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Abstract. We propose a model for classification and detection of object
classes where the number of classes may be large and where multiple in-
stances of object classes may be present in an image. The algorithm com-
bines a bottom-up, low-level, procedure of a bag-of-words naive Bayes
phase for winnowing out unlikely object classes with a high-level proce-
dure for detection and classification. The high-level process is a hybrid
of a voting method where votes are filtered using beliefs computed by
a class-specific graphical model. In that sense, shape is both explicit
(determining the voting pattern) and implicit (each object part votes
independently) — hence the term ”semi-explicit shape model”.

1 Introduction

One of the great challenges facing visual recognition is scalability in the face
of large numbers of object classes and detected instances of objects in a single
image. The task requires both classification, i.e., determine if there is a class
instance in the image, and detection where one is required to localize all the
class instances in the image. The scenario of interest is where a class instance
occupies a relatively small part of the image surrounded by clutter and other
instances (of the same class and other classes), and all of that in the face of a
large number of classes, say hundreds or thousands.

The two leading approaches for detecting multiple instances of an object class
in an image are sliding windows (cf. [1,2,3]), and voting methods (cf. [4,5]), which
are based on modeling the probabilities for relative locations of object parts to
the object center or more generally to the Hough transform.

The sliding-window approach applies the state-of-the-art binary (”one versus
many”) classification in a piece-meal fashion systematically over all positions,
scale and aspect ratio. The computational complexity of this scheme is unwieldy
although various techniques have been proposed to deal with this issue where
the most notable is the cascaded evaluation [1,6] where each stage employs a
more powerful (and expensive) classifier. Controlling the false positive rate, given
the very large number of classification attempts per image, places considerable
challenges on the required accuracy of the classifier and is typically dealt by
means of post-processing such as non-maximal suppression.
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In contrast to this, the voting approach parametrizes the object hypothesis
(typically, the location of the object center) and lets each local part vote for a
point in hypothesize space. These part-based methods combine large numbers of
local features in a single model by establishing statistical dependencies between
parts and the object hypothesis, i.e., by modeling the probabilities for relative
locations of parts to the object center [4]. In some cases, the spatial relationship
among the parts are not modeled thereby modeling the object as a ”bag of parts”
as in the Implicit Shape Model (ISM) of [4] and in other cases shape is repre-
sented by the mutual position of its parts through a joint probability distribution
[7,8,9,10]. The ISM approach is efficient and is designed to handle multiple in-
stances of an object class, however, the lack of shape modeling contaminates the
voting map with multiple spurious local maxima [5]. The probabilistic models
on the other hand require a daunting learning phase of fitting parameters to
complex probabilistic models although various techniques have been proposed
to deal with the complexity issue such as identifying ”landmark” parts [9,10]
or Tree-based part connectivity graphs [8]. Moreover, the probabilistic models
lack the natural ability to handle multiple instances in parallel (like ISM does),
although in some cases authors [8] propose detecting multiple instances in a se-
quential manner starting from the ”strongest” detected model after which nearby
parts are excluded to find the best remaining instance and so on. Finally, both
ISM and the explicit shape models would be challenged with increasing number
of object classes as there is no built-in filters for winnowing out the less likely
object classes given the image features before the more expensive object-class
by object-class procedures are applied.

Our proposed model combines a bottom-up ”bag of parts” procedure using a
naive Bayes assumption with a top-down probabilistic model (per object class).
The probabilistic model, on one hand, represents the shape by interconnection
of its parts and uses approximate inference over a loopy graphical model to
make inference. However, the inference results are not used explicitly to match
a model to an image but implicitly to filter out the spurious votes in the ISM
procedure. The voting of parts to object centers are constrained by the marginal
probabilities computed from the graphical model representing the object shape.
Therefore, spurious parts not supported by neighboring parts according to the
shape graph would not vote. Furthermore, the locations of maximal votes are
associated with a classification score based on the graphical model rather than
by the amount of votes. Because shape is used both explicitly and implicitly in
our model we refer to the scheme as ”semi explicit shape model”.

2 The Semi-explicit Shape Model

Let C1, ..., Cn stand for the n object categories/classes we wish to detect and
locate in novel images. Let P (Ck) be the prior on class Ck which can be estimated
from the training set (number of images we have from Ck divided by the size
of the training set). We assume that for each class we have a set of training
images where the object is marked by a surrounding bounding box. We describe
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below the training phase which consists of creating a code-book of features,
defining object ”parts” and their probabilistic relation to code words, and the
construction of Part connectivity graph per object class. Following the training
phase we describe in Section 2.2 the details of our classification and detection
algorithm.

2.1 The Training Phase

We start the training phase by constructing a ”code book” W by clustering all
the descriptors gathered around all interest-points from all the training images.
From the training images of the k’th object class we perform the following prepa-
rations: (i) delineate the Parts of the object each consisting of a 2D Gaussian
model and the collection of interest points and their descriptors associated with
the Part, (ii) a Part neighborhood graph which would serve during the visual
recognition phase as a graphical model for enforcing global spatial consistency
among the various Parts of the object, and (iii) construct the probabilistic rep-
resentation of object Parts by the conditional likelihood P (R | w) for all w ∈ W .
We present each step in more details below.

The Code Book: all training images are passed through a difference of Gaus-
sians interest point locator and a SIFT [11] shape descriptor vector is generated
per interest point and per scale. The area under each bounding box is represented
at different scales and recorded with each descriptor. We use an agglomerative
clustering algorithm (such as the Average-Link in [12]) to group together descrip-
tors of similar shape and of the same scale. An agglomerative clustering bounds
the quantization error (which in turn is bounded by the threshold distance pa-
rameter between descriptors) and allows to represent isolated descriptors (such
as those generated by object-specific image fragments) as clusters. A K-means
clustering approach, although superior computational-wise, would force isolated
descriptors to get associated with some larger cluster of common descriptors,
thereby increasing the quantization error. The i’th cluster is denoted by wi and
consists of the descriptor vectors di1 , ..., dimi

and the average descriptor di where
mi is the cluster size. Each code word is associated with some scale (as the clus-
tering is performed for each scale separately). The code-book W is the set of
”code words” wi(s), i = 1, ...,M and s is the scale label.

Object Parts Delineation: we define an object ”part” by a concentration
of interest points, collected over all the training images of the class. We do not
require the interest points to share similar descriptors in order to allow for ap-
pearance variability within the scope of the Part. For example, the area surround-
ing the Eye in a frontal human face is a natural part, yet people wear glasses
which renders the appearance of that area in the image undergo considerable
variation. On the other hand, our working assumption is that concentrations of
interest-points undergo only moderate variability. Thus, radically different view-
ing positions of an object, for example, are not currently included in our model
of an ”object class”. The point concentrations are detected and modeled as
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Fig. 1. Examples of model Parts for some classes of Caltech101 database. Each ellipse
depicts a 2D Gaussian associated with a separate Part.

follows. Given all the training images of class Ck, the bounding boxes around
the object are scale-aligned and interest point locations are measured relative
to the bounding-box center (object center). The collected interest-points over
all the training images of Ck are fed into a Gaussian-Mixture-Model (GMM) us-
ing the Expectation-Maximization algorithm [13]. The number of Parts (Gaus-
sian models) is determined by a minimum-description-length principle described
in [14]. The result is a list of Parts Rk

j represented by N(μk
j , Σ

k
j ) a 2D Gaussian

model, for j = 1, ..., nk where nk is the number of Parts of object class Ck. Note
that we have tacitly assumed that scale does not influence the Part structure of
the object (number and shape distribution). The assumption holds well in prac-
tice under a large range of scales and simplifies the algorithm. Fig. 1 illustrates
the Parts found in some of the Caltech101 images.

We define for each class a ”context” Part Rk
B which consists of the set of

descriptors from interest points located in the vicinity of the object bounding
box and collected over all the training images of Ck. The Context Part will be
used in the next section as additional evidence for the likelihood of Ck given a
novel image.

In addition, let F k
j be the set of descriptors of the interest points which were

assigned by the GMM algorithm to Part Rk
j . Since GMM provides a probabilistic

assignment of interest points to Parts, each interest point can belong to more
than one Part. We leave only the strong (above threshold) assignments, i.e.,
each interest point is associated with the highest probability Parts. Finally, let
F k =

⋃
j F

k
j stand for the set of all descriptors of interest points of class Ck,

and F =
⋃

k F
k the set of all descriptors collected from the training set.

Probabilistic Representation of Parts P (Rk
j | wi): we wish to represent

the Part Rk
j by its conditional probability given a word wi. Such a represen-

tation is useful for determining the likelihood of having Rk
j in an image given

interest points and their SIFT descriptors which in turn can be used to obtain
a preliminary classification score based on a naive Bayes model.

To compute P (Rk
j | wi), let |F k

j ∩ wi| denote the number of descriptors that
are in both the part Rk

j and the code word wi. The ratio |F k
j ∩wi|/|wi| is not a

good representation of P (Rk
j | wi) because it makes a tacit assumption that the
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prior P (Ck) is equal to |Fk|/|F | the relative number of descriptors from Ck —
an assumption that is obviously wrong.

We expand P (Rk
j | wi) while noting that P (Rk′

j | Ck) = 0 when k′ �= k:

P (Rk
j | wi) = P (Rk

j | Ck, wi)P (Ck | wi)

= P (Rk
j | Ck, wi)

P (wi | Ck)P (Ck)
P (wi)

=
|F k

j ∩ wi|
|F k ∩ wi|

|F k∩wi|
|F k| P (Ck)

|wi|/|F |

Note that if we substitute |Fk|/|F | for P (Ck) we obtain the ratio |F k
j ∩wi|/|wi|.

Following the cancelation of the term |F k ∩ wi| we obtain:

P (Rk
j | wi) =

|F k
j ∩ wi| · |F | · P (Ck)

|Fk| · |wi| (1)

Note that the definition above applies to P (Rk
B | wi) as well where F k

j is replaced
by F k

B the set of descriptors of the Context Part.

Constructing the Part Connectivity Graph: an explicit shape model of
class Ck is represented by a connected (undirected) graph G(V k, Ek) whose set
of nodes V k correspond to the Parts Rk

j , j = 1, ..., nk and whose set of edges
Ek defines the ”Part neighborhood” to guarantee a global consistency structure
among the Parts. The neighborhood relations are determined by a Delaunay
triangulation [15] over the Gaussian centers μk

j which form the Part centers.

2.2 Detection and Recognition of Object(s) Instances in a Novel
Image

The training phase described above has generated (i) a code book W where each
word w(s) ∈ W represents a set of image descriptors of similar appearance and
scale s, (ii) the j’th object Part Rk

j of class Ck represented by a 2D Normal
distribution in object-centered coordinates, (iii) a ”bag of words” association
between object Parts Rk

j and code words wi represented by the scalar P (Rk
j | wi)

(eqn. 1), and (iv) a Part connectivity graph.
Given a novel image I we wish to detect and recognize instances of the object

classes C1, ..., Ck allowing for multiplicity of objects and multiplicity of instances
of each object at different scales. The detection and classification process has two
phases:

– A low-level, bottom-up, ”bag of words” based classification of object classes.
Classification is based on the association P (Rk

j | wi) over all code-words and
Parts of each object class. Classification also forms a ranking of the possible
object classes thereby allowing the system to focus its high-level resources
on the most likely object classes that may be present in the image first.
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– A high-level classification and detection process: for each of the likely classes
Ck, the Part connectivity graph is matched to the image using a Tree-
Reweighted (TRW) approximate inference over a loopy graphical model.
Each Part obtains ”beliefs” on its possible locations in the image (allowing
for multiple instances). The Part locations with high Belief vote for the re-
spective object-class center. The result is a ”heat map” (like with the ISM
method) of possible centers of instances from Ck. Each object-center candi-
date in the heat-map is associated with a score given by the graphical model
inference which serves as a high-level classification score. This high-level pro-
cess is performed sequentially over each object-class limited to those classes
with high likelihood (as determined by the low-level phase).

We describe the two phases in detail below.

Likelihood of Classes as a Low-Level Process: the low-level classification
process is triggered from detected interest points and their associated SIFT de-
scriptors from the novel image. A nearest-neighbor search is performed to match
the descriptor of each interest point to a code-word. Because of the relatively
high dimension of the SIFT descriptor we use the locally-sensitive-hashing (LSH)
method based on random projections [16]. Let wI be the subset of code words
present in the input image, then the conditional likelihood P (Rk

j | I) of the Part
Rk

j existing in novel image I is:

P (Rk
j | I) =

∑

wi∈wI

P (Rk
j | wi)P (wi | I),

and the conditional log-likelihood logP (Ck | I) of the class Ck given the novel
image is determined by a Naive Bayes approach:

logP (Ck | I) =
nk∑

j=1

logP (Rk
j | I) + logP (Rk

B | I), (2)

where Rk
B is the Context part (defined above). The probabilistic representa-

tions above are ”bag of words” type of inference where the likelihoods of Parts
and object classes depend only on the existence of features (code words) and
not through their spatial interconnection. The inference of logP (Ck | I) follows
from a Naive-Bayes assumption on a co-occurrence relation between objects and
parts. This ”weak” form of inference is efficient and allows us to perform a pre-
liminary classification which also serves as a ranking of the possible classes by
means of logP (Ck | I). A similar approach of using nearest-neighbors with a
naive-Bayes approach (but without a code book and other details of Parts and
their probabilistic relation to code words) was introduced by [17].

High-level Classification and Detection: this phase is performed on each ob-
ject class Ck whose classification score logP (Ck | I) was above threshold, i.e., the
high-level process focuses its resources on the most likely object classes first. We
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construct an inference problem defined by a joint probability P (xk
1 , ..., x

k
nk

) us-
ing the connectivity graph G(V k, Ek) for defining direct interactions among the
variables. The variable xk

j is defined over a finite set of values representing the
possible locations of the Part Rk

j in the image. The marginal probability distri-
bution P (xk

j ) represents the probability (”belief”) P (xk
j = r) for Rk

j to be found
in location r in the image. Each possible location r votes to Ck’s object center if
P (xk

j = r) is above threshold. The result of the voting process is a ”heat-map” for
instances of Ck in the image. The value of P (xk

1 = r1, ..., x
k
nk

= rnk
) provides a

classification score of an instance of Ck at a specific location in the image where,
unlike the low-level phase where the score was based on a ”bag-of-words” setting,
the score is based on satisfying the connectivity constraints among object parts.
We therefore have both detection (via the heat-map) and classification achieved
simultaneously. We present the scheme in more details as follows.

Let I = I1, ..., IM be the set of interest points and their associated descrip-
tors located in the novel image and let w1, ..., wM the corresponding code-
words (found using LHS nearest-neighbor approximation). Let Ik

j ∈ I be the
subset of interest points for which their corresponding code-words wi satisfy
P (Rk

j | wi) > ε for some threshold ε. In other words, the set Ik
j are the interest

points in the novel image that are likely to belong to the Part Rk
j . We perform

agglomerative clustering on Ik
j where the similarity measure is the Mahalanobis

distance with zero mean and covariance matrix of Rk
j (recall that each Part is

associated with a Normal distribution) for each pair arising from the same scale
and infinity otherwise. Since each code word has an associated scale, interest
points arising from different scales will not be clustered together. Let nk

j be the
number of clusters found and γ1, ..., γnk

j
are the clusters of the respective code

words associated with Ik
j and l1, ..., lnk

j
are the geometric centers of the clusters.

Let xk
j ∈ {1, ..., nk

j } be a random variable associated with the possible locations
of the Part Rk

j (where each location is a cluster of interest points of scale s for
which P (Rk

j | wi(s)) > ε ).
The joint probability distribution over the variables xk

j , j = 1, ..., nk has the
form:

P (xk
1 , ..., x

k
nk

) =
1
Z

nk∏

j=1

φj(xk
j )

∏

(i,j)∈Ek

ψi,j(xk
i , x

k
j ), (3)

where φj(xk
j ) represents the ”local evidence”, i.e., φj(xk

j = r) is the probability
that Rk

j is located at location r from local evidence alone:

φj(xk
j = r) = 1 −

∏

wi∈γr

[
1 − P (Rk

j | wi)
]
,

and ψi,j(xk
i , x

k
j ) are the pairwise ”potential” functions on pairs of Parts that

are incident in the connectivity graph. The value of ψi,j(xk
i = r, xk

j = q) repre-
sents the likelihood that the two Parts are located in positions r, q (and scale s)
respectively:
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Fig. 2. Each image shows a Part Rk
j (Red Ellipse) with the set of candidate locations xk

j .
Locations with high belief are those who vote and are drawn with an arrow pointing to
the object center. The beliefs generated by the graphical model form a strong constraint
on the voting pattern of Part candidates so that only those locations who have global
shape support end up voting. The images contain multiple instances thus the belief
pattern of P (xk

j ) is multi-modal. Candidate locations from both object instances end
up voting.

ψi,j(xk
i = r, xk

j = q) = N(lr − lq;μij , Σij),

where μij , Σij is the scaled difference Normal distribution where μij = (μk
i −μk

j )s
and Σij = (Σk

i +Σk
j )s2. We set ψ() = 0 in case positions r, q are associated with

different scales.
The marginal probabilities P (xk

j ) hold the likely Part locations, i.e., if P (xk
j =

r) is above threshold then we have a certain ”belief” that lr (the geometric center
of γr the r’th cluster) is where the Part Rk

j is centered. Because we may have
multiple instances of Ck in the image, P (xk

j = r) may have a multi-modal profile
where more than a single Part location is supported by the connectivity graph.

Computing the marginal probabilities is computationally infeasible and in-
stead we resort to ”approximate inference”. Since the connected graph has loops,
the sum-product Belief-Propagation (BP) algorithm is not guaranteed to con-
verge. Moreover, regardless of convergence, the BP algorithm tends to settle on
single-modal beliefs, i.e., P (xk

j ) will come out single-modal even when multiple
instances of Ck exist in the image. We used the Tree-reweighted (TRW) convex-
free-energy variational approximation which is both guaranteed to converge and
is not limited to single-modal solutions. Specifically, we used the sum-TRBP [18]
implementation (even though convergence is not guaranteed). Convergence guar-
anteed TRW algorithms (and general convex-free-energy) can be found in [19].

The marginal probabilities P (xk
j ) play two roles in the high-level detection

and classification process. First is to ”clean up” the voting of Part candidates
to object centers, and second to obtain a high-level (shape-based) classification
score for each detected instance of Ck in the image. Those are detailed below.

Voting: once the (approximate) marginal probabilities P (xk
j ) are estimated we

perform a voting procedure: For each Part Rk
j , the candidate Part centers lr

will vote to the respective object center if P (xk
j = r) is above threshold. Fig. 2

illustrate the constrained voting procedure: in each image a Part is shown marked
by an Ellipse and all candidate locations for the Part are marked by circles. Only
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Fig. 3. From heat-map to classification score: the middle column shows the heat map
generated by ISM (i.e., without our high-level filtering using beliefs generated from
sum-TRBP). The third column shows the heat-map generated by our algorithm. It
is evident that most of the voting contamination has been removed. The centers of
maximal votes found by Mean-Shift are marked on the heat-maps. The righthand
column shows the classification score (generated by the joint probability distribution)
associated with each of the heat map centers. The top and bottom rows show the cases
where the class is the correct one and one can see that the true heat map center has
the (significantly) highest classification score (No. 5 in top, and 5,6 in bottom). The
middle row shows a case where the class is not found in the image. In that case all
classification scores are close to zero (the scale is 10−3).

those locations which received high belief make a vote and are displayed with
an arrow towards the object center. It is evident than only a small fraction of
the possible locations eventually make a vote and that the procedure is able to
concentrate on both instances simultaneously due to the usage of the sum-TRBP
algorithm.

In other words, the voting process is a ”filtered” version of the ISM method.
Rather than having all Part candidates vote for their respective object center,
only those candidates with high Belief perform the voting. This ”high-level fil-
ter” has a dramatic effect on reducing the ”clutter” formed by spurious votes on
the resulting object-centers ”heat map” (see Fig. 3).

High-level Classification: the voting process creates a heat-map where loca-
tions having many votes are likely to form centers of instances of Ck, thus the
”strength” of a candidate instance can be directly tied to the number of votes
the center has received — this is the underlying premise of ISM. However, we
can do better and obtain a classification measure by evaluating P (xk

1 , ..., x
k
nk

)
for every instance candidate (a center receiving sufficient votes), as follows. Con-
sider a candidate center c and the set of locations Lc which have voted to it.
Each location is associated with a Part Rk

j and with a value of its corresponding
position label xk

j . Let Lc(j, k) ⊂ Lc be the locations corresponding to Rk
j and

let r1, ..., rb be the values of xk
j corresponding to the locations Lc(j, k). Normally

b = 1, i.e., there is only one location for Rk
j and the value of xk

j is set accordingly
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(to r1). In case b > 1, then xk
j = argmaxqP (xk

j = rq). In case Lc(j, k) = ∅, i.e.,
Part Rk

j did not vote to center c, then xk
j is set to the label with maximal belief.

Once xk
1 , ..., x

k
nk

are set to their value, we evaluate P (xk
1 , ..., x

k
nk

) according to
eqn. 3. The value of the joint probability measure both local fit of Parts and
global consistency among parts and therefore serves as our classification score
of the candidate instance of Ck at center c. The difference between the Naive-
bayes score P (Ck | I) (eqn. 2) and the high-level classification score is dramatic
at time boosting accuracy of recognition by significant amounts. Fig. 3 shows
examples of heat-maps with the maximal centers (estimated using mean-shift
procedure) together with the classification scores associated with those centers.
It is evident that true center candidates have a much higher classification score
than spurious centers (despite them having a similarly large number of votes).
In images where the object class is not present, all candidate centers have a low
classification score.

3 Experiments

We have tested our model on two standard datasets, Clatech101 [20] and Pascal
VOC 2006 [21]. The Caltech101 dataset contains images containing a single
dominant object from 101 classes including cars, faces, airplanes, motorbikes
among other classes. The instances from those classes appear approximately
at similar scale and pose in all images. Each object class is found in between
100 to 800 images. The Pascal dataset is more challenging as it contains 5000
images, split evenly to training and testing subsets, of ten object classes with
varying scale and viewpoint where each image may contain multiple instances of
object classes. As a result objects are less dominant in the image compared to
Caltech101 thereby making the task of detection and classification challenging.
Fig. 4 shows the Parts detected in test images by taking the locations of highest
belief for each part of the object class in question. One can see the detected
Parts agree with their true locations on the test images.

With the Calctech101 dataset we performed the object versus other objects
categorization experiment, where the goal is to classify an image to one of the
101 object classes. We have removed the Faces easy class, since the objects is
this class are identical to the objects in the class Faces, so the number of classes
in our experiments was 100. In this test we selected a training set of 15 images
per class and a test set of 15 images per class. We collected around 750, 000
features for each object scale (we have used 5 scales) and clustered them into a
code book of sizes ranging from 60, 000 to 80, 000 and the number of Parts per
object varied between 8 to 15. During the testing phase, each image produced
between 100 − 1000 interest points and each part had between 10 − 30 possible
locations. Mean running time for a test image was under 5 seconds on a standard
3GHZ CPU. We ran both classifiers: our low-level naive Bayes classifier P (Ck | I)
and the high-level detection and classification( in this case the categorization is
performed by selecting the class with highest detection score). Table 1 shows
comparison of our results to other methods on the Caltech101 dataset.
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Fig. 4. Examples of correct detections of classes ’face’, ’car’, ’motorbikes’ and ’air-
planes’ from Caltech101 dataset. Each circle in the images represent most probable
location of a different Part of the object’s shape model. The Red dots inside the circles
are the interest points belonging to this Part.

Table 1. Categorization performance comparison our approach and other methods on
the Caltech101 dataset

Naive Bayes High-Level [17] [22] [23] [24] [25]

51.70% 68.80% 65.00% 59.30% 59.10% 52.00% 56.40%

With the Pascal VOC 2006 dataset, we used the provided training set (of
2500 images) to create a model for each of the four view points of each object
and tested our algorithm in both categorization and detection tasks. From the
training images of the Pascal database we extracted more then 2,500,000 SIFT
features, which resulted in around 100,000 code words for each scale. During the
model creation we have used the view information available in the dataset to
construct separate models for each of the existing four views (left, right, rear
and frontal) in a similar manner to that used for Caltech101.

For the classification test, the classification score is computed (by taking the
center with the highest classification score from the heat map) per object class.
Since an image can contain a number of object classes, an ROC curve is con-
structed and the area under the curve is taken for the performance measure.
Table 2 shows the classification performance of our algorithm for all the ten
classes, compared to the low-level naive Bayes phase of our algorithm. In most
classes the shape model boosts the performance but in some case, such as with
the class of Pedestrians, the performance actually decreases. The reason for that
is that Pedestrians instances are sometimes at a very small scale and the system
does not detect a sufficient number of interest points to enable the graphical
model to perform as expected. On the other hand, those images often contain
multiple Pedestrians thus the ”bag of code words” underlying the naive Bayes
procedure collects evidence from the multiple instances.

For the detection task, performance is measured by the overlap between
bounding boxes. Fig. 5 shows some detection results on a sample of test images
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Table 2. Performance comparison between the high-level classification and the naive
Bayes low-level classification on the Pascal VOC 2006 dataset

bicycle bus car cat cow dog horse motorbike person sheep

High-Level 90% 93% 90.9% 85.4% 88.5% 77.3% 72.4% 86.4% 60% 87.3%
Naive Bayes 87.3% 90.7% 89% 82.5% 85.9% 75.7% 68.4% 78.7% 67.7% 82.7%

Fig. 5. Examples of detections from the Pascal VOC 2006 dataset (see discussion in
text)

Table 3. Performance comparison between the proposed algorithm and published re-
sults by other methods (sliding window and voting) on the Pascal VOC 2006 dataset

bicycle bus car cat cow dog horse motorbike person sheep

Our 0.36 0.184 0.621 0.171 0.39 0.18 0.37 0.55 0.33 0.41
Cambridge 0.249 0.138 0.254 0.151 0.149 0.118 0.091 0.178 0.030 0.131
ENSMP - - 0.398 - 0.159 - - - - -
INRIA Douze 0.414 0.117 0.444 - 0.212 - - 0.390 0.164 0.251
INRIA Laptev 0.44 - - - 0.224 - 0.140 0.318 0.114 -
TUD - - - - - - - 0.153 0.074 -
TKK 0.303 0.169 0.222 0.160 0.252 0.113 0.137 0.265 0.039 0.227
FeiFei09] - - 0.310 - - - - - - -
Felzenszwalb’09 0.619 0.49 0.615 0.188 0.407 0.151 0.392 0.576 0.363 0.404

where we can see the ability of the algorithm to handle occlusions, view and scale
variations and multiple instances of an object appearing in the same image. Ta-
ble 3 summarizes the detection performance of our algorithm in comparison to
other methods. As it can be seen from the table our system outperforms many
methods on most of the classes except the sliding-window method by [3]. The
running time per image in the Pascal dataset is less than 4 seconds compared
to much longer running times by other methods.

4 Summary

We described an object detection and classification scheme based on a voting
mechanism. Our system starts with a bottom-up Naive-Bayes ”bag of words”
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classification for ranking the possible class models present in the image followed
by a top-down voting of visual code words (through Parts) to potential object
classes. The voting mechanism is filtered by explicit shape models represented by
graphical models. The ”beliefs” computed by each of the graphical models leave
intact votes from code-words which gain structural support by other code-words
in the graph. The system is designed to scale gracefully with the number of
classes and achieves comparable, and often superior, detection and classification
accuracies than other systems which have a considerably higher run-time.
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