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Abstract

We describe in this paper closed-form solutions to the following problems in
multi-view geometry of n'th order curves: (i) recovery of the fundamental matrix
from 4 or more conic matches in two views, (ii) recovery of the homography
matrix from a single n'th order (n � 3) matching curve and, in turn, recovery
of the fundamental matrix from two matching n'th order planar curves, and (iii)
3D reconstruction of a planar algebraic curve from two views.

Although some of these problems, notably (i) and (iii), were introduced in the
past [15, 3], our derivations are analytic with resulting closed form solutions. We
have also conducted synthetic experiments on (i) and real image experiments on
(ii) and (iii) with subpixel performance levels, thus demonstrating the practical
use of our results.

1 Introduction

A large body of research has been devoted to the problem of computing the
epipolar geometry from point correspondences. The theory of fundamental ma-
trix and its robust numerical computation from point correspondences are well
understood [16, 7, 12]. The next natural step has been to address the problem of
lines or point-lines correspondences. It has been showed in that case three views
are necessary to obtain constraints on the viewing geometry [28,31, 32, 34, 13].

Since scenes rich with man-made objects contain curve-like features, the next
natural step has been to consider higher-order curves. Given known projection
matrices (or fundamental matrix and trifocal tensor) [23,19, 20] show how to
recover the 3D position of a conic section from two and three views, and [25]
show how to recover the homography matrix of the conic plane, and [6, 30] shows
how to recover a quadric surface from projections of its occluding conics. Re-
construction of higher-order curves were addressed in [3] and in [22,8]. In [3]
the matching curves are represented parametrically where the goal is to �nd a
re-parameterization of each matching curve such that in the new parameteri-
zation the points traced on each curve are matching points. The optimization
is over a discrete parameterization, thus, for a planar curve of degree n, which
represented by 1

2n(n + 3) points, one would need n(n + 3) minimal number of



parameters to solve for in a non-linear bundle adjustment machinery | with
some prior knowledge of a good initial guess. In [22,8] the reconstruction is done
under in�nitesimal motion assumption with the computation of spatio-temporal
derivatives that minimize a set of non-linear equations at many di�erent points
along the curve. Finally, there have been attempts also [15] to recover the fun-
damental matrix from matching conics with the result that 4 matching conics
are minimally necessary for a unique solution | albeit, the result is obtained
by using a computer algebra system. The method developed there is speci�c to
conics and is thus di�cult to generalize to higher-order curves.

In this paper we treat the problems of recovering fundamentalmatrix, homog-
raphy matrix, and 3D reconstruction (given fundamental matrix) using matching
curves (represented in implicit form) of n'th order arising from planar n'th or-
der curves. The emphasis in our approach is to produce closed form solutions.
Speci�cally, we show the following three results:

1. We revisit the problem of recovering the fundamental matrix from matching
conics [15] and re-prove, this time analytically, the result that 4 matching
conics are necessary for a unique solution. We show that the equations neces-
sary for proving this result are essentially the kruppa's equations [21] which
are well known in the context of self calibration.

2. We show that the homography matrix of the plane of an algebraic curve of
n'th order (n � 3) can be uniquely recovered from the projections of the
curve, i.e., a single curve match between two images is su�cient for solving
for the associated homography matrix. Our approach relies on inection and
singular points of the matching curves | the resulting procedure is simple
and is closed-form.

3. We derive a simple algorithm(s) for reconstructing a planar algebraic curve
of n0th order from its projections. The algorithms are closed-form where the
most \complicated" stage is �nding the roots of a uni-variate polynomial.

We have conducted synthetic experiments on recovery of fundamental matrix
from matching conics, and real imagery experiments on recovering the homogra-
phy from a single matching curve of 3'rd order, and reconstruction of a 4'th order
curves from two views. The later two experiments display subpixel performance
levels, thus demonstrating the practical use of our results.

2 Background

Our algorithms are valid for planar algebraic curves. We start by presenting
an elementary introduction to algebraic curves, and then some introductory
properties about two images of the same planar curve useful for the rest of our
work. More material can be found in [11].

2.1 Planar algebraic curves

We assume that the image plane is embedded into a projective plane. We assume
that the ground �eld is the �eld of complex numbers. This makes the formulation
simpler. But eventually we take into account only the real solutions.



De�nition 1 Planar algebraic curve

A planar algebraic curve C is a subset of points, whose projective coordinates
satisfy an homogeneous polynomial equation: f(x; y; z) = 0. The degree of f is
called the order of C. The curve is said to be irreducible, when the polynomial f
cannot be divided by a non-constant polynomial.

We assume that all the curves we are dealing with are planar irreducible
algebraic curves. Note that when two polynomials de�ne the same irreducible
curve, they must be equal up to scale. For convenience and shorter formulation,
we de�ne a form f 2 C[x; y; z] of degree n to be an homogeneous polynomial in
x; y; z of total degree n.

Let C be a curve of order n and let L be a given line. We can represent the
line parametrically by taking two �xed points a and b on it, so that a general
point p (except b itself) on it is given by a + �b. The intersections of L and C
are the points fp�g, such that the parameters � satisfy the equation:

J(�) � f(ax + �bx; ay + �by; az + �bz) = 0

Taking the �rst-order term of the Using a Taylor-Lagrange expansion:

J(�) = f(a) + �(@f
@x
(a)bx +

@f

@y
(a)by +

@f

@z
(a)bz) = f(a) + �rf(a):b = 0

If f(a) = 0, a is located on the curve. Furthermore let assume thatrf(a):b =
0, then the line L and the curve C meet at a in two coincident points. A point
is said to be regular is rf(a) 6= 0. Otherwise it is a singular (or multiple) point.
When the point a is regular, the line L is said to be tangent to the curve C at a.

Since the fundamental matrix is a mapping from the �rst image plane into
the dual of the second image plane, which is the set of lines that lie on the second
image, it will be useful to consider the following notion:

De�nition 2 Dual curve

Given a planar algebraic curve C, the dual curve is de�ned in the dual plane,
as the set of all lines tangent to C. The dual curve is algebraic and thus can be
described as the set of lines (u; v; w), that are the zeros of a form �(u; v; w) = 0.
If C is of order n, its dual curve D is of order less or equal to n(n � 1).

We will also need to consider the notion of inexion point:

De�nition 3 Inexion point

An inexion point a of a curve C is a simple point of it whose tangent intersects
the curve in at least three coincident points. This means that the third order term
of the Taylor-Lagrange development must vanish too.

It will be useful to compute the inexion points. For this purpose we de�ne
the Hessian curve H(C) of C, which is given by the determinantal equation:
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It can be proven (see [27]) that the points where a curve C meets its Hessian
curve H(C) are exactly the inexion points and the singular points. Since the
degree of H(C) is 3(n � 2), there are 3n(n � 2) inexion and singular points
counting with the corresponding intersection multiplicities (Bezout's theorem,
see [27]).

2.2 Introductory properties

In this section, we are interested in providing a few general properties of two
images of the same planar algebraic curve. First, note that the condition that
the plane of the curve in space does not pass through the camera centers is
equivalent to the fact that the curves in the image planes do not collapse to
lines and are projectively isomorphic to the curve in space. Furthermore, the
homography matrix induced by the plane of the curve in space is regular.

Proposition 1 Homography mapping

Let � be the mapping from the �rst image to the second image, that sends p to
Ap. Let f(x; y; z) = 0 (respectively g(x; y; z) = 0) be the equation of the curve C
(respectively C0) in the �rst (respectively second) image. We have the following
constraint on the homography A:

9�; 8x; y; z; g � �(x; y; z) = �f(x; y; z)

Proof: Since the curve C and C0 are corresponding by the homography A, the
two irreducible polynomials g � � and f de�ne the same curve C. Thus these
polynomials must be equal up to a scale factor (see previous subsection).

Proposition 2 Tangency conservation

Let J be the set of the epipolar lines in the �rst image that are tangent to
the curve C, and let be J 0 the set of epipolar lines in the second image that are
tangent to the curve C0. The elements of J and J 0 are in correspondence through
the homography A induced by the plane of the curve in space.

Proof: Let f (respectively g) be the irreducible polynomial that de�nes C (respec-
tively C0). Let � be the mapping from the �rst image plane to the second image
plane, that takes a point p and sends it to Ap. According to the previous propo-
sition, the two polynomials f and g �� are equal up to scale �. Let e and e0 be
the two epipoles. Let p a point located on C. The line joining e and p, is tangent
to C at p if � = 0 is a double root of the equation: f(p+�e) = 0. (If e is located
on C, we invert p and e.) This is equivalent to say that rf(p):e = 0. Since
rg(p0):e0 = rg(Ap):Ae = dg(�(p)) � d�(p):e = d(g � �)(p):e = �df(p):e =
�rf(p):e = 0. Therefore it is equivalent to the tangency of the line e0^Ap with
C0. Given a line l 2 J , its corresponding line l0 2 J 0 is given by: A�T l = l0. 1

1 By duality AT sends the lines of the second image plane into the lines of the �rst
image plane. Here we have showed that AT induces to one-to-one correspondence
between J 0 and J .



Note that since epipolar lines are transformed in the same way through any
homography, the two sets J and J 0 are in fact projectively related by any
homography.Some authors have already observed a similar property for apparent
contours (see [1] and [2]).

Proposition 3 Inexions and singularities conservation

The inexions (respectively the singularities) of the two image curves are pro-
jectively related by the homography through the plane of the curve in space.

Proof: This double property is implied by the simple relations (we use the same
notations than in the previous proposition):2
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The �rst relations implies the conservation of the singularities by homography,
whereas the second relation implies the conservation of the whole Hessian curve
by homography.

3 Recovering the epipolar geometry from curve
correspondences

3.1 From conic correspondences

Let C (respectively C0) be the full rank (symmetric) matrix of the conic in
the �rst (respectively second) image. The equations of the dual curves are
�(u; v; w) = lTC�l = 0 and  (u; v; w) = lTC0�l = 0 where l = [u; v; w]T ,
C? = det(C)C�1 and C0? = det(C0)C0�1. C? and C0? are the adjoint matrices
of C and C0 (see [26]).

Theorem 1 The fundamental matrix, the �rst epipole and the conic matrices
are linked by the following relation:

9� 6= 0; such as: FTC0?F = �[e]xC
?[e]x; (1)

where [e]x is the matrix that represents the linear map p 7�! e ^ p.
Proof: According to proposition 2, both sides of the equation are in fact the two
tangents of the conic C, passing the epipole e. Each tangent appears at the �rst
order in both expression. Therefore they are equal up to a non-zero scale factor.

It is worthwhile noting that these equations are identical to Kruppa's equa-
tions [21] which were introduced in the context of self-calibration.



From equation 1, one can extract a set, denoted E�, of six equations on F,
e and an auxiliary unknown �. By eliminating � it is possible to get �ve bi-
homogeneous equations on F and e.

Theorem 2 The six equations, E�, are algebraically independent.

Proof:Using the following isomorphicmapping: (F; e; �) 7�! (D0?FD�1;De; �) =
(X;y; �), where D =

p
C and D0? =

p
C0?, in the �eld of complex, the original

equations are mapped into the upper-triangle of XTX = �[y]2x. Given this sim-
pli�ed form, it is possible of compute a Groebner basis ([5], [4]). Then we can
compute the dimension of the a�ne variety in the variables (X;y; �), de�ned
by these six equations. The dimension is 7, which shows that the equations are
algebraically independent.

Note that the equations E� imply that Fe = 0 (one can easily deduce it from
the equation 1 2). In order to count the number of matching conics, in generic
positions, that are necessary and su�cient to recover the epipolar geometry, we
eliminate � from E� and we get a set E that de�nes a variety V of dimension
7 in a 12-dimensional a�ne space, whose points are (F; e). The equations in
E are bi-homogeneous in F and e and V can also be regarded as a variety of
dimension 5 into the bi-projective space P8 � P2, where (F; e) lie. Now we
project V into P8, by eliminating e from the equation, we get a new variety
Vf which is still of dimension 5 and which is contained into the variety de�ned
by det(F) = 0, whose dimension is 7 3. Therefore two pairs of matching conics
in generic positions de�nes two varieties isomorphic to Vf which intersect in a
three-dimensional variety (5 + 5� 7 = 3). A third conic in generic position will
reduce the intersection to a one-dimensional variety (5 + 3 � 7 = 1). A fourth
conic will reduce the system to a zero-dimensional variety. These results can be
compiled into the following theorem:

Theorem 3 fFour conicsg or fthree conics and a pointg or
fone conic and �ve pointsg in generic positions are su�cient to compute the
epipolar geometry.

We conclude this section by notifying that this dimensional result is valid
under the assumption of complex varieties. Since we are interested in real so-
lutions only, degeneracies might occur in very special cases such that then less
than four conics might be su�cient to recover the epipolar geometry.

3.2 From higher order curve correspondences

Assume we have a projection of an n'th, n � 3, algebraic curve. We will show
next that a single matching pair of curves are su�cient for uniquely recovering

2 It is clear that we have: FTC0?Fe = 0. For any matrix M, we have: ker(MT ) =
Im(M)T . In addition, C0 is invertible. Hence Fe = 0

3 Since it must be contained into the projection to P8 of the hypersurface de�ned by
det(Fe) = 0



the homography matrix induced by the plane of the curve in space, whereas two
pairs of matching curves (residing on distinct planes) are su�cient for recovering
the fundamental matrix.

Let Ci1;:::;in (respectively C0i1;:::;in) be the tensor form of the �rst (second)

image curve. Let Ai
j be the tensor form of the homography matrix.

9� 6= 0; such as: C0i1;:::;inA
i1
j1
::::Ain

jn
= �Cj1;:::;jn (2)

Since a planar algebraic curve of order n is represented by a polynomial
containing 1

2n(n+3)+1 terms, we are provided with 1
2n(n+3) equations (after

elimination of �) on the entries of the homography matrix. Let S denote this
system. Therefore two curves of order n � 3 are in principle su�cient to recover
the epipolar geometry. However we show a more geometric and more convenient
way to extract the homography matrix since the system S might be very di�cult
to solve.

The simpler algorithm is true for non-oversingular curves, e.g. when a tech-
nical condition about the singularities of the curve holds. In order to make this
condition explicit, we de�ne a node to be an ordinary double point that is a
double point with two distinct tangents, and a cusp to be a double point with
coincident tangents. A curve of order n, whose only singular points are either
nodes or cusps, satisfy the Plucker's formula (see [35]):

3n(n� 2) = i+ 6� � + 8� �;

where i is the number of inexion points, � is the number of nodes, and � is the
number of cusps. For our purpose, a curve is said to be non-oversingular when
its only singularities are nodes and cusps and when i + s � 4, where s is the
number of all singular points.

Since the inexion and singular points in both images are projectively related
through the homography matrix (proposition 3), one can compute the homogra-
phy through the plane of the curve in space of a curve of order n � 3, provided
the previous condition holds. The resulting algorithm is as follows:

1. Compute the Hessian curves in both images.
2. Compute the intersection of the curve with its Hessian in both images. The

output is the set of inexion and singular points.
3. Discriminate between inexion and singular points by the additional con-

straint for each singular point a: rf(a) = 0.

At �rst sight, there are i! � s! possible correspondences between the sets
of inexion and singular points in the two images. But it is possible to further
reduce the combinatorics by separating the points into two categories. The points
are normalized such that the last coordinates is 1 or 0. Then separate real points
from complex points. Each category of the �rst image must be matched with the
same category in the second image. Then the right solution can be selected as
it should be the one that makes the system S the closest to zero or the one that
minimizes the Hausdor� distance (see [14]) between the set of points from the



second image curve and the reprojection of the set of points from the �rst image
curve into the second image. For better results, one can compute the Hausdor�
distance on inexion and singular points separately, within each category. We
summarize this result:

Theorem 4 The projections of a single planar algebraic curve of order n � 3 are
su�cient for a unique solution for the homography matrix induced by the plane
of the curve. The projections of two such curves, residing on distinct planes, are
su�cient for a unique solution to the multi-view tensors (in particular to the
fundamental matrix).

It is worth noting that the reason why the fundamental matrix can be re-
covered from two pairs of curve matches is simply due to the fact that two
homography matrices provide a su�cient set of linear equations for the funda-
mental matrix: if Ai, i = 1; 2, are two homography matrices induced by planes
�1; �2, then A

>
i F + F>Ai = 0 because A>i F is a symmetric matrix.

In the previous section, the computation of the epipolar geometry was in-
tended using an equivalent to Kruppa's equations for any conic. It is of theo-
retical interest to investigate the question of possible generalization of Kruppa's
equations to higher order curves. To this intent, let � (respectively  ) be the
dual curve in the �rst (respectively second) image. Let  (respectively �) be the
mapping sending a point p from the �rst image into its epipolar e ^ p (respec-
tively Fp) in the �rst (respectively second) image. Then the theorem 1 holds
in the general case, and can be regarded as an extended version of Kruppa's
equation:

Theorem 5 The dual curves in both images are linked by the following expres-
sion:

9� 6= 0; such as:  � � = �� �  (3)

Proof: According to their geometric interpretation, the sets de�ned by each
side of this equation are identical. It is in fact the set of tangents to the �rst
image curve, passing through the �rst epipole. It is left to show that each
tangent appears with the same multiplicity in each representation. It is eas-
ily checked by a short computation, where A is the homography matrix be-
tween the two images, through the plane of the curve in space and �(p) = Ap:
 � �(p) =  (e0 ^Ap) =  (�(e) ^ �(p)) �=  � (t�)�1(p). 4 Then it is su�cient
to see that the dual formulation of the property 1 is written by  � (t�)�1 �= �.

4 3D reconstruction

We turn our attention to the problem of reconstructing a planar algebraic curve
from two views. Let the camera projection matrices be [I;0] and [H; e0]. We
propose two simple algorithms.

4 Indeed for a regular matrix A: Ax ^Ay = det(A)A�T (x ^ y). Then since  is a
form, the last equality is true up to the scale factor, det(A)deg( ).



4.1 Algebraic approach

In this approach we �rst recover the homography matrix induced by the plane
of the curve in space. This approach reduces the problem of �nding the roots of
uni-variate polynomials. The approach is inspired by the technique of recovering
the homography matrix in [25]. It is known that any homography can be written
as: A = H + e0aT (see [29,17]). Using the equation 2, we get the following
relation:

�n�1C0i1;:::;ine
0i1 ::::e0in�1Ain

j = �Cj1;:::;je
i
1::::e

in�1,

where Ae = �e0.
Note that in fact this equation can be also obtained in a pure geomet-

ric way, by saying that the polar curve with respect to the epipole [11,24,
27,35] is conserved by homography. Let �j = Cj1;:::;je

i
1::::e

in�1 and �0
in

=

C0i1;:::;ine
0i1 ::::e0in�1. Therefore we get: �0

in
(Hin

j + e0inaj) = �
�n�1

�j . Thus the

vector a can be expressed as a function of � = �
�n�1

, (provided the epipoles are

not located on the image curves): aj =
1
�
(��j��0

kH
k
j ), where � = C0i1;:::;ine

0i1 ::::e0in.
Then Ai

j = Hi
j +

1
�
(��je

0i � �0
kH

k
j e
0i). Substituting this expression of A into

the equation 2 and eliminating � leads to a set of equations of degree n on �.
We are looking for the real common solutions.

In the conic case, there will in general two distinct real solutions for � cor-
responding to the two planar curves that might have produced the images. For
higher order curve, the situation may be more complicated.

4.2 Geometric approach

This following approach highlights the geometric meaning of the reconstruction
problem. The reconstruction is done in three steps:

1. Compute the cones generated by the camera centers and the image curves,
whose equations are denoted F and G.

2. Compute the plane of the curve in space.
3. Compute the intersection of the plane with one of the cones.

The three steps are detailed below.

Computing the cones equations.

For a general camera, let M be the camera matrix. Let � be the projection
mapping from 3D to 2D: � (P) =MP. Let f(p) = 0 be the equation of the image
curve. Since a point of the cone is characterized by the fact that f(� (P)) = 0,
the cone equation is simply: f(� (P)) = 0. Here we have; F (P) = f([I;0]P) and
G(P) = f([H; e0]P).

Computing the plane of the curve in space.



Theorem 6 The plane equation �(P) = 0 satis�es the following constraint.
There exists a scalar k and a polynomial r, such that: r � � = F + kG.

Proof: F and G can be regarded as regular functions on the plane. Since they are
irreducible polynomials and vanish on the plane on the same irreducible curve
and nowhere else, they must be equal up to a scalar in the coordinate ring of
the plane, e.g. they are equal up to a scalar modulo �.

Let �(P) = ��X+��Y +�Z+��T , where P = [X;Y; Y; T ]T . The theorem

provides

�
3 + n
n

�
(which is the number of terms in a polynomial that de�nes

a surface of order n in the three-dimensional projective space) equations on

k; �; �; ; �; (ri)1�i�s, where s =
�
3 + n � 1
n� 1

�
and the (ri)i are the coe�cients

of r. One can eliminate the auxiliary unknowns k; (ri), using Groebner basis [4],
[5] or resultant systems [33], [18]. Therefore we get 1=2n(n + 3) equations on
�; �; ; �.

However, a more explicit way to perform this elimination follows. Let S be
the surface, whose equation is � = F + kG = 0. The points P that lie on
the plane � are characterized by the fact that when regarded as points of S,
their tangent planes are exactly �. This is expressed by the following system of
equations:
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On the other hand, on the plane �(P) = F (P) + kG(P) = 0. Therefore

k = �F (P)
G(P) for any P on the plane that is not located on the curve itself.

Therefore we get the following system:
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Since the plane we are looking for doesn't pass through the point [0; 0; 0; 1]T

which is the �rst camera center, � can be normalized to 1. Thus for a point P on
the plane, we have: T = �(�X + �Y + Z). By substituting this expression of
T into the previous system, we get a new system that vanishes over all values of
(X;Y; Z). Therefore its coe�cients must be zero. This provides us with a large
set of equations on (�; �; ), that can be used to re�ne the solution obtained by
the algebraic approach.

Computing the intersection of the plane and one of the cones.



The equation of the curve on the plane � is given by the elimination of T
between the two equations: �X + �Y + Z + T = 0 and f(� (P)) = 0. Using
the �rst cone gives us immediately the equation, since the �rst camera matrix
is [I;0].

5 Experiments

5.1 Computing the epipolar geometry: 3 conics and 2 points

In order to demonstrate the validity of the theoretical analysis, we compute the
fundamental matrix from 3 conics and 2 points in a synthetic experiment. The
computation is too intense for the standard computer algebra packages. We have
found that Fast Gb 5 a powerful program for Groebner basis, introduced by
J.C. Faugere [9, 10] is one of the few packages that can handle this kind of com-
putation. The conics in the �rst image are:
f1(x; y; z) = x2 + y2 + 9z2

g1(x; y; z) = 4x2 + y2 + 81 z2

h1(x; y; z) = (4 x+ y)x+ (x� 1=2 z) y + (�1=2 y + z) z

The conics in the second image are:
f2(x; y; z) = � 1
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p
3 + 56456040yz+

68848000x2
p
3 + 1279651200xz � 272267400z2

p
3 + 2522418y2

p
3 � 298209y2)

Given just the constraints deduced from the conics, the system de�nes, as
expected, a one-dimensional variety in P8 � P2. When just one point is intro-
duced, we get a zero-dimensional variety, whose degree is 516. When two points
are introduced, the system reduces to the following:8>>>><

>>>>:

F [1; 1] = F [2; 2] = F [2; 3] = F [3; 2] = F [3; 3] = 0
F [3; 1]+ (

p
3� 1)F [1; 3] = 0

10F [2; 1]+ (
p
3� 1)F [1; 3] = 0

10F [1; 2]+ (
p
3� 2)F [1; 3] = 0

133813 � F [1; 3]2� 20600 � p3� 51100 = 0

Then it is easy to get the right answer for the fundamental matrix:2
666664

0 � �2+p3p
511�206p3

10 1p
511�206p3

� �1+p3p
511�206p3

0 0

�10 �1+p3p
511�206

p
3

0 0

3
777775

5 https://fgb.medicis.polytechnique.fr/



5.2 Computing the homography matrix

We have performed a real image test on recovering the homography matrix
induced by the plane of a 3'rd order curve. The equations of the image curves
were recovered by least-squares �tting. Once the homography was recovered we
used it to map the curve in one image onto its matching curve in the other
image and measure the geometric distance (error). The error is at subpixel level
which is a good sign to the practical value of our approach. Figure 1 displays
the results.

Fig. 1. The �rst and the second image cubic.

Fig. 2. The reprojected curve is overlayed on the second image cubic. A zoom shows
the very slight di�erence.



5.3 3D reconstruction

Given two images of the same curve of order 4 (�gure 3) and the epipolar ge-
ometry, we start by compute the plane and the homography matrix, using the
algebraic approach to reconstruction. There are three solutions, that are all very
robust. However to get further precision, one can re�ne it with the �nal system
on the plane parameters, obtained at the end of the geometric approach. To
demonstrate the accuracy of the algorithm, the reprojection of the curve in the
second image is showed in the �gure 4. The 3D rendering of the correct solution
and the three solutions plotted together are showed in �gure 5.

Fig. 3. The curves of order 4 as an input of the reconstruction algorithm.

Fig. 4. Reprojection of the curve onto the second image.
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Fig. 5. The curves of order 4 as an input of the reconstruction algorithm.

Finally, the equation of the correct solution on its plane is given by: f(x; y; z) =
9006922504387547
9007199254740992 z

4� 4947731105035649
1152921504606846976 yz

3+ 1070847909255857
147573952589676412928 y

2z2� 5458927196207623
1208925819614629174706176 y

3z+
3969428158337415

2475880078570760549798248448 y
4� 7563069091264439

1152921504606846976 xz
3+ 5911661048544087

295147905179352825856 xyz
2� 7447102119819593

302231454903657293676544 xy
2z+

3625625302714855
618970019642690137449562112 xy

3+ 4936178943362411
295147905179352825856 x

2z2� 8944822903795571
302231454903657293676544 x

2yz+
7158022235457567

309485009821345068724781056 x
2y2� 6146225343803339

302231454903657293676544 zx
3+ 7423176283805271

618970019642690137449562112 x
3y+

6539339092801811
618970019642690137449562112 x

4

The curve is drawn on �gure 6.
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Fig. 6. The original curve.

6 Conclusion and future work

We have presented simple closed-form solutions for recovery of homography ma-
trix from a single matching pair of curves of n � 3 order arising from a planar
curve; two algorithms for reconstructing algebraic curves from their projections,



again in closed-form; and revisited the problem of recovering the fundamental
matrix from matching pairs of conics and proposed an analytic proof to the
�ndings of [15] that four matching pairs are necessary for a unique solution.

Our experiments on real imagery demonstrate a sub-pixel performance level
| an evidence to the practical value of our algorithms. Future work will investi-
gate the same fundamental questions | calibration and reconstruction | from
general three-dimensional curves.
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7 Appendix

7.1 Tensor representation of a planar algebraic curve

As a conic admits a matrix representation, pTCp = 0 i� p belongs to the conic, a
general algebraic curve of order n admits a tensor representation: Ti1:::inp

i1 :::pin =
0 i� p belongs to the curve, where for each k, ik 2 1; 2; 3. In this tensor repre-
sentation, a short notation is used: a repeated index on low and high position
is summed over its domain de�nition. One has to link this tensor representation
with the regular polynomial representation: f(x; y; z) = 0.



Lemma 1. Let f(x; y; z) = 0 be an homogeneous equation of order n. There
exists a tensor of order n, de�ned up to a scale factor, such as the equation can
be rewritten in the following form:

Ti1:::inp
i1 :::pin = 0,

where for each k, ik 2 1; 2; 3, p = [x; y; z]T , and:

Ti1:::in = Ti�(1) :::i�(n) ; for each � which is a transposition of f1; 2; ::; ng: 6

Proof: The proof is quite forward. It is just necessary to remark that for each n-

uplet i1; ::; in such as: i1 � i2 � ::: � in, we have: Ti1:::in = � 1
a!b!c!

@a+b+c

@xaybzc
f(x; y; z),

where: a =
P

ik=1
1, b =

P
ik=2

1, c =
P

ik=3
1 and � = a!b!c!

n!
. The factor � is

due to the symmetry of the tensor. Finally Ti1:::in = 1
n!

@a+b+c

@xaybzc
f(x; y; z).

6 A transposition of f1; 2; ::;ng is de�ned by the choice of a pair fi; jg � f1; 2; ::ng,
such as: i 6= j and �(k) = k for each k 2 f1; 2; ::ngnfi; jg and �(i) = j and �(j) = i.


