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Abstract
We describe a robust method for computing the ego-motion
of the vehicle relative to the road using input from a sin-
gle camera mounted next to the rear view mirror. Since
feature points are unreliable in cluttered scenes we usedi-
rect methodswhere image values in the two images are
combined in a global probability function. Combined with
the use of probability distribution matrices, this enables
the formulation of a robust method that can ignore large
number of outliers as one would encounter in real traffic
situations. The method has been tested in real world en-
vironments and has been shown to be robust to glare, rain
and moving objects in the scene.

1 Introduction
Accurate estimation of the ego-motion of the vehicle rela-
tive to the road is a key component for autonomous driving
and computer vision based driving assistance. We describe
a robust method for computing the ego-motion of the ve-
hicle relative to the road using input from a single camera
rigidly mounted next to the rear view mirror. The method
has been tested in real world environments and has been
shown to be robust to glare, rain and moving objects in
the scene. Using vision instead of mechanical sensors for
computing ego-motion allows for a simple integration of
ego-motion data into other vision based algorithms, such
as obstacle and lane detection, without the need for cal-
ibration between sensors. This reduces maintenance and
cost.

The challenge of achieving a high-level of robustness in
ego-motion estimation for real-life conditions, such as
dense traffic, can be traced to the following two points:

1. Typical roads have very few feature points, if at all.
Most of the measurable image structure is linear —
like lane marks. On the other hand, the background
image structures may contain many feature points
(like those on other vehicles, trees, buildings, etc.).
Therefore, an optic-flow based calculation would be
very problematic in practice.

2. A typical scene may contain a large amount of out-

lier information. For example moving traffic violates
the rigid world assumption and thus contributes false
measurements for ego-motion calculation; also rain
drops, wiper moving in rain conditions, glare, and
so forth, all contribute false measurements for ego-
motion recovery.

To overcome these problems, first and foremost, we pro-
pose an approach based on adirect method[4, 1, 11, 10]
whereeachpixel contributes a measurement. These mea-
surements are then combined in a global probability func-
tion for the parameters of the ego-motion model. The “di-
rect” approach has the advantage of avoiding the calcu-
lation of optic-flow and in turn avoids the use of feature
tracking. As a result, the collinear image structures that
are prevalent in typical roadways contribute measurements
for the ego-motion model. Second, we reduce the num-
ber of estimated parameters to a minimum of three param-
eters. This has the advantage of disambiguating typical
ambiguous situations by decoupling rotational and transla-
tional motion, and most importantly facilitates the use of
robustestimation using sampling [7].

In the direct estimation model we make the assumption that
the roadway is a planar structure and focus the measure-
ments on the road itself. In other words, all image measure-
ments that violate the rigid world assumption (like mov-
ing vehicles and moving shadows)andall image structure
above the road are considered outliers. The planar assump-
tion makes the ego-motion estimation a parametric estima-
tion model (see [1]) with 8 parameters (described in the
sequel). In our work we found that it is very important to
reduce the number of estimated parameters to a minimum
in order to facilitate a robust estimation. Fortunately, in the
typical driving scenario, the road forms a planar structure
and leads to a simple parametric model with only 3 domi-
nant parameters: forward translation, pitch and yaw. With
few parameters it is possible to devise a robust method and
the computation can be performed at frame rate on stan-
dard hardware.

Fig. 1 shows a typical set of road images with varying de-
grees of difficulty. Fig. 1a shows a highway scene with a
clearly dominant ground plane. The car in the distance can
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Figure 1: Typical images from camera mounted inside a
car. (a) a simple highway scene with a small number of
outliers to the planar assumption. (b) a more challenging
scene with denser traffic. (c) The large moving bus pass-
ing on the right does not divert the robust motion estimate.
(The white dots at the center of the image mark the pre-
dicted path 50 frames ahead.) (d) a typical urban street.
The road features are weak and unstructured. The esti-
mated heading clearly marks the shift to the left to pass
the parked car.

be regarded as an outlier and systems such as [5, 2, 12]
might work well. In fig. 1b the traffic is denser. Many fea-
tures belong to the moving cars and few features lie on the
road.

Fig. 1c shows a bus passing on the right which takes up a
significant part of the image. The passing bus will cause
a non-robust method to estimate a motion to the right (to-
wards the bus). There is still texture on the road that can
give us the ego-motion but the road is no longer the domi-
nant planar structure. Fig. 1d shows a typical urban street
where the road features are weak and unstructured. The
weak features are combined globally to give good motion
estimates and the shift to left to pass the parked car is
clearly visible.

2 Mathematical foundation
2.1 The Motion Model
We will assume a calibrated camera system where theZ
axis of the world coordinate system is aligned with the
camera optical axis and theX andY axes are aligned with
the image axesx andy. The focal lengthf is assumed to
be known.

Let t = (tx; ty; tz)
> andw= (wx;wy;wz)

> be the unknown
instantaneous camera translation and rotation. Then fol-
lowing [6] the flow vector(u;v) for a pointp= (x;y)> in
the image is given by:
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For points on the plane we have:

AX+BY+CZ= 1: (3)

Dividing through byZ we get:

1
Z
= ax+by+c (4)

where: a = A
f , b= B

f andc= C. We then substitute (4)
in (1) to get:

u = (ax+by+c)S>1 t +(p̂�S1)
>w

v = (ax+by+c)S>2 t +(p̂�S2)
>w: (5)

Expanding these equations we have:
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These equations are a special case (the calibrated camera
case) of the 8-parameter model for a camera moving rela-
tive to a plane:

u = α1x+α2y+α3+α7x2+α8xy (8)

v = α4x+α5y+α6+α7xy+α8y2
: (9)

Given the optical flow(u;v) one can recover the parame-
tersαi ; i = 1: : :8 from which one can recover the motion
parameters [12]. The problem is that due to the large num-
ber of parameters it is hard to devise a robust method which
rejects outliers. Furthermore, it is hard to differentiate be-
tween flow due to rotation around theX andY axes and
translation along theY andX axes respectively.

It is therefore advantageous to reduce the number of mo-
tion parameters to a minimum. The motion of a car on the



road can be modeled as a translation along theZ axis and
rotation around theX andY axes. Limiting ourselves to
this motion model, eq. (5) becomes:

u=�(ax+by+c)xtz�
xy
f

wx+( f +
x2

f
)wy (10)
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f
)wx+
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In our particular setup we rectify the images so that the
ground plane is parallel to theXZ plane (i.e. a = 0 and
c= 0) and thus:

u = �bxytz�
xy
f

wx+( f +
x2

f
)wy (11)

v = �by2tz� ( f +
y2

f
)wx+

xy
f

wy:

In order to rectify the images correctly one must calibrate
the camera. The calibration process is described in sec-
tion 4.

2.2 Combining geometric and photometric con-
straints

Solving eqs. (11) fortz, wx andwy would require first com-
puting the optical flow(u;v) (i.e. point correspondences).
Finding corresponding points in two images is based on the
photometric constraint[3]:

I(x;y; t)� I(x+uδt;y+vδt; t+δt) = 0: (12)

This equation states that the irradiance of an image point
(x;y) at timet is equal to the irradiance of the correspond-
ing point at timet + δt. In practice eq. (12) does not hold
exactly due to noise. If we model the noise for every pixel
as zero mean Gaussian noise we get:

P (I(x;y; t)� I(x+uδt;y+vδt; t+δt)) = N (σ2
;0) (13)

and amaximum likelihoodsolution is sought.

Using eq. (12) alone to find correspondences has proven
to be difficult and computationaly expensive. To avoid
this step we use the direct method approach of [4] (see
also [1, 11, 10]). Following this approach we compute the
motion parameters directly from the images by combin-
ing the geometric constraints embodied in eq. (11) together
with the photometric constraints (12).

Given two consecutive imagesψ(x;y) and ψ0(x;y), our
goal is to compute the probability of a motion ˆm =
(tz;wx;wy) given the two images:

P (m̂jψ;ψ0): (14)

The motion that maximizes (14) is our estimate of the cam-
era motion between those two frames.

We derive the probability distribution in a similar manner
to [8]. Using Bayes rule:

P (m̂jψ;ψ0) =
P (ψ0jψ;m̂)P (m̂)

P (ψ0)
(15)

P (m̂) is thea priori probability that the motion is ˆm. We
will assume a uniform probability in a small region̂M
around the previous estimate. The denominatorP (ψ0) does
not depend on ˆm and thus does not affect the search for a
maximum.

We now develop an expression forP (ψ0jψ;m̂), the proba-
bility of observing an imageψ0 given the previous imageψ
and a motion ˆm. Given the motion ˆm= (tz;wx;wy) thesum
squared difference(SSD) between the two patches is:

S(m̂) =
1
N ∑

x;y2R
(ψ̂0(x;y)�ψ(x;y))2 (16)

whereψ̂0 is imageψ0 warped according the motion ˆm and
R is the set of all the pixels inψ that belong to the road.
Nr is the number of pixels in the setR. Using this SSD
criteria:

P (ψ0jψ;m̂) = ce
�S(m̂)

σ2 (17)

wherec is a normalization factor and we have modeled the
noise as zero mean Gaussian noise with varianceσ2.

Therefore the problem of finding the maximum likelihood
motionm̂ for a patchψ is that of finding the maximum of
the function:

P (m̂jψ;ψ0) = ce
�S(m̂)

σ2 (18)

for m̂2 M̂. Since the setR is not known we next consider
the problem of robust estimation.

2.3 Robust Implementation
The basic idea is to tessellate the image into a set of patches
Wi . We then sum the probability densities for each patchWi

weighted by our confidenceλi that the patch comes from
the road andβi , a measure of the gradient information in
the patch.

P (m̂jψ;ψ0) = c
∑i P (m̂jWi ;W0

i )λi

∑i λi
(19)

The motionm̂2 M̂ that maximizes eq. (19) is our motion
estimate given imagesψ andψ0. For each patchWi the set
Ri includes all the pixels in the patch.

To compute the weightλi we observe that for patches
which do not belong to the road (such as the rear ends and
sides of cars) the motion model (eq. 11) is not a good fit.
A better fit can be obtained using some other motion of the
patch. Furthermore, for planar objects moving on the road
surface such as moving shadows the maximum of eq. (18)



will occur far away from the initial guess. The weightλi is
then the ratio between the best fit using the motion model
in a local region near the initial guess (M̂) and the best fit
using any motion model over a large search region.

Let:

P1 = max

�
exp(

�Si(m̂)
σ2 )

�
(20)

for all m̂2 M̂ be the score for the best fit in a local search
region. We have usedSi() to denote the SSD over all pixels
in the patchi. Let:

P2 = max

�
exp(

�Si(m̂)
σ2 )

�
(21)

for all m̂2 L be the score for the best fit for all feasable im-
age motions, not limiting ourselves to the particular motion
model (11). Then:

λi =
P1

P2
: (22)

In practiceP2 as defined is too expensive to compute. It is
sufficient to consider only integer image translations over
a range of�7 pixels in thex andy directions.

In order to reduce the effect of patches with little gradient
information we define:

βi =

 
∑̂
m2L

exp(
�Si(m̂)

σ2 )

!�1

: (23)

For a uniform patch the SSD will be low for all motions
and thereforeβi will be low. For patches with texture the
SSD will be high for most motions and thereforeβi will be
high.

3 The Algorithm
We now describe the complete algorithm for computing
ego-motion from two frames.:

1. Start with an initial guess which is based on the previ-
ous motion estimate and information from other sen-
sors if available, such as the speedometer.

2. For each patch, warp image 2 towards image 1 using
the initial guess.

3. In a 15�15 region around that point compute the SSD
and the fit value. The best fit isP2 (eq. 21). The sum
of the fits values is1

βi
(eq. 23).

4. In a small 3D space of motions (tz;wx;wy2 M̂) around
the initial guess, search for the best fit value for
that patch. This isP2 (eq. 20). This search can be
performed using gradient descent limited to a cube
shaped region.

5. Computeλi from P1 andP2 (eq. 22).

6. Search for the motion ˆm that maximizes eq. (19). This
search can be performed using gradient descent lim-
ited to a cube shaped region.

This algorithm is extended to a motion sequence by using
the new estimate to adjust the initial guess. The size of
the regionM̂ can also be adjusted adaptively. As a starting
guess, if we do not have a speedometer reading we use
40kmh as the initial speed and zero values for yaw and
pitch. The algorithm then converges to the correct value
after a few hundred frames (2-3 seconds of motion).

4 Calibration
In eq. (11) we assume a coordinate frame in which the
ground plane is parallel to theXZ plane of our camera co-
ordinate system and that the optical axis is parallel to the
Z axis. This requires that the images be rectified (in soft-
ware) prior to computing the ego-motion. We now describe
a procedure for calibrating the system and determining the
correct rectification required.

Let us first consider the effects of incorrect calibration.
Let us assume the car is driving down a straight road (e.g.
fig. 1a). If the camera optical axis is aligned with the di-
rection of motion then the image flow field will be an ex-
pansion field with thefocus of expansion(FOE) located at
the image center(0;0). If the camera was mounted with
a small rotation around theY axis then the FOE will be
located at some other point along thex axis. The motion
model defined in eq. (11) cannot account for this flow field
but it will be well approximated by a forward translation
and a rotational velocitywy around theY axis.

Thus, errors in the orientation of the camera calibration
around theY axis will create a bias in our rotation esti-
mate. The system will estimate a curved path when the car
is in fact driving down a straight road. In a similar fash-
ion, errors in the camera orientation around theX axis will
cause a bias in the pitch estimates. Based on these observa-
tion we can come up with a simple calibration procedure.
We use an image sequence where the car is driving down
a straight road. We estimate the car motion and search for
rectification parameters that will give us ego-motion esti-
mates that integrate into a straight path.

Fig. 2a shows the motion estimates(wy) using various val-
ues of rotation around theY axis for rectification. Fig. 2b
shows the effect of the rectification value of rotation around
theX axis on the pitch estimate(wx). Using this error mea-
sure the correct calibration can easily be found using sim-
ple search techniques such as gradient descent.
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Figure 2: (a) Cumulative rotation (yaw) estimates from
a sequence of 120 images where a car is driving down a
straight highway (fig. 1a). Solid lines indicate correct cali-
bration. The broken lines show the effect of a rectification
error of�5 pixels along theX axis (i.e. a rotation error
round theY axis). (b) Similar graph showing the effects of
error in rectification of�10 along theY axis.

5 Experiments and results
The images were captured using a camcorder (Cannon Op-
tura) rigidly mounted close to the passenger side of the rear
view mirror. The horizontal field of view is 50o. The im-
ages were digitized at 30fps and then processed offline. Im-
age resolution was 320�240 pixels.

5.1 Robust estimation
Figs. 3a and 3b show two consecutive images from a mo-
tion sequence. This is a challenging scene since we have to
differentiate between the moving shadow of the car and the
stationary shadow on the road. Fig. 3c shows the result of
simply subtracting the two images prior to alignment. Note
how the shadow of the moving car is almost stationary in
the image. Fig. 3d shows the result of subtracting the im-
ages after alignment. As we can see the shadow of the car
(and the car itself) stand out while the static shadow on the
road and the lane markings are well aligned and disappear
from the difference image.

5.2 Accuracy test
In order to test the accuracy of the ego-motion estimation,
the car was driven around a traffic circle. Samples of the
image sequence are show in fig. 4. Note images fig. 4b and
fig. 4e. Thex coordinate of the distant rectangular struc-
ture which appears at the top left of the images is the same
in both images. This means that the car has completed ex-
actly 3600 rotation and this provides us with an accurate
ground truth measurement. Summing up the rotation es-
timates over that part of the sequence results in 366:5o, a
1:9% error or an average error of 0:017o per frame.

We have no accurate ground truth measure of the distance
traveled but the inner diameter of the traffic circle was 20m
and the outer diameter 32m. So the actual distance traveled

(a)

(b)

(c)

(d)

Figure 3: Robust alignment in the presence of outliers. (a)
(b) two consecutive images. (c) difference image prior to
alignment. Note how the shadow of the moving car is al-
most stationary. (d) difference between the images after
alignment. The shadow of the car stands out while the
shadow just in front of it is well aligned.



(a) (b) frame 362

(c) (d)

(e) frame 775 (f)

Figure 4: Examples from a sequence of 800 images from a
car driving round a traffic circle. Between frame 362 and
frame 775 the car has completed a full circle.

by the car (πd) was between 63m and 100m. The distance
estimated using the ego-motion algorithm was 67:5m.

5.3 Adverse lighting conditions
The system was tested also on rainy day conditions. In
fig. 5 a moderate rain was falling, rain was splattering on
the windshield and the windshield wipers were working.
The system manages to ignore the distractors and correctly
detect the car rotation.

5.4 Adapting the algorithm to night scenes
During night driving, the scene is illuminated the head-
lights of our vehicle. Therefore the main light source is
moving with the car. The illumination is not uniform but
changes very slowly over the image. This low frequency
signal will bias the motion estimate towards zero motion.
Following [9] we preprocess the image by a bandpass fil-
ter to remove the very low spatial frequencies (20 pixels
or larger). Fig. 6 shows the system working under night
conditions.

Figure 5: Motion is correctly estimated during moderately
rainy condition. The windshield wipers and rain drops on
the windshield are ignored by the robust algorithm.

Figure 6: The markings on the road illuminated by the car
headlights are sufficient for motion estimation.

6 Discussion and future work
We have presented a new method for robust estimation of
vehicle ego-motion. It is based on a few key ideas:

� Reduce the motion model to 3 essential parameters.
This makes handling the probability density feasible.
It also eliminates the ambiguity between rotations and
translations.

� Instead of tracking features compute a probability
density function for each image patch and model the
uncertainty due to the aperture problem explicitly.

� Combine together the probability functions from all
patches. Prior motion estimates give low weight to
patches that are unlikely to come from the road.

This method proves to be robust in a large number demand-
ing, real life situations including dense traffic and moder-
ately bad weather. The latest version of the software can
process images at 30fps on a dual Pentium III computer.



6.1 Adding speedometer information
So far we in our experiments have used only vision in-
formation. There is nearly always enough vertical texture
in the image to give good rotation estimates but there are
times when there is no horizontal texture. This might be
the case when driving on stretches of new highway. In this
case rotation can still be accurately estimated but it is diffi-
cult to estimate the magnitude of the forward motion (tz). If
this happens for short segments of up to 30 frames (1sec.)
the system can cope but for a general solution we are in-
vestigating the use of speedometer information.
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