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On Degeneracy of Linear Reconstruction
From Three Views: Linear Line Complex

and Applications

Gideon P. Stein and Amnon Shashua

Abstract—This paper investigates the linear degeneracies of
projective structure estimation from line features across three views.
We show that the rank of the linear system of equations for recovering
the trilinear tensor of three views reduces to 23 (instead of 26) when
the scene is a Linear Line Complex (a set of lines in space intersecting
at a common line). The LLC situation is only linearly degenerate, and
one can obtain a unique solution when the admissibility constraints of
the tensor are accounted for. The line configuration described by an
LLC, rather than being some obscure case, is in fact quite typical. It
includes, as a particular example, the case of a camera moving down a
hallway in an office environment or down an urban street. Furthermore,
an LLC situation may occur as an artifact such as in direct estimation
from spatio-temporal derivatives of image brightness. Therefore, an
investigation into degeneracies and their remedy is important also in
practice.

Index Terms—Shape representation and recovery, 3d motion and
shape recovery from line correspondences, shape from motion,
algebraic and projective geometry.

————————   F   ————————

1 INTRODUCTION

IT is known that point and line image features across three per-
spective views can generally give rise to a linear system of equa-
tions for a unique solution for 3D structure and camera motion.
The structure and motion parameters are represented by a 3 � 3 � 3
tensor. The image measurements of matching points and lines
provide constraints, trilinear in image coordinates, that as a whole
make a linear system of equations for the (unknown) coefficients
of the tensor. Finally, the tensor has only 18 degrees of freedom,
i.e., the 27 coefficients are subject to nonlinear admissibility con-
straints. In the presence of errors in image measurements, one
often starts with the linear solution and improves it further by
employing a numerical Gauss-Newton style iterative procedure
until a solution that satisfies the admissibility constraints is ob-
tained. (See Appendix for more details.)

In this paper, we investigate the cases in which the linear solu-
tion is degenerate. As it happens, the degeneracy occurs in typical
real situations. We show that when the sample of features is taken
from a configuration of lines that have a common intersection,
known as a Linear Line Complex (LLC), then the rank of the linear
system reduces from 26 (in the general case) to 23—yet, there exists
a unique solution for the tensor when the nonlinear admissibility
constraints are accounted for. (This in contrast to critical line con-
figurations from which a unique solution is not possible, see [6], [2],
[8].) An LLC includes in particular the case of lines on parallel
planes whose degeneracy was observed in [19].

To appreciate the practical importance of investigating LLC
configurations, consider a few typical outdoor and indoor scene

examples depicted in Fig. 1. In Fig. 1a, the common intersecting
line is the vertical edge of the building visible in the center of the
image (“the corner”). All horizontal lines on the two faces of the
building meet the edge in the image plane, and the vertical lines
meet the edge at infinity. Note also that the vertical line represent-
ing the lamp-post also meets the edge of the building (at infinity)
thereby included in the LLC configuration. This leaves very few
lines (the sidewalk and the oblique line of the lamp-post) not part
of the LLC. Imagine a robot moving down the hallway in Fig. 1b.
The lines are either in the direction of motion or lie on a set of
planes that are perpendicular to the direction of motion. The lines
on the parallel planes all intersect a common line on the plane at
infinity. As we will see the lines in the direction of motion also
form a degenerate configuration.

Finally, an LLC situation occurs also as an artifact in direct es-
timation of the tensor from spatio-temporal derivatives of image
brightness [17]. The spatiotemporal derivatives provide an axis of
certainty (a one-dimensional uncertainty) for the location of the
matching points in views 2, 3 relative to points in the reference
view 1. The uncertainty axes in views 2, 3 are parallel which means
that the information gathered from a general scene by means of
first-order spatiotemporal derivatives is at most comparable to the
information gathered from an LLC configuration of discrete
matching lines.

Given our main result, an attempt to reconstruct structure and
motion from the image line information of the scenes in Fig. 1 us-
ing conventional approaches would be at best unstable. The linear
system of equations is singular or near singular, and would most
likely not serve as a reasonable starting solution for a subsequent
Gauss-Newton iterations. Therefore an investigation into degen-
eracies caused by an LLC and their remedy is important also in
practice.

The remainder of the paper is organized as follows. Section 2
contains the main results which include the statement of degener-
acy of the linear system forming a null space of dimension 4, and
the statement of uniqueness by incorporating the admissibility
constraints with a simple constructive algorithm for obtaining a
unique solution from an LLC configuration. In Section 3, we dis-
cuss the dimension of the null space for a planar object of points,
and in Section 4, we verify the theory and the algorithm with ex-
periments with real images. In our experiments, we use a schema-
tized model of the real scene shown in Fig. 1a because this allows
for a wide set of experiments. In these images, one can accurately
find both line and point correspondences and can therefore per-
form the motion estimation using line correspondences and then
verify the results against motion estimates obtained using points.

Notations in general, and tensorial notations in particular, plus
the theory and background of the Trilinear Tensor with its con-
traction and slicing properties and admissibility constraints are
discussed in the Appendix.

2 LINEAR LINE COMPLEX SCENE STRUCTURE

Consider the tensor 7 i
jk  applied to the point-line-line configuration:

′ ′′ =s s pj k
i

i
jk4 97 0 ,

where p is a point in image 1 and s�, s�� are lines coincident with the
matching point p�, p�� in image 2 and 3, respectively. Note that
pi

i
jk7  is a 3 � 3 matrix determined by p, which we will denote by

Bp, i.e., in matrix notation s��Á Bp s�=0 for all pairs of lines coincident
with p�,p��. Assume that there exists a matrix B, independent of p,
such that s��ÁBs� = 0, then clearly the tensor 7 i

jk  is not unique: slice

the tensor into three matrices 7 �7 71 2 3
jk jk jk, ,4 9 , then the tensors

(B, 0, 0), (0, B, 0), and (0, 0, B) (and their linear combinations) all
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satisfy the constraint ′ ′′ =s s pj k
i

i
jk7 0 . Hence, such a matrix B does

not exist in general. We may, nevertheless, ask whether there exists a
special configuration of points and lines in space for which such a matrix
B is valid? Such a configuration is a Linear Line Complex (LLC).

THEOREM 1. Let 6 be a set of lines in 3D which have a common inter-
secting line L (i.e., S Á L = 0 for all S ¶ 6). Let 4 be a set of lines in
3D that intersect the line joining the two camera centers. Then, there
exists a unique matrix B satisfying s��ÁBs� = 0 for all pairs of projec-
tions s�, s�� of lines S ¶ 6 onto two distinct views. The matrix B also
satisfies q��ÁBq� = 0 for all pairs of projections q�, q�� of lines Q ¶ 4.

PROOF. Let P be the intersection of a line S ¶ 6 with L and denote
its projections by p�, p�� onto views 2, 3, respectively (see Fig. 2).
Choose any plane p from the pencil of planes meeting at the
line L, and let Hp be the corresponding 2D projective mapping
(homography matrix) of points in view 2 to points in view 3 via
(projections of) the plane p. Since p contains the line L, then

Hpp� > p��.

Let l�, l�� be the projections of L, then p� is the intersection of s�
and l�, thus,

Hp[l�]xs� > p��,

where [l�]x denotes the skew-symmetric matrix of cross products,
i.e., p� > l� � s� = [l�]xs�. Likewise, s�� is coincident with p��, then

s��ÁHp[l�]xs� = 0.

Denote Bp = Hp[l�]x. We show next that Bp is unique, i.e., inde-
pendent of the choice of p. Let p1, p2 be two distinct planes of
the pencil and let Hπ 1

, Hπ 2
 be their corresponding homogra-

phy matrices. It is known that any two homography matrices
between two fixed views satisfy,

H H e nπ πλ
2 1

≅ + ′′ T

where e�� is the projection of the optical center of camera 2 onto
the image plane of camera 3 (the epipole), and n is a free vector.
Because p1, p2 intersect at L, then, H u H uπ π1 1

≅  for all uÁl� = 0,

thus n > l� and we have:

H H e lπ πλ
2 1

≅ + ′′ ′T ,

and from which it clearly follows that B Bπ π1 2
= .

Let D be the intersection of a line Q ¶ 4 with the plane p
and denote its projections by d�, d�� onto views 2 and 3. The im-
age line q� passes through the point d� and through the epipole
e� and therefore: q� > e� � d�. and similarly q�� > e�� � d��. We can
then write:

′′ ′ = ′′ × ′′ ′ ′ × ′
= ′′ × ′′ ′ ⋅ ′ ′ − ′′ × ′′ ′ ⋅ ′ ′
= ′ ⋅ ′ ′′ × ′′ ′′ − ′ ⋅ ′ ′′ × ′′ ′′
=

q Bq e d H l e d

e d H d l e e d H l e d

d l e d e l e e d d

x
T T

T T

T T

1 6 1 6
1 6 1 6 1 6 1 6
1 61 6 1 61 6
0 (1)

where we used the identity:

a � (b � c) = (c ¿ a)b - (a ¿ b)c                              (2)

and the fact that the homography H maps d� to d�� and e� to e��.  h

COROLLARY 1. The rank of the estimation matrix of the tensor from
image measurements of lines across three views of a Linear Line Com-
plex structure is at most 23.

PROOF. Let the tensor 7 i
jk  be sliced into three matrices

7 �7 �71 2 3
jk jk jk, ,  and4 9 , then the tensors (B, 0, 0), (0, B, 0), and (0, 0, B)

(and their linear combinations) span the tensors of the form:

7 i
jk

i
jkb= δ

where d is a free vector of the family. Then,

′ ′′ = ′ ′′ =s s p p s s bj k
i

i
jk i

i j k
jk7 δ4 94 9 0 .

Fig. 1. Typical urban indoor and outdoor scenes. The lines in the images form a Linear Line Complex. See text for more details.

Fig. 2. Figure to accompany Theorem 1.
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Since dib
jk does not include the general form of trilinear tensors

(4), the null space of the estimation matrix includes at least four
distinct vectors: the true tensor describing the relative location
of the three cameras, and the three ‘ghost’ tensors (B, 0, 0), (0, B, 0),
and (0, 0, B). Thus, the rank is at most 27 - 4 = 23.                     h

The ambiguity can be further reduced by incorporating the ten-
sor admissibility constraints (see Appendix) as detailed below.

THEOREM 2. The ambiguity of Tensor estimation from measurements
coming from an LLC structure is at most an eight-fold ambiguity.

PROOF. We assume the correlation matrix slicing of the tensor into

the three standard correlation matrices 7 �7 �71 2 3
jk jk jk, ,  and4 9

(see Appendix). Let W be the N � 27, N � 27, estimation matrix
for linear estimation of the tensor, i.e., Wv = 0 where v is the
tensor whose elements are spread as a 27-element vector, and v
is spanned by the four-dimensional null space of WÁW. Let v1,
v2, v3 be the three “ghost” tensors corresponding to (B, 0, 0),
(0, B, 0), and (0, 0, B), respectively. Let v0 be the (one-dimen-
sional) null space of

W W v v v v v vT T T T− − −1 1 2 2 3 3 .

Since the null space spans the admissible tensors, the three
standard correlation matrices (T1, T2, T3) of the admissible ten-
sors are spanned by the tensors v0, ..., v3, i.e.,

T T B

T T B

T T B

1 1 1

2 2 2

3 3 3

= +

= +

= +

$

$

$

α

α

α

where $ , , ,T ii = 1 2 3 , are the standard correlation matrices of the
tensor v0, and ai are scalars. As part of the admissibility con-
straints (see Appendix), the standard correlation matrices Ti

must be of rank 2, thus ai are generalized eigenvalues of $Ti  and
B, and since B is of rank 2, the characteristic equation for each ai

is of second order. Thus, we have at most eight distinct solu-

tions for Ti.                                                                                        h

EMPIRICAL OBSERVATION 1. Only one of the eight solutions satisfies
all the admissibility constraints.

EXPLANATION. The rank-2 constraint of the standard correlation
matrices is closed under linear superposition (see Appendix).
Numerical experiments show that only one out of the eight
possible solutions for the generalized eigenvalues a1, a2, and a3

produces standard correlation matrices T1, T2, T3 whose linear
superpositions produce rank-2 matrices.

2.1 Algorithm for Recovering Structure and Motion in the
LLC Case

1)�Using robust estimation techniques determines the line cor-
respondences which belong to the LLC and compute the
matrix B (see Theorem 1). Here one might use a robust ver-
sion of the eight-point algorithm [4].

2)�From the matrix B, create the three “ghost” tensors: v1 =
(B, 0, 0), v2 = (0, B, 0), and v3 = (0, 0, B).

3)�Using the point-line-line correspondences from the three
views, compute W, the N � 27, N � 27 estimation matrix for
the linear estimation of the tensor.

4)�Find v0, the fourth vector spanning the (row) null space of W
orthogonal to v1, v2, and v3 by finding the null space of:

W W v v v v v vT T T T− − −1 1 2 2 3 3 .

In practice, take the eigenvector corresponding to the small-
est eigenvalue.

5)�Find scalars ai such that the vector:

v v vi i
i

= +
=
∑0

1

3

α

is an admissible tensor (see Theorem 2). This is done in two
stages:

•�Let $ , , , ,T T ii i = 1 2 3 , be the standard correlation matrices
of the tensors v0 and v, respectively. Then:

T T BI i i= +$ α

Enforce the constraint that Ti is of rank-2 to find ai. Since
the matrix B is of rank-2, this is a quadratic constraint re-
sulting in up to two solutions for each ai for a total of
23 = 8 solutions.

•� Prune the number of solutions down to one by enforcing
the stronger admissibility constraint that any linear su-
perposition of matrices Ti must be of rank-2. This is done
by generating K random sets of linear coefficients di such
that δ i

2 1=∑  and computing the determinant of the lin-

ear superposition: ÍdiTi for each of the eight possible so-
lutions. The solution that consistently gives det(diTi) . 0
is the correct solution.

3 THE CASE OF PLANAR CONFIGURATIONS

Consider again the point-line-line contraction:

p s si
j k i

jk′ ′′ =74 9 0 .

Denote the matrix ′′sk i
jk7  by Es��, i.e., in matrix notation we have

s�ÁEs��p = 0. If there exists a matrix E, independent of s��, such that
s�ÁEp = 0 for all lines s� coincident with the matching point p�, then
clearly the tensor 7 i

jk  is not unique: Slice the tensor into three

matrices 7 �7 7i
j

i
j

i
j1 2 3, ,  4 9 , then the tensors (E, 0, 0), (0, E, 0), and

(0, 0, E) (and their linear combinations) all satisfy the constraint
p s si

j k i
jk′ ′′ =7 0 . Hence, such a matrix E does not exist in general.

However, if the matching points p, p� are projections of a coplanar
configuration of points p in space and E is the corresponding ho-
mography matrix Ep > p�, then s�ÁEp = 0 for all lines s� coincident
with p�.

Likewise, let W be the homography matrix due to p, i.e., Wp >
p��, then s��ÁWp = 0 for all lines s�� coincident with p��. Then, given

the slicing of the tensor into three matrices 7 �7 7i
k

i
k

i
k1 2 3, ,  4 9 , then

the tensors (W, 0, 0), (0, W, 0), and (0, 0, W) (and their linear com-
binations) all satisfy the constraint p s si

j k i
jk′ ′′ =7 0 .

Therefore, the rank of the null space of the linear system of
equations for the tensor is at least six, since we have just created
six “ghost” tensors. The theorem below settles the question of
whether the ghost tensors include the true tensor, in which case
the rank of the estimation matrix is 21, or do not include the true
tensor, resulting in a rank of 20.

THEOREM 3. The rank of the estimation matrix of the tensor from image
measurements of three views of a planar configuration of points is at
most 21.

PROOF. Denote the planar object by p and let E, W be the homo-
graphy matrices due to p from view 0 to 1, and from view 0 to
2, respectively. The “ghost” tensors due to E span the tensors of
the form:

7 i
jk k

i
je= δ

where d is a free vector of the family. Then,

p s s s p s ei
j k i

jk k
k

i
j i

j′ ′′ = ′′ ′ =7 δ4 94 9 0 .
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Likewise, the “ghost” tensors due to W span the tensors of the
form:

7 i
jk j

i
kw= µ

where m is a free vector of the family. Then,

p s s s p s ei
j k i

jk j
j

i
k i

k′ ′′ = ′ ′′ =7 µ4 94 9 0 .

The six-dimensional null space spanned by both families of
“ghost” tensors spans the tensors of the form:

7 i
jk j

i
k k

i
jw e= +µ δ

where d, m are free vectors of the family. This family includes
the true tensor (set m = v� and d = v��). Thus, the rank of the es-
timation matrix is at most 27 - 6 = 21.                                          h

Note, that unlike the case of LLC in which the admissibility
constraints have reduced the ambiguity to a single solution, here
the null space includes admissible tensors (admissibility con-
straints are satisfied), thus a unique solution is not possible. The
ambiguity is also evident by straightforward counting: the tensor
is determined by 18 (algebraically independent) parameters, yet

two homography matrices (E, W) give rise only to eight parame-
ters each (because each matrix is up to scale), thus we have two
parameters missing for uniquely determining the tensor from a
planar surface.

4 EXPERIMENTS

4.1 The Experimental Procedure
Fig. 3a, Fig. 3b, and Fig. 3c show the three input images used for
the experiments. The scene is composed of two faces of a cube and
another plane on the left which is parallel to the vertical edge of
the cube. This is a schematic model of a typical urban scene with
an edge of a building such as in Fig. 1a.

Corresponding point features were manually extracted. The
feature points were saddle points formed by the corners of two
black squares which can be found with subpixel accuracy. The
point features were grouped into four groups: Points from the left
and right faces of the cube form one group each. Points on the
planar surface were grouped into two vertical sets of features.

Line features were created by taking pairs of points. If no pair
of points has members from more than one group (for example,

Fig. 3. The three input images used. All the lines marked are part of a linear line complex. They all intersect the line defined by the edge of the
cube. Vertical lines intersect the edge at the point at infinity. The LLC was computed using (b) and (c). The dashed lines in (b) and (c) are the
projection of the common intersection line into the images. The results show it aligns very well with the edge of the true cube. (d) Three lines which
are not part of the LLC that are used in the experiments.
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Fig. 3), then we limit ourselves to a Linear Line Complex since all
the 3D lines in the scene intersect the edge of the cube. By adding
pairs that span two groups we can add lines that do not belong
to the LLC. By judiciously choosing pairs we can add lines that
are close or far from being part of the LLC (see Fig. 3d). We can
also choose pairs of points that define lines passing through the
epipoles. This flexibility allows us to verify all the claims in
Theorem 1.

4.2 Hardware Notes
The images were captured using a Pulnix TM9701 progressive scan
camera with a 2/3 inch CCD and an 8.5 mm lens. The image reso-
lution was 640 � 480 pixels.

To achieve the results presented here, we had to take into ac-
count radial lens distortion. Only the first term of radial distortion
was used. The radial distortion parameter, K1 = 6e - 7 was found
using the method described in [18]. We note that that parameter
value also minimized the error terms in (3).

4.3 Determining the LLC
The three input images (Fig. 3a, Fig. 3b, and Fig. 3c) will denote
image 1, 2, and 3, respectively. We chose N = 28 pairs of points
which defined lines all belonging to the LLC. These are overlaid as
white lines in the figures. For each image pair (1, 2), (2, 3), and
(1, 3), we used the eight-point algorithm [4] applied to the line
correspondences to compute the matrices B12, B23, and B13 that
minimize:

E N s B s

E N s B s

E
N

s B s

i i
i

N

i i
i

N

i i
i

N

12 12
2

1

23 23
2

1

13 13
2

1

1

1

1

= ′

= ′′

= ′′

=

=

=

∑

∑

∑

2 7

2 7

2 7 (3)

respectively. The coordinates of the lines s, s�, s�� have been scaled
as described in [4]. From Theorem 1, the left and right null spaces
of B23 (for example) are the projections of the line L in images 2 and
3. The dashed black line in Fig. 3b and Fig. 3c shows the lines cor-
responding to the null spaces overlaid on the input images. They
align well with the edge of the cube verifying the theory and
showing that the matrix B can be recovered accurately. Similar
results were found using the other image pairs.

Fig. 3d shows image 1 on which we have overlaid three lines
not belonging to the LLC. Table 1 shows the error terms of (3)
when all the line are from the LLC and when we add one of the
lines shown in Fig. 3d. When the extra line is far away from the
common line of intersection, the error is large. Even when the line
nearly intersects the edge of the cube, the error is still significant.
Therefore, robust methods can be used for outlier removal if most
of the lines come from from an LLC. Other experiments, not re-
ported here, use lines that pass through the epipole to verify the
second half of Theorem 1.

4.4 Recovering Motion and Structure
We computed the motion tensor from the three views using
four methods. First we used the linear method for a set of 131
point correspondences. Then we used the linear method for a
set of 34 nondegenerate line correspondences. Next we applied
the linear method in a naive way to the set of 28 line corre-
spondences from an LLC. In other words, we ignored the fact
that the lines come from an LLC. Finally, we estimated the ten-
sor from the 28 degenerate lines using the algorithm described
in Section 2.1.

4.4.1 Condition of the Estimation Matrix
Fig. 4a (top) shows the four smallest singular values of the estima-
tion matrix WÁW used to compute the tensor from 34 nondegener-

Fig. 4. (a) The smallest singular values of the estimation matrix W for a degenerate and nondegenerate set of lines. (b) With a degenerate set of
lines, the vectors v1, v2, and v3 were projected onto the 27 eigenvectors of WÁW. The values for the first 23 eigenvectors are close to zero verifying
that the vectors v1, v2, and v3 are orthogonal to the first 23 eigenvectors and are therefore in the null space of WÁW. (See Theorem 2.)

TABLE 1
VALUES OF THE ERROR COST FUNCTION FOR ESTIMATING THE LLC

Extra Line E23 E12 E13

None 0.000055 0.00064 0.000079
Close 0.0019 0.0016 0.00054
Middle 0.0065 0.0038 0.0017

Far 0.0119 0.0919 0.0062

When all the lines belong to the LLC (none) and when we add a line which
passes close to or far from the common line of intersection (the edge of the
cube).
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ate lines. The smallest eigenvalue is considerably smaller than the
others indicating that the null space of the matrix is of rank = 1
and the problem is well conditioned. Fig. 4a (middle) shows the
five smallest singular values for the estimation matrix computed
from 28 lines belonging to an LLC. The four smallest singular
values are about equal and are considerably smaller than the
next smallest. This indicates that the null space of WÁW is of
rank = 4 as expected from Theorem 1. Simply taking the eigen-
vector corresponding to the smallest eigenvalue would be a
mistake.

Fig. 4b shows the projection of the vectors v1, v2, and v3 on the
eigenvectors of the estimation matrix WÁW. The projections onto
the eigenvectors corresponding to the first 23 eigenvalues are close
to zero verifying that the vectors v1, v2, and v3 are orthogonal to the
first 23 eigenvectors. This verifies part of Theorem 2 which states
that the vectors v1, v2, and v3 are in the null space of WÁW (the re-
maining four eigenvectors).

Following the algorithm described in Section 2.1, we compute
the eigenvalues and eigenvectors of the matrix

W W v v v v v vT T T T− − −1 1 2 2 3 3 .

Fig. 4a (bottom) shows the three smallest eigenvalues. The smallest
eigenvalues is significantly smaller than the next smallest value,
indicating that the null space is now of rank = 1.

4.4.2 Reprojection of Lines Using the Tensor
After recovering the tensor, one can use the tensor to reproject a
line given in two images into the third image. In order to test the
tensor estimates we used 10 additional lines shown in Fig. 5. Three
of the lines lie in the LLC on the left face of the cube. The other
seven do not lie on the LLC.

Fig. 5b, Fig. 5c, and Fig. 5d show the reprojection results
(dashed lines) together with the original lines (solid lines) overlaid
on image 1. One can see that if the set of lines used to estimate the
tensor all belong to an LLC, then other lines in the LLC reproject
more or less correctly but the reprojection of lines not in the LLC is
incorrect (Fig. 5c). On the other hand, reprojection using the tensor
computed by taking into account the degeneracy (Fig. 5d) gives
results as good as if we had a nondegenerate set of lines to esti-
mate the tensor (Fig. 5b).

Fig. 5. (a) Ten additional lines are used to test the recovered tensors. Three of the lines lie on the left face of the cube and are therefore the part
of the LLC. The other seven are not. The test lines from images 2 and 3 are reprojected back into image 1 using the recovered tensors. Solid
lines are the true locations. Dashed lines are the reprojected lines. (b) The tensor was computed using a set of 34 nondegenerate lines. (c) The
tensor was computed using a degenerate set of 28 lines using the standard method. Since it does not take into account the degeneracy, the ten-
sor fails to correctly reproject the lines. The only lines in (c) that reproject correctly are those that belong to the LLC. (d) Using the new algorithm
for the degenerate case, the computed tensor correctly reprojects all the lines.
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5 SUMMARY

We have shown that linear methods for estimating motion and 3D
structure from lines lead to a degenerate set of equations in the
case of a Linear Line Complex. The LLC, a configuration of lines
that all intersect a common line in 33, is in fact a common configu-
ration of lines occuring frequently in man-made environments.
This degeneracy is due to a bilinear constraint on lines in two
views where the constraint equation has a form similar to the
epipolar constraint but where lines replace points and the epipoles
are replaced by the image of the common line of intersection in the
two views. This constraint can be used to determine whether a set
of lines belongs to an LLC and enables us to reject a outliers using
least median of squares [7] or other robust estimation methods.

An LLC is not degenerate for nonlinear methods in general.
The theoretical analysis leads to a modification of the linear meth-
ods that can recover the structure and motion in the LLC case. We
have proven that the motion can be recovered up to eight discrete
solutions. Empirical evidence shows that the number of solutions
can be reduced further to a unique single solution.

We have implemented the algorithm, and experiments with
real images verify the theoretical analysis. Although the results
using the modified linear algorithm compare favorably with the
results obtained using a nondegenerate set of lines, the system at
this point is not robust. For example, it requires that lens distortion
be taken into account. Further engineering would be involved in
making a practical system.

APPENDIX

A.1 Mathematical Background and the Trilinear Tensor
Let x be a point in 3D space and its projection in a pair of images
be p and p�. Then p = [I; 0]x and p� > Ax, where > denotes equality
up to scale. The left 3 � 3 minor of A stands for a 2D projective
transformation of the chosen plane at infinity and the fourth col-
umn of A stands for the epipole (the projection of the center of
camera 1 on the image plane of camera 2). In particular, in a cali-
brated setting the 2D projective transformation is the rotational
component of camera motion and the epipole is the translational
component of camera motion.

We will occasionally use tensorial notations as described next.
We use the covariant-contravariant summation convention: a point
is an object whose coordinates are specified with superscripts, i.e.,
pi = (p1, p2, ...). These are called contravariant vectors. An element in
the dual space (representing hyperplanes—lines in 32) is called a
covariant vector and is represented by subscripts, i.e., sj = (s1, s2, ....).
Indices repeated in covariant and contravariant forms are summed
over, i.e., pisi = p1s1 + p2s2 + ... + pnsn. This is known as a contraction.
An outer-product of two 1-valence tensors (vectors), aib

j, is a 2-
valence tensor (matrix) ci

j  whose i, j entries are aib
j—note that in

matrix form C = baÁ.
Matching image points across three views will be denoted by p,

p�, p��; the homogeneous coordinates will be referred to as pi, p�j, p��k,
or alternatively as nonhomogeneous image coordinates (x, y),
(x�, y�),and (x��, y��)—hence, pi = (x, y, 1), etc.

Three views, p = [I; 0]x, p� > Ax and p�� > Bx, are known to pro-
duce four trilinear forms whose coefficients are arranged in a ten-
sor representing a bilinear function of the camera matrices A, B:

7 i
jk j

i
k k

i
jv b v a= ′ − ′′                                      (4)

where A a vi
j j= ′,  (ai

j  is the 3 � 3 left minor and v� is the fourth

column of A) and B b vi
k k= ′′, . The tensor acts on a triplet of

matching points in the following way:

p s ri
j k i

jkµ ρ7 = 0                                          (5)

where sj
µ  are any two lines (sj

1  and sj
2 ) intersecting at p�, and rk

ρ  are

any two lines intersecting p��. Since the free indices are m, r each in
the range 1, 2, we have four trilinear equations (unique up to linear
combinations). If we choose the standard form where sm (and rr)
represent vertical and horizontal scan lines, i.e.,

s x
yj

µ = − ′
− ′

�
! 

"
$#

1 0
0 1

then the four trilinear forms, referred to as trilinearities [10], have
the following explicit form:
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These constraints were first derived in [10]; the tensorial derivation
leading to (4) and (5) was first derived in [12], [13]. The trilinear
tensor has been well known in disguise in the context of Euclidean
line correspondences and was not identified at the time as a tensor
but as a collection of three matrices (a particular contraction of the
tensor, correlation contractions, as explained next) [15], [16], [19].
The link between the four trilinear forms and the earlier work on
line correspondences was identified later by Hartley [5].

In this paper on linear degeneracy of LLC, we make use of

1)� properties of tensor slices and
2)� admissibility constraints.

These two are detailed below.

A.1.1 Properties of Tensor Slices
The properties of tensor slices and their taxonomy were first de-
tailed in [14] and further details can be found in [11]. Here we will
briefly state the main results. Consider the matrices Ed, Wd, Gd

arising, respectively, from the following dot products (contrac-
tions) of the tensor with some arbitrary vector d:

δ δ δk i
jk

j i
jk i

i
jk7 7 7, , .

For example, the matrix Ed is formed by δ δ δ1
1

2
2

3
37 7 7i

j
i
j

i
j+ + .

These three types of dot products produce three types of families:
Ed and Wd are homography matrices where Ed is a collineation map-
ping view 1 onto view 2 via the plane determined by the center of
projection C�� of camera 3 and the line d residing in view 3 (point
and a line determined a plane). Likewise, Wd is a homography
mapping from view 1 onto view 3 via the plane determined by the
center of projection C� of camera 2 and the line d residing in view 2.

The matrix Gd is a correlation matrix mapping the dual image
plane (the space of lines) of view 2 onto the space of collinear
points in view 3. The set of collinear points in view 3 form a line
which is the epipolar line of the point d in view 1. Because Gd maps
a 2D space onto a 1D space it must be of rank 2, and its null space
can be shown to be the epipolar line in view 2 corresponding to d
in view 1. Similarly, Gδ

T , the transpose of Gd, maps lines in view 3
onto collinear points in view 2.

When d is chosen to be (1, 0, 0), (0, 1, 0), or (0, 0, 1), we obtain a
basis of three matrices for each contraction type. For example, Ed is
spanned by E1, E2, E3 which are the slices of the tensor corre-
sponding to δ k i

jk7  where d is (1, 0, 0), (0, 1, 0), or (0, 0, 1), respec-
tively. These are called standard homography slices of the tensor.
Similarly, G1, G2, G3 are the standard correlation slices of the tensor,
i.e., 71

jk , 7 2
jk , and 7 3

jk , respectively. The matrices G1, G2, G3 date
back to the work on structure from motion of lines [15], [19], where
they were first introduced.
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A.1.2 Tensor Admissibility Constraints
The tensor consists of 27 coefficients, yet the number of degrees of
freedom cannot exceed 18 for the simple reason that three camera
matrices (33 parameters) minus the degrees of freedom associated
with a projective basis (15) leaves us with 18. We should therefore
be able to describe the tensor with 18 parameters, or conversely,
we should be able to find nine algebraic constraints of the tensor
coefficients (admissibility constraints). Work on this issue can be
found in [3], [9], [1], [14]. We briefly describe below the source and
form of those constraints.

The tensor

7 i
jk j

i
k k

i
jv b v a= ′ − ′′

is determined by 24 parameters given by the two camera matrices,
each has 12 parameters. Two additional parameters drop out be-
cause we can scale v� and accordingly bi

k  without changing the

tensor, and likewise scale v�� and accordingly ai
j . An additional

parameter drops out because of the global scale factor (tensor is
determined up to overall scale). Thus, we readily see there can be
at most 21 parameters defining the tensor. We can drop out three
more parameters by noticing that the matrices ai

j  and bi
k  belong to

a family of homography matrices that leaves the tensor unchanged
(uniqueness proof in [10]), as detailed below:
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7
7
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i
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j k

i
j k

i
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v b v a

v b v v a v

v v v v

= ′ − ′′
= ′ + ′′ − ′′ + ′

= + ′ ′′ − ′ ′′
=

α α

α α
4 9 4 9

hence, we have three free parameters ai (in geometric terms there
is a free choice of reference plane in space). We can select ai such
that the matrix bi

k  will have a vanishing column (this corresponds
to selecting a reference plane coplanar with the center of projection
of the third view). Therefore, the new matrices ai

j  and bi
k  have only

15 nonvanishing entries, and we have reduced the number of pa-
rameters from 21 to 18.

To see where the nine algebraic constraints come from, we re-
visit the correlation contractions and obtain the following three
groups of constraints:

1)�Rank δ i
i
jk74 9 = 2  for all choices of d. The three standard cor-

relation slices G1, G2, G3 are of rank 2 each and this property
is closed under all linear combinations.

2)� Since the null space of δ i
i
jk7  is an epipolar line, and since all

epipolar lines are concurrent, then Rank (null(G1), null(G2),
null(G3)) = 2.

3)� Similarly, Rank (null(G1
T ), null(G2

T ), null(G3
T )) = 2.

One can easily show that no subset of these constraints is suffi-
cient to describe an admissible tensor of the form of (4). The latter
two groups represent a six-order polynomial each. To see why this
is so note that the null space of rank-2 matrix can be represented
by the cross-product of two of its rows—which is a bilinear func-
tion of the elements of the matrix. The determinant of the matrix of
null spaces of G1, G2, G3 is a cubic function of the bilinear functions
of the original elements of the tensor, hence is a sixth-order poly-
nomial of the elements of the tensor.

The first group, when properly counted, yields seven algebraic
constraints, three of them of order 3 (determinants of Gi vanish),
and the remaining four are of order 4 (arising from the fact that the
vanishing determinant is closed under linear combinations). The
derivation of these constraints are beyond the scope of this appen-
dix and will be detailed elsewhere.
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