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Abstract

In the context of combining Radar and Vision sensors for a
fusion application in dense city traffic situations, one of the
major challenges is to be able to validate Radar targets.
We take a high-level fusion approach assuming that both
sensor modalities have the capacity to independently lo-
cate and identify targets of interest. In this context, Radar
targets can either correspond to a Vision target — in which
case the target is validated without further processing —
or not. It is the latter case that drives the focus of this pa-
per. A non-matched Radar target can correspond to some
solid object which is not part of the objects of interest of
the Vision sensor (such as a guard-rail) or can be caused
by reflections in which case it is a ghost target which does
not match any physical object in the real world.

We describe a number of computational steps for the deci-
sion making of non-matched Radar targets. The computa-
tions combine both direct motion parallax measurements
and indirect motion analysis — which are not sufficient
for computing parallax but are nevertheless quite effective
— and pattern classification steps for covering situations
which motion analysis are weak or ineffective. One of the
major advantages of our high-level fusion approach is that
it allows the use of simpler (low cost) Radar technology to
create a combined high performance system.

1 Introduction

Radar systems have been shown to provide good perfor-
mance in Adaptive Cruise Control (ACC) applications.
They work well in the highway environment where the host
vehicle and the valid targets (other vehicles) are all mov-
ing at highway speeds and can be separated from station-
ary targets. Automotive engineers are faced with two chal-
lenges: to increase the performance envelop to include ur-
ban driving and stop & go situations and to reduce system
cost so as to penetrate the mid-range. Unlike highways, ur-
ban environments have significant clutter of radar reflect-
ing targets. Many stationary targets such as slow moving

vehicles, parked cars, railings and lamp posts are relevant
targets and cannot simply be ignored. They must be accu-
rately located and tracked to determine if there are in the
vehicle path.

One way to meet both these challenges is to combine a
low cost radar together with a vision system. One ap-
proach for radar cost reduction is to exclude the moving
parts from the radar, this design will also make the radar
smaller. DENSO Corporation followed this approach by
developing a Phase Array Radar which uses an electronic
scan instead of mechanical scanning. The angular resolu-
tion of a phase array radar is lower than that of a mechani-
cal scanning radar and thus has stronger side lobes. These
side lobes can cause false detection both multi-path false
(reflections from walls) and other reflectors on the road.
It is possible to solve these problems for particular appli-
catons such as ACC using data processing treatment with-
out changing the hardware. However, to support a more
expanded range of applications it is neccessary to supli-
ment the radar with additional sensors in a sensor fusion
approach.

The vision system can more than compensate for the lower
angular resolution of the low cost radar and the increased
appearance of ghost radar targets. The camera has very
good angular resolution and can be used to determine
both height, width and lateral speed of the target. Pattern
recognition can be used to classify the object and even
non-radar (or weakly) reflective targets such as pedestrians
can be detected. Moreover, the cost of a vision system is
significantly lower than the cost saved by using the simpler
radar. A vision system, in addition to overcoming cost
reduction problems, can contribute to the system features
such as road analysis and scene understanding. Thus taken
together the fused system can be less expensive and have
more capabilities than high-end radar systems. A complete
fusion system must address the following problems:

1. Match radar (approved and candidate) and Vision
targets. The matching process is based on range, angular
position, range-rate and must consolidate such information



across multiple images.

2. Using shape and texture characteristics provide a rich
target description which includes width, height, length
(when possible — such as when target is in an adjacent
lane).

3. Validate target as to ”Solid” or ”Ghost” where the Ghost
target arises from radar reflections.

4. Provide target classification for Solid targets: this
includes vehicle (and ordinal size) whether moving or
stationary, and motorcycles.

5. Detection of non-reflecting or weak reflecting radar
targets: these includes mostly Pedestrians whether moving
(longitudinally or laterally) or stationary.

6. Target lock when target moves out of the radar viewing
field but is still visible to the Vision system (which
typically has a much wider field of view).

7. Integration with lane mark analysis: this includes
refinement of yaw rate sensing with visual input for better
designation of in-path targets and for path prediction.

8. Integratevisual motion analysis(optic-flow) for early
target cut-in detections.

The list above is by no means complete but provides an
idea of the complexity of the task. We take a ”high level”
fusion approach in which each of the sensory modalities
(radar and vision) has the capacity for independently locat-
ing and identifying objects of interest.

The radar sensor provides accurate longitudinal and ap-
proximate (and somewhat rather poor) lateral positioning
of a radar reflecting target. The Vision sensor can provide
an accurate lateral positioning with precise object bound-
aries and an approximate longitudinal position (yet suffi-
cient for distance control — see [8]) — therefore in that
sense the two sensing modalities complement each other.
But the fusion can go much deeper as the visual processing
provides shape and texture cues for pattern classification,
motion cues for visual motion analysis and image process-
ing for lane mark analysis. The shape and texture cues can
be used by the fused system for target typing, target vali-
dation, collection of additional features (like object length)
and certain elements of ”scene understanding” which in-
cludes detection of guard-rails, bridges and over-passes,
pedestrian walking zones, and so forth; the visual motion
analysis can be used for early detection of adjacent lane
targets and for cut-in analysis; and the lane analysis used
for in-path designation.

In this paper we focus on one of the items in the list above
which is related to target validation with the focus on dis-
tinguishing Solid and Ghost radar targets. A ghost target is
weakly correlated with physical features in the world (and

thus with image features) so it may seem that the strongest
validation cue would be based on motion parallax mea-
surements. The motion parallax can distinguish between
a target on the road surface (be it a ghost reflection or
a flat metallic object on the road) and a target positioned
perpendicular to the road surface. We show in this paper
that motion parallax alone is not sufficient for making a
reliable validation since often the detected targets are rela-
tively narrow or small in the image. We develop alternative
motion analysis cues which are not sufficient for parallax
recovery yet are effective for separating ghosts from phys-
ical upright objects. In addition to visual motion cues we
collect texture and shape cues for classifying typical non-
vehicle targets that tend to be picked up by the radar such as
guard rails and poles. Furthermore, we focus on vehicle-
related targets that are not systematically detected by the
the radar sensor such as laterally moving vehicles (in a ”T-
bone” configuration).

We describe below some basic characteristics of the radar
and vision sensors we used for this project, discuss related
work and then proceed with the target validation process-
ing description.

1.1 Related work on radar/vision fusion

The advantages of fusing together data from radar and vi-
sion together with the complementary advantages and dis-
advantages of each sensor is widely known and has been
discussed in [3, 11, 10, 1]. Grover-et-al [2] perform fu-
sion on low level features such as blobs detected in both
radar and vision data. Fusion is performed in polar coordi-
nates and based on angular position. A single radar image
and a single night-vision image is used. A more common
approach is to perform fusion at the target level. A radar
system produces a list of targets with range and rough az-
imuth. The image is then tested for a vehicle [4] or pedes-
trian target by applying pattern recognition techniques in a
location given by the azimuth value from the radar. Coue-
et-el [1] describe a Bayesian framework for fusion based
on target information (position and range) from multiple
modalities. In this paper, however, it is assumed that range
information is not available since the visual processing is
monocular.

2 Radar Target Validation
The visual processing is based on a single forward facing
camera mounted inside the host vehicle typically near the
rear view mirror. The camera used in this work has VGA
sensor (640× 480) and a horizontal FOV of 47o. The
visual processing is an independent multi-function system
developed by MobilEye Ltd. that performs forward facing
vehicle detection, vehicle cut-in, lanes following and
pedestrian detection [9, 8, 6, 5, 7]. We divide the target
validation task into two cases: (i) class-specific object,



and (ii) non-class-specific object. When a match between
a radar and a vision target occurs we refer to this situation
as a ”class specific”. According to our high-level approach
such a match means that the target has been independently
corroborated by the vision sensor as a known object type
and thus the radar target is validated. When the radar
target has no match with a vision target we refer to this
situation as a non-class-specific situation. The latter case
requires specialized processing combining visual motion
analysis and shape and texture cues for validating the radar
target. The measurements we collect for the validation
process include:

1. Measure of target stability from the radar sensor. Ghost
target tend to be less stable than rear longitudinally mov-
ing objects. However, unstable radar targets also arise from
physical solid targets such as laterally moving vehicles.

2. Radar target is matched to the closest edge-defined im-
age region. The image region is tracked over a number of
frames for the purpose of collecting motion parallax cues
— both direct and indirect.

3. The area of the radar target is matched against guard-
rail templates and against general repetitive patterns (such
as parked cars columns).

4. The radar target is matched against a Pole-like template.

5. Unstable radar targets are matched against laterally
moving vehicle templates based on motion and wheel de-
tectors.

6. Radar occlusion analysis is conducted to determine
whether the radar target is occluded. The occlusion cri-
terion requires that the target will overlap a closer vehicle,
pedestrian or any other bounded target.

A radar target that fails all these tests is determined to be
a ghost target. These tests are explained below in more
detail.

2.1 Class specific object
Certain classes of objects can be detected in the image on
the basis of image information alone. For example cars,
truck and motorcycles have a characteristic size and ap-
pearance so they can be reliably detected from the rear and
the side if the whole vehicle is in view.

This step receives as input a list of radar targets and a list
of vision detected vehicles. A radar targets that matches
a vision target is considered a valid target. Matching is
based on range, range rate and angular position. After a
match is found, the radar range and vision angular position
and extent are used to determine the possibility of collision.
For example, the lateral positionX can be computed using
radar rangeZr , the horizontal image coordinatex and the
camera focal lengthf : X = xZr

f .

(a)

(b)

Figure 1:In (a) we see the target in first frame and the rect-
angle the system tries to track after. In (b) we see the result
of the tracking and the position of the target in this frame.
The difference in the position of the tracked rectangle and
the target indicates the target is a ghost.

2.2 Image stability
The main characteristic of radar ghosts arising from reflec-
tions is that they are not correlated to any feature in the
world. Thus they appear to “float” in the image. In this test
the image region around the radar target is tracked over
multiple frames and the motion is compared to the motion
of the radar target, taking into account the lateral accuracy
of each sensor. An example is shown in figure 1. As men-
tioned above, an unstable radar target is not necessarily a
ghost as instability may arise from laterally moving objects
as well. We therefore test the region for the existence of a
vehicle side as described in section 2.3.2.

2.3 Non-class specific object
The test whether an object is a non-class specific is based
on motion cues. Motion cues have been used in [12] to de-
termine if groups of horizontal lines are on the road surface
or on an upright structure (e.g. rear of a vehicle). However
since they do not have accurate range and range rate infor-
mation from a radar they require more horizontal lines and
must use second order effects. Instead, in the method de-
scribed below any two lines or a single line and the FOE
(focus of expansion) can be used to verify a radar/vision
match.

Angle and range are used to locate a candidate region in



the image with strong edges. However, since the radar an-
gle and vision range are not very precise these alone are
not sufficient for target validation. To validate the target,
this region is tracked over multiple frames and the scale
change in the image is compared to the range rate of the
radar target: ∣∣∣∣w1

w2
− Z2

Z1

∣∣∣∣ < T (1)

wherew1 andw2 are the image dimensions of the region
(width or height) in two frames andZ1 andZ2 are the corre-
sponding radar ranges.T is a threshold. If there is a match
the target is validated as asolid otherwise it is classified a
ghost.

The change in image dimensions∆w due to change in rel-
ative distance∆Z depends on the range, range rate and ob-
ject width and also on the camera parameters:

∆w = w2−w1 =
fW

Z+∆Z
− fW

Z
(2)

= − fW∆Z
Z(Z+∆Z)

≈− fW∆Z
Z2

Using subpixel tracking methods, the measurable change
that can be resolved in real-world images is on the order of
0.25 pixel.

Typically we are interested in situations where∆Z
Z < 0.1.

An object whose width is 1 meter and whose distance is
50 meter will appear in the image as 15 pixels wide and
the value of∆w will be considerably larger than the noise.
However if the object is very narrow, as in the case of a
pole or lamppost, the change inw can be on the order of
0.1 pixel or less. In that case it is better to use the image
motion of the pole (∆x) relative to the FOE to compute the
scale change.

∆x = x2−x1 =
f X

Z+∆Z
− f X

Z
(3)

= − f X∆Z
Z(Z+∆Z)

≈− f X∆Z
Z2

Using robust image stabilization techniques the FOE can
be determined to within 1 pixel. This puts a constraint on
how close the vertical edge can be to the FOE for it’s mo-
tion to be detected reliable. The practical limit is 20 pixels.

In order to have a reliable scale tracking one must first
bound the region of the obstacle in the image. Since the
shape of the reflecting object is unknown we developed
detection strategies for typical object types: wide objects
with strong vertical edges (cars, dumpsters), wide objects
with strong horizontal edges (sides of cars, walls), narrow
objects with strong vertical edges (poles, lamppost), strong
straight edges in the direction of the FOE (guard rails and
walls parallel to the road).

(a)

(b)

Figure 2: (a) The radar target is on an edge inside object
and a vertical edge is found on each side. In (b) the radar
target is to the right and both detected edges are on the left
of the radar target.

2.3.1 Vertical edges
The first attempt to bound the target area is by finding ver-
tical edges around the target. Using the following method:

1. We assume the target is 1-3m wide and look for ver-
tical edges with a lateral distance of 0.5 - 1.5m from
the target. If two edges are found than these are the
bounding edges of the object. See Figure 2a.

2. If only one edge was found we assume that the tar-
get is narrow and look for the closest edge within 1m
from the first edge. See Figure 2b.

2.3.2 Horizontal edges
If we fail to bound the target with vertical edges we try to
find horizontal edges that goes through radar target. The
search region is determined by the radar range and the
ground-plane constraint.

The typical target detected in this way are sides of vehicles
(T-bone). See Figure 3. These are particularly important
targets to recognize since not only is the consequence of
hitting such a target very bad but also there are often mov-
ing targets that might be moving into or out of a collision
course. Accurate target boundary location and target lat-
eral speed estimation are critical. The radar alone lacks the
angular accuracy and resolution to correctly compute these



Figure 3:Horizontal edges detected on the radar target. A
typical example of a T-bone vehicle.

values but provides the vision system with accurate range
which is used to convert angles to lateral position.

Since a target with strong horizontal lines is often a side of
a vehicle and since these targets are of special importance,
a detector based on pattern recognition is used to verify a T-
bone target and to determine the extent of the vehicle side.
This detector first detects wheel candidates by searching
for circles in the image that correspond to wheels of 0.5m
to 1.5m in diameter at the range given by the radar. Re-
stricting the search in this way speeds up the computation
and also reduces the likelihood of false detection.

After the wheels are detected the wheel base length is used
to estimate the vehicle length. The vehicle is tracked in the
image and the likelihood of collision can be estimated.

2.3.3 Pole like structures
The nature of the vertical bounded region we search for
in section 2.3.1 is at least 1m wide. Poles are narrow and
do not fit this model. In addition, the motion criteria rel-
ative to the FOE which we we use on narrow structures is
a weak criteria since it assumes a rigid world. Therefore
a special search for poles has been implemented that puts
some restrictions on what edges can be classified as ’pole
like’. This is done by looking for two close and long ver-
tical edges. These vertical edges must extend across the
horizon line. They must be straight although not necessar-
ily perfectly vertical. See Figure 4. The lowest point on the
edge can be used to estimate the range to the pole candidate
using the ground plane assumption:Zest =

f h
y whereZest is

the radar range,f is the focal length,h is the camera height
andy is the image position of the lowest edge point. Both
lateral position and range estimate are used for matching.
If the estimated range matches the radar range then we al-
low larger error of lateral position. After a candidate pole
has been found it is tracked and the motion relative to the
FOE is compared to the radar range rate.

2.3.4 Forward edges
Radar targets on the sides which we are not matched to
horizontal or vertical regions are possibly due to structures

Figure 4:Radar targets on poles.

Figure 5:Radar targets detected on the guard rail. In the
image these targets appear as lines in the direction of the
road vanishing point.

parallel to the road edge such as guard rails. In the image
these structures appear as lines passing through the vanish-
ing point as determined by the vision basedlane detection
system. See Figure 5.

When dealing with fences and guard rails one must pay
special attention to repetitive structures which are paral-
lel to the road. These can create aliasing effects due to
the finite sampling rate of the video camera and the radar.
The result of these aliasing effects can be incorrect motion
tracking. Sometime vertical lines on a fence or rail appear
to be stationary of even moving inwards towards the FOE.

In order to detect the presence of repetitive structure we use
the invariance of cross ratios under perspective projection.
If a set of edges are due to a set of equally spaced structures
(such as poles) in a line parallel to the road then any two
such edges together with the location of the vanishing point
can be used to predict the location of the other edges in the
image. By comparing the predicted edge location and the
actual edge location one can compute the likelihood of this
to a be a random occurrence or due to repetitive structure.
Figure 6 shows an example of a fence with strong repetitive
structure.

3 Results
The combined system was tested on data recorded from
three hours driving in both highway and urban scenes. The



Figure 6: Structures along highways often have a repet-
itive structure which can cause problems to tracking al-
gorithms due to aliasing. The cyan lines show repetitive
structures that were detected using the projective invariant
of the cross ratio.

radar target data was recorded together with the video data
and vehicle speed. The recorded data was then analyzed
offline. Radar targets that were were reported asmature
targets and that lasted for at least five radar cycles (0.5 sec-
onds) were manually tagged as either solid, ghost or oc-
cluded. The total number of mature radar targets detected
was 1165.

The system was then run offline on the recorded data with
the system classifying the targets to either solid, ghost or
undetermined. Table 3 compares the manual tag to the sys-
tem classification.

System
Manual Tag Solid Ghost Occluded

Solid 1096 10 0
Ghost 20 13 0
Undetermined 16 0 10

4 Summary
We have presented a combined system that uses vision for
radar target validation. The combined system can achieve
high reliability target detection with low false rate in de-
manding situation such as cluttered urban environments.

The validation strategy is based on a high-level sensor
modality approach which assumes that each sensor has a
capacity to form independent target acquisition. Therefore
matched targets are by definition validated and do not re-
quire further processing. We have broken down the valida-
tion process for unmatched targets into a number of steps
combining motion analysis with shape and texture analy-
sis. Much of the challenge in this process lies in the fact
that typically the areas of interest are small or narrow and
may not be sufficiently described by nearby distinct image

features. As a result, we have developed specialized detec-
tors both for the motion analysis and for the shape analysis
to overcome these challenges.
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