or approximate solutions
for the marginals. The MAP assignment is the task of finding
a state for each that brings the maximal value to the joint
probability .

The BP algorithms, known as sum-product and max-product,
are two algorithms for computing marginal probability and
MAP assignment, respectively, that can be described in terms
of operations on a factor graph. As already mentioned in the in-
troduction, the BP algorithms will deliver the correct inference,
i.e., are exact, if the factor graph has no cycles, but are still well
defined and often provide good approximate results when the
factor graph has cycles.

The BP algorithms are defined in terms of messages between
variable and factor nodes. The message from factor
node to variable node , and the opposite direction message

, is a vector over the states of . In the sum-product
algorithm those have the following form:

The indicates that one can normalize the vector. The mes-
sages are usually initialized to the uniform vector.
Upon convergence of the message-passing scheme the marginal
probabilities and can be expressed in terms of a
“pseudo-distribution”, also known as beliefs, and
defined as follows:

When the factor graph has no cycles the messages converge and
the beliefs correspond to the marginal probabilities. When the
factor graph has cycles there is no convergence guarantee and,
regardless of convergence, the recovered beliefs provide only an
approximation to the marginal probabilities.

In the max-product algorithm the messages are
slightly altered

while remain as in the sum-product algorithm. The
MAP assignment can be recovered from the beliefs when
the factor graph is a tree. In such a case, the MAP assignment of

corresponds to the index of highest entry of . In general,
convergence is not guaranteed, and the MAP assignment can be
recovered only for specific problems, [65], [2], [24], [47].

A. Inference Using a Variational Principle

The BP algorithms apply to tree-structured factor graphs
yet are well defined for general factor graphs but without
convergence or accuracy guarantees. The variational principle
approach, described below, is a decade long effort at providing
an extended platform from which old, i.e., BP algorithms, and
new (preferably convergent) algorithms can emerge.

The variational approach seeks a distribution
that is as close as possible, in relative entropy terms, to the
product potentials and . Expanding the KL-diver-
gence between two non-
negative vectors results in

where is the so-called Gibbs-Helmholtz free-energy

(2)

The term is the entropy and
and . The linear term is often re-

ferred to as the energy term. By minimizing over the prob-
ability simplex , we get back
the probability distribution defined in (1), as the optimal argu-
ment , and minus the log of the normal-
ization, or equivalently the partition function, as the value at the
minimum

Since is strictly convex and the simplex constraints are
convex, the minimum is unique. So far we have not gained any-
thing because the entropy is computationally intractable
since its evaluation is exponential in , and satisfying the
probability simplex constraints is intractable as well. The vari-
ational methods are based on a tractable approximation to the
free-energy by: i) approximating the entropy term
by a combination of local entropies over marginal probabilities
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, and ii) by approximating the probability simplex
constraints by the so-called “marginal consistency” constraints.

In approximate inference, the true marginal distributions
and are replaced by “beliefs” and

which form a “pseudo distribution” in the sense that the beliefs
might not necessarily arise as marginals of some distribution

. The probability simplex constraints are replaced
by marginal consistency constraints defined as follows:

The entropy approximation as a function of the beliefs
is known as fractional entropy and has the form

(3)

where the joint entropy
and the local entropy .

For factor-graphs without cycles, the setting of and
where is the degree of the variable node associated

with in the factor graph, renders the approximation to be
exact and equal1 to the entropy . Such an approximation is
known as the Bethe entropy

Moreover, in the case of a tree, the marginal consistency con-
straints are equal to the probability simplex constraints,
thus making the constrained Bethe free-energy problem

a convex optimization producing the true marginals
and . The constrained optimization is de-

fined in terms of beliefs only and is therefore computationally
tractable. However, if the factor graph has cycles, the minimizer
of the constrained Bethe free energy is not guaranteed to corre-
spond to the true marginals , , and not even realiz-
able as a true distribution. Therefore, for general factor graphs,
the Bethe free-energy optimization approach finds an approxi-
mation to the true marginal probabilities. From the optimization
point of view, the Bethe free energy is strictly convex in the in-
tersection of constraints when the factor graph is a tree. When
the factor graph has cycles, the Bethe energy is nonconvex, and
although it is possible to derive convergent algorithms to local
minima of the Bethe function [71], [22], the computational cost
is large and thus has not gained popularity.

What makes the Bethe free-energy optimization interesting
is the observation, first elucidated by [70], that when the
sum-product algorithm converges then it does so to a stationary
point of the constrained Bethe free energy, i.e., fixed-points of

1in this case the joint probability can be expressed solely in terms of the
marginals . Expanding
produces the Bethe entropy approximation.

the algorithm correspond to stationary points of the variational
problem. This does not mean that the sum-product algorithm
descends on the Bethe free energy (in fact it does not), but that
near a fixed point things start to behave well. The significance
of the observation is that it ties the popular sum-product al-
gorithm with a specific variational principle and moreover it
suggests a framework for seeking natural generalizations of the
Bethe approximation with their associated message-passing
algorithms.

Generalizations of the Bethe free-energy move along two
thrusts. The first employs better (higher-order) approximations
to the entropy and higher-order constraints beyond the marginal
consistency constraints to better approximate the full proba-
bility simplex constraints. This effort includes Kikuchi free
energy, region graphs, and other hyper-graph based methods
[70], [29]. The second thrust looks for convergence guaran-
teed message-passing algorithms by extending the Bethe free
energy to form a wider class of functions, known as convex
free energies, which are convex in the intersection of marginal
consistency constraints. In this paper we focus on the second
thrust. The inclusion of Kikuchi approximations and region
graphs is a natural extension to the results we introduce in this
paper but for the sake of clarity we leave it outside the current
scope.

The fractional entropy (3) can be set to form a family of con-
cave approximations. The set of sufficient conditions for an en-
tropy approximation of the type of (3) to be concave over the
set of constraints was introduced in [21], [66] and take the fol-
lowing form:

Definition 1 (Concave Entropy Approximation): An approxi-
mate entropy term of the form (3) is strictly concave over the set
of marginal consistency constraints if there exists ,
and such that and

. The approximate entropy becomes

(4)
The entropy approximation includes the Bethe approx-
imation when , , and , but it is
guaranteed to be strictly concave for any setting of the param-
eters where , and . An important member of
this class is the TRW approximation [63] where is equal to
a weighted combination of spanning trees of the original graph
(all factors are pairwise and thus represents an edge) which
pass through . In Appendix D we describe a number of con-
cave settings of including TRW and other heuristic settings.
The convex-free-energy variational program becomes

(5)

The global minimizer of the convex-free-energy program
above is an approximation to the marginal probabilities due to: i)
the term is an approximation to the entropy of the distribution
and its quality depends on how the parameters , , are set
and on the structure of the factor graph and ii) the marginal con-
sistency constraints approximate the probability simplex
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constraints, there is no guarantee that in general form a distri-
bution, i.e., the marginal estimations and might
not arise from any probability distribution over .

The only guarantees we have is that if the factor graph has
no cycles then the marginal probabilities are exact and if is
strictly concave then it should be possible to generate a conver-
gent message-passing algorithm (unlike BP algorithms which
are not generally convergent).

We move next to the MAP assignment task where one seeks a
vector which maximizes the product of potentials, or equiv-
alently minimizes the energy

Described as a variational principle program, the MAP as-
signment problem is equivalent to the linear program whose
variables corresponds to distribution with expo-
nential many elements

The optimization of a linear function over the probability sim-
plex yields an optimal solution in an extreme point of the
probability simplex, namely is a zero-one distribution. In
particular and for every holds .

An approximation can be obtained by approximating the
marginal probabilities and with beliefs
and which are not guaranteed to correspond to a true
distribution over

(6)

If the minimizer of the LP-relaxation problem comes out
without ties, i.e., the marginal vectors have a single
maximal entry, then the MAP assignment readily emerges
from the LP-relaxed solution. This LP-relaxed problem can
be solved using off-the-shelf LP solvers but the key problem
with standard LP solvers, however, is that they do not use the
graph structure explicitly and thus are suboptimal in terms
of computational efficiency. An empirical study found the
message-passing LP-solvers, e.g., max-TRBP, to be superior
to the CPLEX solver, a commercial LP solver that implements
different techniques for solving LP, such as primal and dual
simplex solvers, network solvers, primal-dual barrier solver for
sparse problem, and sifting techniques executing sequences of
LP subproblems [68].

The relaxed LP problem of (6) has been widely studied in the
literature in the context of message-passing algorithms. Special
cases of these LP-relaxations were used for constraints satisfac-
tion [48], [34]. The general form in (6) was studied using tree de-
compositions in [64], [30], as well as dual decomposition [32],
[33], and dual block coordinate ascent [67], [18], [52]. A general
framework for these recent developments is described in [37].
Since the LP energy is not strictly convex, convergence to the
global minimum is a challenge, since (6) usually corresponds to
a nonsmooth dual. In this case, a dual block coordinate ascent
can lead to a corner in the dual objective, which is a nonoptimal
stationary point.

An alternative class of methods are based on a (strictly)
convex relaxation approach. There are two notable recent
examples in this class: one using a proximal minimization
technique where the convex term is a weighted KL-divergence
measure between the sought-after belief vector and the one
from the previous iteration [45]. The proximal minimization
approach involves a double-loop of message passing iterations
and is guaranteed to converge to the global optimum of (6). The
second approach, the one we follow in this paper, is to make
(6) the “zero temperature” of the perturbed problem

(7)

by taking . This approach was used in decoding low-den-
sity parity-check codes [61]. It was also used for LP-relaxations,
to derive a nonconvergent max-product like algorithm [66], and
for applying an iterative proportional fitting type algorithm [26].

This concludes the necessary background to inference within
the framework of variational principle. The variational problem
we will work on next is (7). We will derive a convergent mes-
sage-passing algorithm called the norm-product. When the pa-
rameters of are set to the Bethe approximation the algorithm
reduces to the sum-product (when ) or the max-product
(when ). When is concave and the norm-product
becomes a globally convergent message-passing algorithm, re-
ferred to as convex-sum-product, for approximating marginal
probabilities. When , we obtain a convergent form of
max-product we call convex-max-product and when , we
obtain an approximation (with proven bounds) to the LP-relax-
ation solution.

III. NORM-PRODUCT BELIEF PROPAGATION ALGORITHM

We seek an algorithm for minimizing the inference varia-
tional (7) with the following properties: i) if the entropy approx-
imation term is strictly concave, i.e., (7) is a convex-free-en-
ergy, the algorithm will be convergent for all and will
converge to the global optimum when ; ii) the algorithm will
remain well defined when is nonconvex (such as Bethe-free-
energy and other fractional entropy approximations) and exhibit
the property that fixed points of the algorithm coincide with sta-
tionary points of (7); and iii) the algorithm uses the graph struc-
ture inherent sparseness, i.e., is defined by a message-passing
architecture on the underlying factor-graph. In other words, like
the BP-algorithms, our scheme should be sending messages be-
tween variable and factor nodes of the factor graph.

We will first take a detour and derive a general framework for
minimizing problems of the type

(8)

where is a strictly convex, nonsmooth, extended-valued
function of the type where is essen-
tially smooth and is the indicator function of the affine set

, namely, if and other-
wise. The functions are convex extended-valued functions
(see Appendix A on mathematical background). In Appendix B,
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we derive the following “primal-dual” block ascent algorithm
which is guaranteed to converge to the global minimizer of (8).

Algorithm 1 (Primal-Dual Ascent) Let
where is strictly convex, essentially smooth
extended-valued function, and let be convex
extended-valued functions.

Initialize .
1) Repeat until convergence:
2) For :

a)
b)

c) where is arbitrary.
Output .

The vectors and are messages passed along edges of
a bipartite graph with (function) nodes corresponding to the

functions and (variable) nodes corresponding to the
dimension of . Function node sends the coordinates of
vector to the variable nodes. Variable node sends the
’th coordinate of vectors to the functions nodes.

The algorithm iteratively optimizes with respect to the indexes
, stopping when it does not change the beliefs

, thus the network proceeds in an almost cyclic update policy.
The algorithm fits well with a graphical model architecture in
the sense that if depends only on a small subset of
coordinates from , then for every (and
therefore need not be updated).

Claim 1: Assume variables are indexed by and
depends only on small subset of variables indexed by

and let . Then, for all
.

The claim and its proof can be found in Appendix B. For those
familiar with successive projection schemes, in the particular
case when , i.e., is strictly convex and essentially
smooth, and (the indicator function of convex
set ), the update step (b) for Algorithm 1 is a “Bregman” pro-
jection [6] of the vector onto the convex set . In that case,
following some algebraic manipulations (such as eliminating
among other manipulations) the scheme (with ) reduces
to the well known Dykstra [12] (also goes under different names
such as Hildreth, Bregman, Csiszar, Han) successive projection
algorithm which has its origins in the work of Von-Neumann
[43]. Further historical details can be found in Appendix B.

Another useful property of the algorithm that it is well defined
for nonconvex primal energies. Specifically, we can establish the
following result.

Claim 2: Consider Algorithm 1 for Legendre-type function
and nonconvex continuously differentiable functions
restricted to the affine domain , and

assume in step (c) is in the interior of . Then,
fixed-points of the algorithm coincide with stationary points of
the nonconvex program . The proof can be
found in Appendix A and Appendix B. The result states that

when are nonconvex but defined over an affine domain the
algorithm is no longer convergent, but if it does converge it will
do so to a stationary point of the optimization problem. This
property of the algorithm extends the result of [70] about the
behavior of the sum-product algorithm: if it converges, then it
converges to a stationary point of the Bethe free-energy.

The inference variational problem presented in (7) is em-
bedded into the general template of (8) as follows:

(9)

where with being the set of
where is the probability simplex (ar-

rays that are nonnegative and sum to one), and is defined as
follows:

(10)

Note that include all , i.e., for
. The functions are defined as follows:

(11)
where is the affine set consisting of for every

, which live in the probability simplex, i.e.,
, and satisfy the marginal consis-

tency constraints . Note that are
not explicitly included in , but they are described by
the values of which all in the domain of agree upon.

Given the sparse structure of then, following Claim 1, we
present the entries of according to the factor-graph structure
by setting (and likewise ). Step (b) of Al-
gorithm 1 is reduced to finding for all and step (c)
updates by the rule

for an arbitrary . If instead of updating , we would update
the additive degree of freedom

inherent in the choice of turns into a scaling choice of .
The derivation process required for embedding the definitions

above into the primal dual Algorithm 1 is described in detail in
Appendix C. The resulting algorithm, we call norm-product, is
presented in Fig. 1.

Just as in the BP algorithms, the message from the
factor node to the variable node is a vector over all possible
states of . The message from the variable node
to the factor node is an array over all possible states of .
The beliefs , which are the approximations to the marginal
probability when , can be computed from the mes-
sages :

(12)
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Fig. 1. Norm-product BP algorithm, where the messages are computed with respect to the norm. For , , it
reduces to the BP algorithms, sum-product when and max-product when . Whenever is the weighted number of spanning trees through edge ,
and and it reduces to the tree-reweighted BP algorithms (sum-TRBP and max-TRBP). Whenever , , the
norm-product is guaranteed to converge, and if also it converges to the global optimum of the program in (7).

where is defined in Fig. 1. The joint beliefs can be
computed from the messages

(13)

The norm-product algorithm includes the BP algorithms
(sum-product and max-product), as well as sum-TRBP [63],
max-TRBP [64], and NMPLP [18] as particular cases. These
algorithms relate to the simpler form of the norm-product algo-
rithm, when . In this setting, the messages
depend solely on the local potentials and the messages

. Therefore, the messages can be written
in the compact form , replacing with . In this
case, the norm-product algorithm in Fig. 1 takes the form

When using the norm-product with the Bethe entropy approx-
imation , , there holds and
the algorithm reduces to

which is the sum-product algorithm for and the max-
product algorithm for .

When the factors corresponds to pairwise interactions
the messages of norm-product algorithm and

can be written by the shorthand notation and . The

messages of the norm-product algorithm in Fig. 1 de-
pends on a single message and whenever the
message depends only on the messages for every

, which we abbreviate by . Substi-
tuting the value of into we obtain the pairwise norm-
product, whose update rule consists only of the messages .
When the pairwise norm-product algorithm with
takes the form

The sum-TRBP [63] is a special case. The sum-TRBP sets as
the relative number of spanning trees of the graph which include
the edge , and sets . As a result,

and by substitution , we obtain
the sum-TRBP update rule as originally introduced in ([63, eq.
(39)])

When the pairwise norm-product algorithm with
takes the form

The max-TRBP [64] and NMPLP [18] are special cases, de-
rived as follows: With max-TRBP, we have and defined
by the TRW setting which results in , and the Max-
TRBP ([64, eq. (50)]) follows from the substitution

. The NMPLP is another recent max-product-like al-
gorithm where messages are defined as follows:

where . The pairwise norm-product message
with the setting and for

every gives rise to . Thus, with the
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Fig. 2. Sum-product BP type algorithm, attained from the norm-product BP when , where the messages are computed with the norm.
For , , it reduces to the sum-product BP algorithms, and whenever is the weighted number of spanning trees through edge , and

and it reduces to sum-TRBP. If , , it reduces to the convex-sum-product algorithm, which is guaranteed to
reach the global optimum of the convex free energy.

substitution and unit local potentials
, we obtain the NMPLP message above.

The result of having the BP, TRBP and NMPLP algorithms
arise as special cases of the norm-product algorithm underscores
the generality of our derivation. However, the more interesting
potential in the norm-product algorithm is the emergence of
new message-passing schemes which are guaranteed to con-
verge (unlike the BP and TRBP algorithms) corresponding to
the setting of as a concave function .
Three classes of algorithms emerge.

• The convex-sum-product corresponding to the setting
in the norm-product algorithm. The convex-sum-product

is guaranteed to converge to the global optimum of the
primal function (7). This includes the TRW free-energy in
particular and other settings of convex-free-energy which
are detailed in Appendix D.

• The approximate LP-relaxation corresponding to the set-
ting (but ) in the norm-product algorithm.
It provides an approximate solution to the LP-relaxation
whose distance from the true solution is governed by an
upper-bound we derive. The approximate LP-relaxation is
guaranteed to converge to the global optimum of the primal
function (7).

• The convex-max-product corresponding to the setting
in the norm-product algorithm. Unlike the max-product,

the convex-max-product is convergence guaranteed. How-
ever, there is no guarantee that the recovered solution cor-
responds to the desired LP-relaxation solution. The advan-
tage of convex-max-product is efficiency (introduced by

instead of ) and very good empirical performance.
In fact, the convex-max-product is a convergent form of
max-product.

These message-passing algorithms, which are collectively re-
ferred to as convex-BP algorithms, are discussed in Section IV.

IV. THE CONVEX BELIEF PROPAGATION ALGORITHMS

Equation (7) represents the free-energy approximation when
, the LP relaxation when , and a perturbation of the

LP-relaxation for MAP estimation when . When the en-
tropy approximation term is the Bethe approximation (setting

, , in (4)) the sum-product and

max-product arise as special cases of the norm-product
algorithm. Since in both cases the free-energy approximation
is nonconvex (for factor graphs with cycles) the convergence
guarantees of those algorithms are weak. For the sum-product
we have the guarantee that if the algorithm convergence then it
will reach a stationary point of the free-energy approximation
(see Claim 2 and [70]). With the max-product we have weaker
guarantees (Claim 2 does not apply because is not strictly
convex when ) where specifically, even if the algorithm
does converge the marginal consistency constraints might not
be satisfied.

We focus now on the family of convex-free-energies which
arise with the setting , , . The convex-sum-
product arises from the setting is described next.

A. Convex-Sum-Product Algorithm

As a free-energy approximation , (7) is strictly convex
and, in turn, the norm-product algorithm is guaranteed to con-
verge to the global optimum. We refer to the specialization of
the norm-product algorithm with , , and
as convex-sum-product summarized in Fig. 2.

The beliefs , which are the approximations to the mar-
ginal probability , and the joint beliefs , which are
the approximation to the marginal probability , are com-
puted from

Note that the algorithm has a much simpler form if . The
message depends only on and becomes

(14)

The convex-sum-product is globally convergent for any concave
setting of the entropy approximation , i.e., when , ,

. In particular, when the underlying factor-graph arises
from a graph, i.e., the local interaction forms pairwise relations
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Fig. 3. Max-product BP type algorithm, attained from the norm-product BP when , where the messages are computed with the norm.
For , , it reduces to the max-product BP algorithms. Whenever is the weighted number of spanning trees through edge , and

and it reduces to max-TRBP. For , , it reduces to the NMPLP algorithm. If , ,
it reduces to the convex-max-product algorithm, which is a convergent max-product type algorithm for LP-relaxations.

only, there is a setting that corresponds to TRW free-energy
as described in Appendix D. We also describe there additional
parameter settings corresponding to other heuristic convex ap-
proximations of the entropy term .

We describe next the use of the norm-product algorithm as
an approximation to the LP-relaxation for the MAP problem by
taking .

B. LP-Relaxation Bounds

For , let the global optimum of (7) (with con-
cave ) denoted by and let the solution of the LP
relaxation (6) denoted by . Let stand for the con-
catenated functions and , i.e.,

. We wish to
upper-bound the difference where is a
function of , , and , described below.

Proposition 1: Let , , describe a convex-
free-energy (7). Let stand for the cardinality of and

be the cardinality of . Then

where

Proof: The sets of beliefs , are both in the local poly-
tope , whereas the beliefs are the optimal ones with
respect to the original linear program (6), therefore

. On the other hand, the beliefs are optimal for the per-
turbed program (7); hence,
where is described in (4).

Using Jensen’s inequality, we obtain

and likewise . Substituting in (4) and noting that
, we obtain

As a result, in the ideal world, one could generate the solu-
tion arbitrarily close to the relaxed LP solution . There
are, however, numerical accuracy limitations which in practice
limit the size of . The assumption in Proposition 1
is that the output of the norm-product algorithm, as de-
fined in (12) and (13), is equal to the solution to the -per-
turbed LP-relaxation (7). This is indeed true when but not
when . As we shall see in more detail in Section V, the
norm-product algorithm is guaranteed to converge when
but not necessarily to the minimal primal value. Therefore, from
a numerical perspective there exists such that when the
underlying assumption ceases to hold. Moreover,
the value of depends on the graph structure and the poten-
tial functions and therefore is unlikely to have a simple and
useful form.
C. Convex-Max-Product Algorithm

We saw that for the setting of and when equals the
Bethe entropy approximation then the norm-product becomes
the max-product algorithm. We now explore the convex-free-en-
ergy setting , , while and refer to the
resulting family of algorithms as convex-max-product summa-
rized in Fig. 3.

Note that when we obtain a much simpler form of
the algorithm where the message depends only on
described in (14)

Algorithm 5 (Convex-Max-Product When )

Repeat until convergence:
1) For and for all do:

The desired output vector is recovered from computing
the vector as follows. If there are
no ties, is determined by setting the highest value to 1
and all remaining entries to 0. If the highest value of the vector
is shared among entries, i.e., there exist ties, then those
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entries receive the value . If there are no ties, i.e.,
for , then the result is the MAP solution.

The setting raises two issues: i) if the algorithm con-
verges, can one obtain from them the optimal LP-relaxation so-
lution? and ii) is there a convergence guarantee of the convex-
max-product family? The answer to the first question is gener-
ally negative. In a nutshell, the primal function is convex
but no longer strictly convex and therefore the dual function is
no longer differentiable. A dual ascent approach on a nondif-
ferentiable dual function can get stuck at “corners”. The impli-
cation of getting stuck at a corner of the energy landscape is
that the recovered primal solution might not correspond
to the lowest primal energy and furthermore might not satisfy
the marginal consistency constraints. More details can be found
in Appendix B.

We consider now the the second question of whether the dual
ascent creates a converging sequence? The answer is positive,
i.e., the convex-max-product algorithm is convergent (unlike
max-product on general graphs).

Theorem 1 (Convergence, Convex-Max-Product): The norm-
product algorithm with the parameter setting of and ,

, is convergent.
Proof: Let represent the conjugate dual

(21)

and let be the limit of as . The explicit
form of the conjugate duals and are

(15)

(16)

where . The functions

and are well defined and thus

is well defined as well. By definition of the block ascent
scheme, let . We note that

is well defined because appears as a norm
in the definition of the message .

We use the shorthand instead of
. We wish to show

that .
Assume, to the contrary, that and let in-

stead , thus making .
Since , there exists such that for all , we
have as well. Likewise, using the limit argu-
ment on the right-hand side, . Finally, since

, and is continuous, we have
, which contradicts the fact that .

We conclude that the convex-max-product, unlike
max-product, is convergence guaranteed, since it iteratively
improves the dual objective which is bounded by the primal
objective. The convex max-product is guaranteed to recover the
MAP assignment if its beliefs are integral. However, in many
cases we can use the rounding scheme for the max-product type
algorithms which guarantees the MAP if the beliefs recovered
from the messages are without ties [66].

V. EXPERIMENTS

In our experiments, we first evaluated the quality of the max-
product type algorithms for solving a linear program with pair-
wise interactions and binary variables

The max-product type algorithms differ from each other by
their approximated entropy coefficients , , , but since
the linear program has no entropy terms, all these algorithms
aim at producing the same result. We distinguish between three
families of max-product type algorithms.

• The first family corresponds to nonconcave entropy ap-
proximation, such as the Bethe free energy whose coef-
ficients , and produce the
max-product algorithm. These algorithms are not guaran-
teed to converge and even if they converge there are no
guarantees on their solution.

• The second family corresponds to concave entropy approx-
imations with positive , negative and . The
notable member of this family is the max-TRBP algorithm
[64], whose is the weighted number of spanning trees
which pass through the edge and .
These max-product type algorithms are not guaranteed to
converge, but whenever they converge one can extract an
optimal solution for a pairwise linear program with binary
variables, cf. [31, Theorem 4] and [38, Corollary 2].

• The third family corresponds to concave entropy approxi-
mation with , , . These convex-max-product al-
gorithms are guaranteed to converge to the global optimum
for a pairwise linear program with binary variables, cf. [38,
Corollary 2] and [18, Prop. 3].

We used the implementation of the max-product type algo-
rithm described in Algorithm 4, while each algorithm differs
in its appropriate , , . To evaluate the performance of
the algorithms we generated 100 samples of 10 10 grids,
where and were sampled from zero mean Gaussians
with standard deviation of one. We set the local evidence ac-
cording to , and for the pairwise interactions

we set the value on their diagonal and on
their off-diagonal.

First we investigated the convergence properties of three rep-
resentatives of the max-product families described above: The
max-product algorithm, the max-TRBP described in [64], and
the convex max-product with the same TRW free energy, rep-
resented by , , as described in Appendix D. The
convergence criterion for the max-product and max-TRBP algo-
rithms was measured with respect to change in their messages,
whereas the convergence criterion for the convex-max-product
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was measured with respect to change in its dual function. The
max-product algorithm converged for 25% of the runs, the max-
TRBP converged for 90% of the runs, and as expected from The-
orem 1 the convex-max-product always converged. However,
the convex max-product was slower than max-TRBP, while we
measured the primal values obtained by both algorithms during
their runs. Over the runs, the max-TRBP converged in average
number of 430 iterations compared to an average of 6400 of the
convex-max-product with TRW parameters.

Next we compared the run-time of three representatives of the
converging max-product: The convex-max-product with TRW
free energy, the NMPLP of [18] and the convex-max-product
with , , which was referred as “trivial
convex-max-product” by [66]. We measured their convergence
with respect to the change in their dual objective: The NMPLP
converged in average number of 200 iterations, the trivial
convex-max-product converged in average of 260 iterations,
and the convex-max-product with TRW free energy converged
in average of 6400 iterations.

To conclude, for linear programs with pairwise interactions
and binary variables the convex-max-product algorithms im-
prove upon previous max-product type algorithms: They are
guaranteed to converge to the global optimum. However the
convex-max-product algorithms differ from each other in their
memory requirements and run-time. Among those algorithms,
the ones with requires less memory, as their messages

depend only on , and have a faster run-time.
The norm-product family of algorithms can also solve linear

program using the perturbation method for a small value of ,
as described in Proposition 1. However the convex-max-product
algorithms are computationally more efficient, and guaranteed
converge to the global optimum of linear program with pair-
wise interactions and binary variables. Therefore we evaluate
the convex-norm-product type algorithms over linear programs
with nonbinary variables

For these programs, the convex-norm-product algorithms are
guaranteed to converge to the global optimum, whereas the
convex-max-product can converge to nonoptimal stationary
point. To evaluate the performance of the convex-norm-product
we generated 100 samples of 10 10 grid where and

were sampled from zero-mean Gaussians with standard
deviation of one, and were given the value on
their diagonal and on their off-diagonal.

We measured how often the convex-max-product algorithm
converges to nonoptimal stationary points, comparing to the
convex-norm-product which always achieves its optimum as
described in Claim 7. To indicate these events we compared
the dual value of the linear program, which is evaluated
by the convex-max-product stationary messages and by the
convex-norm-product messages, setting and ,

, . For 60% of the runs, the dual values attained
by the convex-max-product and the convex-norm-product were
0.01 close to each other, indicating both algorithms reached
the maximal dual value. On the other hand, for 25% of the

runs the dual value of the linear program attained by the
convex-max-product messages was 0.1 lower than the one
attained by the convex-norm-product messages, indicating the
convex-max-product reached a nonmaximal dual value. This
fact has important practical implications: Only from the dual
optimal solution one can recover the optimal beliefs that solve
the primal linear program, while nonoptimal dual messages
always relate to nonconsistent beliefs. In particular for the
25% of the runs the convex-max-product did not produce
beliefs which agree on their marginal probabilities, whereas the
convex-norm-product always recover beliefs which satisfy the
primal linear program constraints.

In our experiments, we also evaluated the sum-product type
algorithms for approximating the marginal probabilities of dis-
tribution of the form

The variational framework for approximating marginal proba-
bilities, described in Section II-A, suggests that the approxi-
mated entropy term affects the quality of the approximated mar-
ginal probabilities. Although we do not have a theoretical guar-
antee for setting the best approximation, in these experiments
we show how the different approximations behave in practice.
We consider two types of free-energy approximations:

• Nonconvex free-energy approximations, represented by
the Bethe approximation which corresponds to ,

, . The sum-product algorithm aims
at finding a local minimum for the Bethe free-energy
approximation, but it is not guaranteed to converge. In
cases where it does not converge, we used the double-loop
algorithm [22] in libDAI [40], which is guaranteed to
converge to a stationary point of the Bethe free energy.

• Free-energy approximations which are convex in the inter-
section of the marginalization constraints. These approxi-
mations are appealing since their stationary points are their
global minimum. We address the TRW free-energy ap-
proximations whose , , correspond to spanning
trees in the graph, and also to convex free-energy ap-
proximation heuristic described in Appendix D. We note
that whenever , , , the corresponding convex-
sum-product algorithms are guaranteed to converge to the
global optimum.

We used the implementation of the sum-product type algo-
rithm described in Algorithm 3, while each algorithm differs
in its appropriate , , . Following [63] We generated 100
samples of 10 10 grids with binary variables ,
where were uniformly chosen from the interval ,
and were either chosen uniformly from the attractive in-
terval or the mixed interval . We ran the simula-
tions with edge strength ranging from 0 to 2. We set the local
evidence to , and for the pairwise interactions

we set the value on their diagonal and on
their off-diagonal.

We compared to true marginal probabilities with the
approximated marginal probabilities recovered from the
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Fig. 4. Comparison of error in marginal probabilities, estimated by Bethe free
energy, TRW free energy and convex free energy described in Appendix D.
We computed the Bethe approximation by applying the sum-product when con-
verged, and the double-loop algorithm otherwise. The other free-energy ap-
proximations are convex and the convex-sum-product algorithm is guaranteed
to converge to their optimum. The graphs present the average error over 100
random trials.

Bethe free-energy approximation, TRW free-energy approx-
imation, and the convex free-energy heuristic. Fig. 4
shows the average error in the marginal probabilities

.
We conclude from this experiment that the convex approx-

imations are better than the Bethe approximation for the at-
tractive settings, when . However, the Bethe approx-
imation is slightly better in the mixed settings for and
considerably worse for . Moreover, in the mixed settings,
the sum-product did not converge for and we used the
double-loop algorithm instead which is computationally more
expensive. We also conclude that the convex free-energy set-
tings produce comparable results to TRW free energy for grids.

We also compared the TRW and convex free-energy ap-
proximated marginal probabilities on the complete graph, i.e.,
every two vertices are connected with an edge. We generated
100 samples of complete graphs with 10 vertices with binary
variables, where were uniformly chosen from the interval

, and were chosen uniformly from the interval
, for ranging from 0 to 2. Fig. 5 shows the average

error in marginal probability, suggesting that in the case of com-
plete graph, whose structure is far from a tree, the convex
approximation heuristic is better than the TRW approximation
for marginal probabilities estimation.

Generally, the same convex free energy can be represented by
different coefficients , , . In particular, the TRW free en-
ergy can be described by positive , which correspond to the

Fig. 5. Comparison of error in marginal probabilities on a complete graph, es-
timated by TRW free-energy approximation and convex free-energy approx-
imation. The graphs present the average error over 100 random trials.

Fig. 6. Run-time (in seconds) comparisons of convex-sum-product against a
conditional gradient descent solver (running on convex- free energy). The
algorithms were applied to grids with . Mean is shown
for 10 random trials.

weighted number of spanning trees that go through the edges
, and negative and . How-

ever, the same TRW free energy can be represented by , ,
, as explained in Appendix D. These representations af-

fect their corresponding sum-product type algorithms: The first
representation corresponds to the sum-TRBP algorithm which is
not guaranteed to converge, whereas the second representation
corresponds to the convex-sum-product which is guaranteed to
converge. However, the convex-sum-product was slower than
sum-TRBP, while we measured the primal values obtained by
both algorithms during their runs. Similar results were reported
in [17].

Fig. 6 compares the running time of the convex-sum-product
algorithm with a general convex solver performing conditional
gradient descent on the primal energy function [4] which uses
linear programming (LP) to find feasible search directions. We
ran the algorithms on grids where . The
stopping criteria for all algorithms was the same and based on
a primal energy difference of . For a 10 10 grid, for in-
stance, the general convex solver was slower by a factor of 20
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(e.g., 306 seconds compared to 15.2). For a 2 2 grid, on the
other hand, convex-sum-product took 0.15 seconds compared
1.41 seconds for the general convex solver. We conclude that
the sum-product type algorithms converge faster than a general
convex solver, since they exploit the structure of the graph.

VI. DISCUSSION

We have presented a single unified message-passing frame-
work for approximate inference covering both marginal prob-
abilities estimation and the MAP assignment problem through
LP-relaxation. We took a general perspective on the existing BP
and TRBP algorithms and noted that all are reductions from the
basic optimization formula of , where the function is
an extended-valued, strictly convex but nonsmooth and the func-
tions are extended-valued functions (not necessarily convex).
We used tools from convex duality to present the “primal-dual
ascent” algorithm which is an extension of the Bregman suc-
cessive projection scheme. Most of the details of this part of the
paper was pushed to Appendix B in order to reduce the overall
technical load for the main-body presentation.

We then mapped the fractional-free-energy variational
principal for approximate inference onto the optimization
structure and introduced the “norm-product” mes-
sage-passing algorithm. Special cases of the norm-product
include sum-product and max-product (BP algorithms), TRBP
and NMPLP algorithms. When the fractional-free-energy is
set to be convex (convex-free-energy) the norm-product is
globally convergent for the estimation of marginal probabilities
(the convex-sum-product branch corresponding to )
and for approximating the LP-relaxation . We have
also introduced another branch of the norm-product which
arises as the “zero-temperature” of the convex-free-energy

which we referred to as the convex-max-product. The
convex-max-product is a convergent solver to the LP-relaxation
(unlike max-product) but is not guaranteed to reach the global
optimum.

As a general statement, the convex-free-energies provide a
way for obtaining approximate inference over general graphs.
There are two main issues in this regard: the first is how to
obtain a guaranteed globally convergent message-passing algo-
rithm for the general class of convex free energies, and secondly,
how to tune the energy parameters , , to a specific graph?

As for the first issue, we have provided a complete treatment
which also encompasses the existing BP and TRBP algorithms
(though they do not arise from a convex-free-energy but from
a nonconvex fractional-free-energy). As for the second issue,
we provided a simple algorithm for converting the conventional
TRW-free-energy settings to the convex-free-energy framework
and have also proposed a heuristic principle where among all
admissible parameters we choose the one most closest to the
Bethe free energy (Appendix D). Empirical results show that
for certain graphs, like a grid, we obtain very close marginal
probability estimation results to those obtained by the TRW free
energy. For complete graphs we obtain a very different free en-
ergy from TRW and superior accuracy of marginal probability
estimation. The results suggest that our heuristic for setting up
the convex free energy satisfies what we were after, i.e., to get

approximations similar to BP but in guaranteed (globally) con-
vergent framework.

In this work we limited the scope to factor graphs where the
neighborhoods of every pair of factor nodes have at most a single
intersection to give a clear description of the mathematical de-
tails presented in this work. However, the techniques presented
here can also be used as a basis to a convex and nonconvex gen-
eralized BP [70]. Different algorithms were recently developed
for tightening the LP-relaxation [51], [53], [32] using intersec-
tions of increasingly larger clusters in order to recover the MAP
assignment. We believe similar techniques can be applied to
convex free energies in order to tighten the bound on the log-par-
tition function.

We did not discuss the parallel implementation of the norm-
product algorithm, but as every message-passing algorithm it
can be parallelized: One can distribute to the different parallel
units an independent set of vertices, i.e., vertices which are not
connected to each other in the graph. This mechanism preserves
the convergence and optimal guarantees of the algorithm. The
norm-product can also be made fully parallel, as it is a general-
ization of the BP algorithm, but in this case convergence is no
longer guaranteed. This can be fixed by methods described in
[19].

The convergence rate and the complexity analysis of the
norm-product algorithm were not addressed in this work. Since
the convex norm-product algorithm performs a dual block
ascent it has a linear convergence rate, whenever , , ,

(cf. [36, Theorem 5.1]), i.e., it achieves a -optimal
solution in steps. However, this notation does not
capture the true complexity of the algorithm as
depends on unknown constants which can be very large. For
this purpose complexity bound were recently introduced,
where it was proved that the dual gradient ascent attains linear
complexity, (cf. [42, Theorem 2.1.13] and [58, Theorem 5.1]).
Although the convex norm-product can be modified to achieve
linear complexity its step size depends on , , and the
modified algorithm is inefficient compared to the convex
norm-product. We believe this is due to the fact that the convex
norm-product finds the optimal dual assignment in each step,
unlike the gradient methods. Generally, a complexity bound
for block coordinate ascent algorithms such as the convex
norm-product is an open problem.

Future work is also required for obtaining a firmer theoret-
ical understanding about how to set the concave entropy ap-
proximation, in order to guarantee a good approximation for the
marginal probabilities. For example, how tight is the TRW-en-
tropy bound, and whether one can find a family of trees which
guarantees the best bound? Clearly, these theoretical guarantees
must consider the potentials functions, since for every graph its
TRW-entropy can be made arbitrary close to the true entropy
for some potentials.

APPENDIX A
MATHEMATICAL BACKGROUND ON CONJUGATE DUALITY

We consider the n-dimensional Euclidean space and de-
note vectors in bold face, e.g., . We start with a brief
review of basic concepts of sets. A set is said to be closed if
every of its limit points is contained the set. A set is called
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open if its complement is closed. The interior of a set ,
denoted by , is the largest open set contained in . The
closure of a set, , is the smallest closed set containing .
A point is a boundary point of if and
or equivalently if every neighborhood of contains at least one
point of and at least one point not of . A set is called
convex if it contains the line-segment between any two points

and in the set. That is, for every the point
.

For our purposes, since we deal with low-dimensional sets
placed in higher-dimensional spaces, we use the concept of rel-
ative interior denoted by which, defined intuitively, con-
tains all points which are not on the “edge” of the set, relative to
the smallest affine subspace in which this set lies. For example,
for a convex set , if and only if there exists

and such that .
The graph of a function is the curve

, and define the epigraph of a function , denoted by
, as the set above its graph, namely
. A functions is called closed if its epigraph is a closed set.

A function is said to be convex if its epigraph is a convex set. A
function is called strictly convex if any line segment in its epi-
graph intersects with its relative interior. A twice differentiable
function is convex if its matrix of second derivatives, called the
Hessian, is positive semidefinite, and strictly convex if its Hes-
sian is positive definite.

In this paper, we work with functions that can take the value
of infinity and as such are nondifferentiable. Such functions are
known as extended-valued:

Definition 2 (Extended-Valued, Proper): A function
is said to be extended real-valued if . The ef-
fective domain of is denoted by

. A function is said to be proper if , and it
obtains at least one finite value.

Proper functions typically arise when constraints are em-
bedded into finite valued functions. For example, the indicator
function associated with a convex set is defined by
when and otherwise. A possible use of the
indicator function is to constrain a finite valued function with
the set convex set to define a proper function . We
define next the type of smoothness used throughout this paper.

Definition 3 (Essentially Smooth): Let be a proper and
convex function differentiable throughout the nonempty set

. Then is called essentially smooth if
whenever is a sequence in

converging to a boundary point in .
Necessary and sufficient conditions for a function to be es-

sentially smooth are described in the following theorem.

Theorem 2 (Legendre Type): A closed and proper convex
function is essentially smooth if and only if it is differential
in its interior , i.e., for every

, while when . If is also strictly
convex on it is called a convex function of Legendre type,
and its gradient mapping is continuous and
one-to-one, and .

Proof: [46, Theorems 26.1 and 26.5].

The sets and , are called the
closed half-spaces associated with the hyperplane

. We say that two sets , are separated by a hyperplane if
each set lies in a different closed halfspace associated with the
hyperplane. If a vector is a boundary point of a set , then a
hyperplane that contains the singleton and one of its halfs-
paces contains is said to be supporting at . In other words,
a supporting hyperplane is a hyperplane that “just touches” the
set . If is a convex set then there exists a supporting hyper-
plane for every point on its boundary. Supporting hyperplanes
play a role in the definition of the subgradient of a nondifferen-
tiable function. A vector is called a subgradient of a convex
proper function at if

(17)

This condition has a simple geometric meaning: it says that
the affine function is a (nonver-
tical) supporting hyperplane to the convex set epi(f) at the point

. Consequently, the set of subgradients at , called
the subdifferential of at and is denoted by , consists of
the supporting hyperplanes to the convex set epi(f) at the point

. When is differentiable at then the supporting hy-
perplane is unique and .

Definition 4: The subdifferential of a function at a point
is denoted by and consists of all the supporting hyper-

planes of epi(f) At the point , namely

The following claim describes the subdifferential of the indi-
cator function associated with affine sets (a useful result which
will serve us later).

Claim 3: Let be matrix and consider the affine set
and its indicator function

otherwise

Then .
Proof: This claim results as a special case of [4, ex. 7.1.4].

For the sake of clarity, we provide a direct proof. We describe
the subdifferential for every point in the domain of

, i.e., . To prove the direction
, we must show that for

every . For every satisfying this relation holds since
and . For every with this

relation holds since .
To prove the other direction we

must show that only if
holds for every . First, we note that the set
is orthogonal to , therefore if we assume on
the contrary that there must be a vector with
nonvanishing angle with , namely therefore
Definition 4 does not hold for .

Claim 4: Consider a function whose domain is contained
in the affine set . Then whenever

, there holds for every .
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Proof: can be equivalently written as ,
where is the indicator functions of the affine set , therefore

. From the linearity of the subdifferential, cf.
[4, Theorem 4.2.4], there holds

and the claim follows since by assumptions,
and from claim 3.

A supporting hyperplane at with -slope Must Satisfy Def-
inition 4, Namely

therefore it must hold that the -slope hyperplane supports the
epigraph at , where . This
leads to the definition of the Conjugate function:

Definition 5: The Fenchel-Legendre conjugate is:

The conjugate describes the offset of the -hyperplane
that supports the epigraph of . Note that regardless of the
structure of its conjugate function is closed and
convex, since it is the pointwise maximum of a collection of
affine (closed) functions. Furthermore, if is convex then the
conjugate of its conjugate returns back , i.e., (cf. [4,
Theorem 7.1.1]). The following claim is a useful result which
shall serve us later:

Claim 5: Let , then .
Proof: The definition of the Fenchel-Legendre conjugate

of takes the form
which has the form in the claim since

.

The convex conjugate plays an important role in duality. Con-
sider constrained minimization under linear constraints

, i.e., with being the i’th row vector
of . The statement about the existence of Lagrange multiplier
for nondifferentiable functions is described next:

Theorem 3: (Lagrange Multipliers): Let be a proper
convex function and consider the convex program

subject to

assume intersect the linear constraints and
that the optimal value of the program is finite. Then there exists
Lagrange multipliers satisftying

(18)

Proof: The assumptions 6.4.1 in [4] hold in this case and
following the nonlinear Farkas lemma, as done in [4, Theorem
6.4.2], completes the proof.

The duality theorem using the conjugate is described
below.

Theorem 4: (Strong Duality): Let be a convex proper
function and intersects with the constraints

, and that the optimal value of the program is finite. The fol-
lowing form a primal-dual pair:

(19)

(20)

Then there is no duality gap and there exists primal-dual optimal
pair. Moreover, the vectors form a primal-dual optimal
pair if and only if the following “Algo-
rithmic Certificate” for optimality hold:

Proof: The existence of primal-dual optimal pair follows
from Theorem 3. The rest follows from [4, Theorem 6.2.5].

Note that due to the linearity of the subdifferential
, the optimality condition above is equivalent to

.
To see the connection to Lagrangian duality, note that by def-

inition of , we have

which in turn means that the primal-dual pair satisfy
where the right-hand side is the

Lagrangian and the dual problem is
, where .

A proper convex function is; essentially strictly convex
if it is strictly convex on every convex subset in . we
note below that in order for the dual function to be smooth the
primal must be strictly convex. A smooth dual is necessary for
a dual ascent scheme (described later).

Theorem 5: (Strict Primal Primal Smooth Dual): A
closed proper convex function is essentially strictly convex if
and only if its conjugate it essentially smooth.

Proof: [46], Theorem 26.3

We describe below two Fenchel duality theorems which
are the functional form of the Lagrange duality where the
constraints are implicit in the functions domains.

Theorem 6: Basic Fenchel Duality I: Let ,
be proper closed and convex functions and

, and the value of the program is finite. The
following are primal and dual programs:

Then there is no duality gap, and there exists primal-dual op-
timal pair. Moreover, the vectors are primal-dual op-
timal pair if and only if and .
Conversely, by reversing the roles of primal and dual, the vec-
tors are primal-dual optimal pair if and only if

and . in particular, if is essen-
tially strictly convex and is finite, then the optimal is
determined by .
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Proof: We reduce Fenchel duality to Lagrange duality in
Theorem 4, where we consider a decomposed version of the
primal function subject to the linear
consistency constraints . Note that the vector equality
constraint is composed from equality constraints where
is the length of the vectors and , therefore we expect to
use Lagrange multipliers vector of length . The Lagrangian

takes the form and
using the conjugate notation in Definition 5 the dual function

takes the form in the Theorem above. Fol-
lowing Theorem 4 there exists primal-dual optimal pair which
must satisfy the feasibility condition, i.e., , and the Op-
timality Condition, namely and .
The theorem follows as the optimal must equal , as well as

. Reversing the roles of primal and dual are allowed by con-
vexity whereby , . Furthermore, since is
finite Theorem 5 determines to be smooth, and whenever

there must hold .

The next theorem is generalizes the Fenchel duality theorem
above.

Theorem 7: Basic Fenchel Duality II: Let
be proper, closed and convex functions and

and the optimal value of the program is finite.
The following are primal and dual programs:

(21)

Then there is no duality gap, and there exists prima-dual optimal
pair. Moreover, the vectors are primal-dual optimal
pair if and only if and .
Also, if is essentially strictly convex and is finite,
then .

Proof: The proof closely follows the one of Theorem 6
where we consider a decomposed version of the primal func-
tion subject to the linear consistency con-
straints . The Lagrangian takes the form

and the dual function takes
the form in the Theorem above. Following the Lagrange Du-
ality in Theorem 4, there exists primal-dual optimal pair which
must be primal feasible, i.e., , and satisfy the optimality
condition and . Whenever

is essentially strictly convex and is finite, repeating
the primal-dual reversing argument of Theorem 6 shows that

.

Algorithmically, minimizing the primal program
requires to take into account the domains of and

simultaneously. Therefore, it is algorithmically appealing to
solve the primal program in a piece-meal fashion using dual
block ascent, while iteratively improving a single vector .
This way one need to consider only subproblems that consists
of and a single . After we recover the optimal one
can recover efficiently the primal optimal by using the
smoothness of as describes in Theorem 7.

Algorithm 6 (Dual Block Coordinate Ascent)

Initialize
1) Repeat until convergence:
2) For :

a)
b)

Output .

The dual block ascent algorithm iteratively improves the dual
objective therefore is guaranteed to converge. Whenever is
strictly convex in its domain its conjugate is essentially smooth
and the dual block ascent is guaranteed to converge to the global
optimum, as formally described below.

Theorem 8: (Dual Block Ascent): Let , be closed
convex functions and assume the relative interior of their
domains intersect. In addition, assume are continuous over
their domains and is strictly convex over its domain and
is finite. Then, the dual block ascent algorithm converges to the
dual and primal optimum.

In particular, if the dual sequence is bounded, then every of
its limit points is an optimal dual solution . Also,
consider the primal sequence generated by
computed from the dual sequence, then this primal sequence is
bounded and its limit point is the optimal solution .

Proof: [57].

APPENDIX B
PRIMAL-DUAL BLOCK ASCENT ALGORITHM

We describe an algorithm for solving programs of the form

while solving subproblems which consists of and a single
function . In our framework, we include convex as well
as nonconvex optimization, but for now we describe the convex
settings, and later describe the necessary conditions for this op-
timization scheme for nonconvex programs. The dual block as-
cent method, described in Algorithm 6 decomposes the opti-
mization program to subproblems which solve a dual function
which requires the explicit computation of the conjugate func-
tions and —a task which is often algorithmically
unattractive or unfeasible. Instead, one can recover in Algo-
rithm 6 by solving its primal program and using the primal-dual
optimality condition in Theorem 6 as follows. Set

and and recall Claim 5, from
which we obtain , and solve the primal
program

(22)

If the pair of functions and satisfy the assump-
tions of Theorem 6, then the functions
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and satisfy these assumptions as well and, hence, can
be recovered from the optimality conditions of Theorem 6

(23)

Taken together, one obtains the primal form of the dual block
ascent algorithm, in which one need not compute the conjugate
functions:

Algorithm 7 (Primal-Dual Vanilla): Let the functions and
satisfy the conditions of Theorem 8.

Initialize .
1) Repeat until convergence:
2) For :

a)
b)

c) Recover
Output .

A useful property of the primal-dual algorithm (and its special
cases described in the sequel) is that the sparseness structure of

conforms to the local structure of the functions in the fol-
lowing sense: assume the variables are indexed by ,
and the function depends on small subset of variables in-
dexed by , then contains information
only for and the remaining entries vanish.

Claim 6 (Locality of Dual Variables): Assume variables
are indexed by and depends only on a subset
of variables indexed by , then the following
hold:

Proof: Consider the decomposition of to two parts
, where is the complement

, and likewise for the subgradient .
Following Definition 4, if , then

(24)

The linear term decomposes to the sum of
and . Since is

arbitrary, we can choose where is set
to for some arbitrary scalar ,
and is arbitrary. Equation (24) then becomes

for all . If we assume to the contrary that , then
we can increase the value of and thus make the right-hand side
of the equation arbitrarily high, while not effecting the left-hand
side since is independent of by the claim assumption (as

depends only on the variables indexed by )—in contra-
diction to .

The primal-dual algorithm is still unattractive as it requires
the evaluation of the subdifferentials of and which could
be as difficult as the computation of the conjugate functions. Our

setting, however, is more constrained than the setting described
in Theorem 8. In particular, the function where
is essentially smooth and is an affine set.
Since is nondifferentiable, the dual is not strictly convex, and
thus we cannot expect to be uniquely defined. Nevertheless,
we show below that has a convenient and simple form.

Claim 7: Let where is essentially
smooth and and assume that

. Assume the functions and
satisfy the assumptions of Theorem 6. Then for

every real vector the subgradient
is optimal dual, i.e., satisfies (23).

Proof: Theorem 6 ensures the existence of a primal-dual
pair which satisfy (23). The domains of and
are contained in by assumption, therefore by Claim 4

meaning that for every the subgradient is dual
optimal. From linearity of the subdifferential we have

. Following Claim 3, the subdifferential is
represented by vectors in the linear subspace spanned by the
columns of , denoted by . Using again the linearity of
the subdifferential, we deduce

is a dual optimal subgradient. The Claim follows by replacing
.

Algorithm 8 (Primal-Dual Ascent): Let the functions and
satisfy the conditions of Theorem 8 where in addition

let , where is essentially smooth,
and .

Initialize
1) Repeat until convergence:
2) For :

a)
b)

c)
Output .

Claim 8 (Convergence): Algorithm 8 converges to the dual
and primal optimum. Moreover, its primal sequence converges
to the primal optimal point and whenever its dual sequence
is bounded every of its limit point is an optimal dual solution

.
Proof: Algorithm 8 implicitly performs dual block ascent

and the dual sequence it generates is identical to the dual se-
quence generated by Algorithm 6 therefore inherits the features
described in Theorem 8. Theorem 8 relates with the primal
sequence describe in Theorem 8 by .

The special case of Algorithm 8 when , where
is a convex set, and is essentially smooth, i.e., , can be
mapped [by eliminating step 2(a)] to a successive Bregman pro-
jection algorithm [6], [7] which is also known under the names
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of Dykstra, Hildreth, Han and Csiszar. This class of iterative
projection schemes has a long history starting from Von-Neu-
mann in the 50s [43] who introduced the case where

and are affine sets. In that case, the primal solution
is to find the projection of onto the intersection of the affine
sets and the subproblem in (22) corresponds to the
projection of onto the affine set . Hildreth [23] extended the
problem with open half spaces . Bregman
[5] extended Hildreth’s problem setup by including any strictly
convex function . The special case of Entropy projections was
introduced later by Csiszar [10], as -projections. Dykstra [12],
[11] was the first to introduce general convex sets (i.e., going
beyond affine sets or half-spaces) but limited the treatment to
representing the Euclidean norm and the KL divergence. The
view of the algorithm with general essentially smooth and
convex sets as performing successive Bregman projections
is due to [7], [6].

Algorithm 8 extends the body of iterative schemes mentioned
above along three directions: i) is extended to nonsmooth
functions which in turn makes nonuniquely defined; ii) as
a result is defined up to an additive term which in the context
of the message-passing norm-product algorithm (and its special
cases) translates to the normalization of the messages ;
and iii) our algorithm has two auxiliary variables, and ,
which allows a straightforward mapping onto a message-map-
ping framework and complies with the local structure of the un-
derlying graph (Claim 1).

1) Non-Convex Case: So far both and were convex,
yet Algorithm 8 is still well defined when the functions are
nonconvex. The purpose of this section is to clarify what can
be guaranteed under such conditions. We will show that indeed
there is no convergence guarantees, but if the algorithm does
converge then it will do so to a stationary point of the primal
program.

To minimize the program , one must in-
troduce Lagrange multipliers . Whenever and

are convex the Lagrange multipliers are the arguments of
the dual function, and recovering amounts to improving the
dual objective with its best -arguments, therefore this proce-
dure is guaranteed to converge. When are nonconvex, the La-
grange multipliers do not correspond to a dual function, and thus
recovering amounts to finding a stationary point with respect
to a subproblem involving and a single , and conver-
gence cannot be guaranteed in general. Nevertheless, in each it-
eration we recover Lagrange multipliers for a stationary point of
a related subproblem, therefore, intuitively, if this method con-
verges, it reaches a stationary point of the nonconvex program

.
We consider programs with nonconvex smooth functions

restricted to the affine domain , and
Legendre-type function , whose conjugate function is
finite. Recall Theorem 2, describing Legendre-type function as
an essentially smooth function which is strictly convex in its in-
terior and satisfies . For this type of nonconvex
programs we show in the following claim, that if Algorithm 8
converges, it reaches a local-minimum of :

Claim 9: Consider Algorithm 8 with for Legendre-
type function and nonconvex continuously differentiable
functions restricted to the affine domain ,
and assume in (22) is in the interior of relative to the
affine set . Then if the algorithm converges it reaches a
stationary point of the nonconvex program .

Proof: The optimization

satisfies the conditions of the Lagrange multiplier Theorem 4
with respect to the affine set , therefore if the algorithm
converges, there holds

From steps 2a and 2c, for every there must hold
. The conjugate of Legendre-type function satis-

fies by Theorem 2, therefore for every holds
. This implies that the local primal ar-

guments are the same for every , and we denote them by
. Summing up the relations in , we get

Substituting (from step 2c), we obtain
the stationary condition for , i.e.,

.

2) Non-Strictly Convex Case: The case in (7) corre-
sponds to having a nonstrictly convex function in (10). This
situation can be analyzed in greater generality by observing the
behavior of Algorithm 7 when the function is convex but not
strictly convex.

For convex and , the primal program in (19) upper
bounds the dual function in (20), and the dual block ascent op-
timization scheme which iteratively improves the dual function
must converge. If the function is not strictly convex its con-
jugate is not smooth and the dual block ascent is not guaranteed
to reach the global optimum. We describe, in a nutshell, where
things go wrong in the Algorithm 7. Assume the algorithm con-
verges, then for every , we obtain the primal solution

Recovering the dual variables corresponds to finding
. Recall that , then

the primal-dual relation boils down to
for every . If was strictly convex it would have imply that
all the are in fact the same and it would have ensure
optimality. Since is not strictly convex it means that the
algorithm might converge in the dual domain but we cannot
recover a consistent .
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Fig. 7. Local subproblem of in step (b) of Algorithm 1 solved by the norm-product algorithm.

Fig. 8. Reducing the local subproblem in Fig. 7 to a series of normalizations by introducing conditional entropies.

APPENDIX C
NORM-PRODUCT ALGORITHM

We embed the function definitions of and into the
primal-dual Algorithm 1. Given the sparse structure of then,
following Claim 1, we present the entries of according to the
factor-graph structure by setting (and likewise

). We first define few short-cut notations

(27)

Step (b) of Algorithm 1 is reduced to finding for all
, described in (25) in Fig. 7:

We will derive the optimal and show it has a closed-form
solution. In the process we will be relying on the following ob-
servation which we present as a Lemma, without a proof.

Lemma 1: Let be a nonnegative array and be the op-
timal probability array for the following optimization problem:

then

(28)

(29)

We will be repeatedly using Lemma 1 in the derivation of ,
as follows. Let and be defined as follows:

Note that the constraint , i.e., that lives
in the probability simplex, is equivalent to the marginal con-
sistency constraint as well. We can
use to simplify the conditional entropy term

by the following Lemma:
Lemma 2:

Proof: The Lemma is based on the definition of conditional
entropy

for random variables , . In our terms, we have
.

With the definitions above, the optimization problem of Step
(b) as described in (25) can be broken down to a cascade of two
steps, described in (25) in Fig. 8.

From Lemma 1 (29), we obtain the solution for the inner op-
timization block

We make the following definition:

(30)

Therefore, the inner-block denoted by takes the form:

Substituting back into (26), we obtain
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and from Lemma 1 (28), we obtain a closed-form solution for

(31)

Finally, takes the form

(32)

Next, we evaluate step (c) of Algorithm 1, i.e.,

(33)

where is an arbitrary scalar and is defined in (10). Define
as follows:

(34)

We note, therefore, that the additive constant freedom in the
definition of becomes a scaling choice in the definition of

. Without loss of generality we choose the scale such that
. The claim below sets the value of :

Proposition 2:

(35)

Proof: From definition of and from (33) we have:

Substituting the value of

and the value of from (32), we obtain

and following substitution of , we obtain what
we set out to prove.

Substituting into the definition of
(27), we obtain

(36)

Substituting (36) into (30), we obtain the update rule for

(37)
Substituting (36) into (35), we obtain

and substituting in (31), we obtain the update rule for .

APPENDIX D
CONVEX-FREE-ENERGY PARAMETER SETTINGS

The fractional entropy approximation of (3)

is strictly convex if it can be written as (4)

in terms of , , . In this section, we will in-
troduce a number entropy approximations which fall into the
convex-free-energy class. We will start with the TRW entropy
approximation [62] and then introduce other approximations.

There are two ways, introduced in the literature so far, to set
parameters for the TRW entropy approximation—both of which
do not belong the required setup of a convex-free-energy. In the
first version, the TRW-free-energy corresponds to the setting of

, and , where the setting
of corresponds to the relative number of spanning trees (or
hyper-trees) of the graph which include the edge (hyperedge) .
The problem with this setting is that , thus, even though
the fractional entropy approximation is convex, the functions
(defined in terms of and ) are not convex.

The second version, introduced by [17], sets as the relative
number of spanning trees that have node as a root, and for an
edge , is the relative number of trees that include
the directed edge . It is possible to find such edge prob-
abilities for the uniform distribution over all spanning trees by
employing a variant of the matrix tree theorem for directed trees,
[17], [59, p.141]. In this formulation , but . The
problem with is that the function is no longer strictly
convex.

In the claim below, we show how to convert a TRW setting
according to the second version, i.e., where , ,
to the convex-free-energy setting , , :

Claim 10: Assume an approximated entropy
is described by and

, i.e., and .
Then there exists , , which agree on the ap-
proximated entropy, namely and

.
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Proof: We describe an efficient algorithm for constructing
the desired convex free energy: initialize , ,

. For every and every , consider the
entropy combination

and divide it to two cases.
1) , then the entropy can be equivalently written

by the entropy

therefore perform:
(a) ;
(b) .

2) , then the entropy can be equivalently presented
as:

therefore perform:
(a) ;
(b) .

Since , are positive we obtain an equivalent entropy ap-
proximation with and , . A straightforward
bookkeeping ensures that and do not change.

Another concave approximation is to seek a setting of param-
eters , , such that the approximation is as
close as possible to the nonconvex Bethe approximation2. Given
the equations in Definition 1 connecting the parameters , ,

to and , the space of admissible solutions must satisfy
the following equations:

Among all possible admissible solutions, we choose the one in
which is as uniform as possible, i.e., we apply Laplace’s prin-
ciple of insufficient reasoning. The criterion function, therefore,
minimizes:

(38)

which is a least-squares criteria for uniformity of . We
refer to the two least-squares scheme as convex free-en-
ergy approximation. In an earlier work [19], we also used
the maximum entropy approach where the criterion function
minimizes . Further investigation for constructing
good convex free-energy approximations can be found in [39].

The desire towards uniformity, besides being used exten-
sively in probabilistic settings, is motivated by the success of

2A similar idea was independently derived by Nir Friedman and his collabo-
rators—personal communication.

the Bethe free energy where . The Bethe free energy is
nonconvex for factor graphs with cycles, thus is not a member
of the convex free energies, but empirical evidence suggest that
when BP converges the marginals are surprisingly good. For
Bethe free energy, over all factor nodes —hence our
proposal to strive for uniformity over the space of admissible
solutions. In some sense we are attempting to “convexify” the
Bethe free energy, although this is not being done directly.

APPENDIX E
INCORPORATING ZERO POTENTIALS

A particularly important class of factors are those with zero
potentials. These type of potentials are used, for example, in
defining error-correcting codes. Note that if one or more of the
factor potentials or local potentials are equal to
zero, then the overall probability of states which contain these
configurations is zero, namely or re-
spectively. This restriction on the marginal probabilities implic-
itly appears in the variational programs using the convention

and for .
Recall that the variational approach seeks a distribution

which is as close as possible, in relative entropy
terms, to the product . Expanding the
relative entropy produces the free energy

where , , and , are the
marginal probabilities, and is the entropy function. Since

whenever , the zero potential
constraints if and only if , Likewise,

constrains whenever . Fol-
lowing the above, the inference program which corresponds to
the free-energy minimization is well defined for zero potentials
when we consider the domain of the free energy, and takes the
form . In spite the mathematical difficulty in-
troduced by using zero potentials, it makes no difference from
algorithmic perspective, since the optimal distribution is the
normalization of the product of potentials,
and it respects the domain constraint.

The same behavior appears in the variational approach for
MAP assignment, where one seeks vector which maximize
the energy . This task is described by the
linear function

whereas the zero potentials of the form or
constraints if and only if or

respectively. Again, this mathematical nuance makes no differ-
ence from algorithmic perspective, since the optimal distribu-
tion is the a zero-one distribution, i.e., and for
every holds .

The framework of incorporating zero potentials in the domain
of the optimized program also corresponds to the approximate
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inference and LP-relazation described by the minimization of
the function

whose domain is constrained by zero potentials, namely
or constraints if and

only if or respectively. The domain
constrains are inherited by the norm-product algorithm where
we represent in the form described in
(10) and (11). In particular, only if
whenever , and only if
whenever . This domain constraint does not affect
the norm-product algorithm whose optimal beliefs are a (power)
normalization of the potentials multiplied by the messages,
described in (31) and (32). Therefore, in the norm-product opti-
mization framework, zero potential or
induces optimal beliefs satisfying or ,
respectively.
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