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Abstract

We introduce new small-motion multi-frame equations
applicable to the reconstruction ofdynamicscenes in which
points are allowed to move along straight-line paths with
constant velocity. The motion equations apply to both static
and dynamic points, thus prior segmentation is not neces-
sary. We present a reconstruction algorithm of camera mo-
tion, scene structure, and point trajectories embedded into a
multi-framefactorizationprinciple which requires the min-
imum of 11 images and 7 points (out of which at least 3 are
dynamic).

1 Introduction

In this paper we analyze the structure and motion from
a video image sequence of scenes containing multiple mov-
ing points, each moving independently along some straight
line path with constant velocity (for brevity, we will refer
to such a scene asdynamic). Since the input consists of a
continuous video source, we will focus on deriving a small-
motion (infinitesimal) model which can treat the informa-
tion arising from a dynamic scene in a uniform manner, i.e.,
without the need for a prior segmentation of the scene into
fixed (static) and moving points, and moreover, to be able to
handle scenes which consist solely of moving points (static
points simply have vanishing velocity). We therefore focus
on the following problem:

Given the optic-flow across an image sequence of a 3D
configuration of points consisting of a mixture of static and
dynamic points, including the case where all points are dy-
namic, recover the 3D translational and rotational compo-
nents of camera motion, the 3D positions of the point con-
figuration with respect to the first view and the 3D point
trajectories (velocity vector) of the dynamic points.

The algorithm we present for doing so embeds the de-
rived motion constraints into a factorization-based method.

We show that the minimal number of views necessary for
a factorization is 11 and the minimal number of points re-
quired for a recovery of camera motion, scene structure and
point trajectories is 7. We also derive the solutions to re-
duced situations such as when the trajectories are embedded
in a coplanar or collinear configuration, and when the point
positions are coplanar.

1.1 Related Work

Infinitesimal motion constraints for a static 3D scene
were first introduced in [6]. The first factorization-based al-
gorithm for recovering (static) scene structure and discrete
camera motion under the orthographic projection model
was introduced in [8]. This was followed by a multi-body
factorization method [3] for reconstructing the motion and
shape of several bodies (each consisting of multiple points
moving rigidly) simultaneously. Factorization-based algo-
rithms were also derived for multi-frame problems for re-
covering homography matrices and for optic-flows arising
from infinitesimal motion assumption of 3D scenes [5, 9].

Structure from Motion (SFM) of dynamic scenes, where
each point moves independently along some trajectory, is a
recent and growing topic. The topic was first introduced
in [1] for 3D point configurations undergoing linear and
curved motion with known projection matrices. For 2D
point configurations across three views the motion con-
straints have a form of a3 � 3 � 3 tensor from which
the appropriate homography matrices can be recovered [7].
The restriction to constant velocity (linear motion) and or-
thographic projection was introduced in [4] for 3D point
configurations. The restriction carries a nice byproduct of
embedding the orthographic motion constraints within the
scene structure and point trajectories (velocities), thus giv-
ing rise to a factorization-based algorithm which requires a
minimum of 5 views and 7 points.
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2 Infinitesimal Motion Constraints for Dy-
namic 3D Scenes

Let P1; � � � ; Pn be a configuration of points,Pi =
(Xi; Yi; zi), where each point moves with constant velocity
along some straight-line pathPi + jVi wherej = 0; � � � ;m
representing a frame number. The frame numberj may be
replaced by a scalar�j , j = 0; � � � ;m, (the�j are fixed to
all points of framej) which represents a weaker assumption
than constant velocity — nevertheless, for simplicity we
will restrict ourself to constant velocity although the equa-
tions and methodology apply in the weaker case as well.

The configuration is viewed by a camera whose coordi-
nate system at framej = 0 (the reference frame) is aligned
with the world coordinate system, i.e.,xi = 1

zi
Xi and

yi = 1

zi
Yi are the image coordinates at timej = 0. At

framej = 1 the camera has undergone a small-motion dis-
placement:

P 0i = (I + [w]�)(Pi + Vi) + t

wherew represents the rotational component of camera mo-
tion (direction ofw represents the screw-axis andj w j rep-
resents the rotation (infinitesimal) angle around the axis),
[w]x is the skew-symmetric matrix of vector products, thus
I + [w]� is the small-motion approximation of a rotation
matrix, andt is the translational component of camera mo-
tion. In a small-motion model,_Pi = d

dt
Pi � P 0i � Pi, thus

_Pi = [w]�Pi + (I + [w]�)Vi + t:

Let pi = (xi; yi; 1)
> = 1

zi
Pi, then the optic-flowui = dxi

dt

andvi =
dyi
dt

takes the following form:

ui =
d

dt

�
Xi

zi

�
=

1

zi
( _Xi � xi _zi) =

1

zi
s>i

_Pi

= s>i [w]xpi +
1

zi
s>i t+

1

zi
s>i (I + [w]x)Vi (1)

Using similar derivation forvi =
dyi
dt

we have:

vi = r>i [w]xpi +
1

zi
r>i t+

1

zi
r>i (I + [w]x)Vi (2)

wheresi = (1; 0;�xi) andri = (0; 1;�yi). The optic-
flow equations 1 and 2 are the motion constraints bringing
together image measurementsui; vi, camera motionw; t,
scene depth (structure)zi, and the velocitiesVi — all but
the image measurements are unknown.

Note that there is a global translational ambiguity in de-
terminingt andVi: V 0

i = Vi + q for some arbitraryq, is
compensated byt0 = t � (I + [w]�)q while leaving the
flow vectors(ui; vi) unchanged. Therefore, in the solution

of structure (zi), motion (t; w) and velocity (Vi) the trans-
lational component of the motion can be interchanged with
a global shiftq of the point velocitiesV1; :::; Vn. A single
known static point (Vi is known to be zero) can resolve the
ambiguity, but that is for later.

3 Factorization

Because the optic flow equations are bilinear in the un-
knowns it is a simple matter to write down the estimation
problem as a factorization algorithm, as follows. Consider
m + 1 frames,j = 0; � � � ;m and letwj ; tj be the camera
motion from the reference frame to framej and letuij ; vij
be the optic flow of pointi between the reference frame and
framej. Note thatm should not be “too large” otherwise
the infinitesimal assumption would breakdown in practical
settings (see later about real-image experiments). Because

s>[w]xp = s>(w � p) = w>(s� p)

we have the following relation:

�
uij

vij

�
=

�
si � pi

1

zi
s>i

1

zi
s>i Vi

1

zi
(si � Vi)

ri � pi
1

zi
r> 1

zi
r>i Vi

1

zi
(ri � Vi)

�0B@
wj

tj
j

jwj

1
CA

Grouping all the image measurements together we obtain
the following matrix equation:

W =

2
4 U

�
V

3
5 =

2
4 Sx

�
Sy

3
5M = SM; (3)

whereU = (uij) is then � m matrix whose entries are
uij andV = (vij). The matrixM is 10 � m where the
j’th column is the vector(w; t; j; jw)>, Sx; Sy aren � 10
matrices, where thei’th row of Sx consists of:

[si � pi;
1

zi
s>i ;

1

zi
s>i Vi;

1

zi
(si � Vi)];

and thei’th row of Sy consists of:

[ri � pi;
1

zi
r>i ;

1

zi
r>i Vi;

1

zi
(ri � Vi)]:

Thus the rank of the measurement matrix W is bounded
from above by 10, therefore using SVD we can find two
matricesK2n�10,L10�m such thatW = KL. The shape
matrix S and the motion matrixM can be determined by
S = KA andM = A�1L for some10 � 10 matrix A.
The unknown matrixA must satisfy “structure” constraints
determined by the way the matricesS andM are built.
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3.1 Solving forA

We Notice that when trying to recoverA, to satisfy
S = KA, we obtain 3 separate linear systems, regarding
3 different groups of columns:

S1�3 = KA1�3

S4�6 = KA4�6

S7�10 = KA7�10

where Si�j denotes the sub-matrix ofS consisting of
columnsi to j (inclusive). The first 3 columns of S are
known, so each tracked point gives 6 equations, and we have
30 unknowns for columns1� 3 of A, therefore we need at
least 5 points for a unique solution.

In columns 4-6 each point contributes 5 equations (af-
ter eliminating the one unknown1

zi
), therefore we need at

least 6 points. Those columns can be recovered only up to
a global scale. The 5 constraints per point are as follows:

KxA5 = 0 (4)

KyA4 = 0 (5)

KxA4 = KyA5 (6)

(KxA6)i = xi(KxA4)i (7)

(KyA6)i = yi(KyA5)i (8)

whereKx;Ky are the upper and lowern�m sub-matrices
of K andAj denotes thej’th columns ofA.

So far, the equation counting was straightforward. How-
ever, the determination of 40 unknownsA7�10 is more sub-
tle. Here we expect the global translational ambiguity to
have an effect, for example. For columns 7-10, each point
contributes 5 equations (after eliminating the 3 unknown
1

zi
Vi from the 8 measurements) and there are 40 unknowns.

The 5 constraints are:

xiKxA4 = KxA2 (9)

yiKyA4 = KyA3 (10)

Ky(yiA2 +A1) = (y2i + 1)KxA4 (11)

Kx(xiA3 �A1) = (x2i + 1)KxA4 (12)

(xiKy + yiKx)A4 = KxA3 +KyA2 (13)

The question is what is the rank of the estimation matrix
for the 40 unknownsA7�10? The rank is 35 as shown next.

Claim 1 The rank of the estimation matrix for the 40 un-
knowns ofA7�10 is bounded by 35.

Proof: Is it sufficient to considerU = KxAA
�1M where

we wish to findA that satisfiesSx = KxA. Ambiguity
arises if we can replaceVi with V 0

i such thatSx(V 0

i ) = SxB
for some matrixB. The number of free variables inB will

determine the number of degrees of freedom in determining
A. Let

V 0

i = aVi + q + bzipi

where the vectorq and the scalarsa; b are free variables.
By substitution we find that entries7 � 10 the i’th row of
Sx(V

0

i ) has the following form:

a
1

zi
s>i Vi+

1

zi
s>i q; a

1

zi
(si�Vi) +

1

zi
(si� q)+ b(si� pi)

Recall thats>i pi = 0 (which is why this term dropped out
in the 7’th entry). We have thatB7�10 has the following
form:

B7�10 =

2
66666666664

0
0 bI
0
q [q]�
a 0 0 0
0
0 aI
0

3
77777777775

SinceB7�10 contains 5 free variables, the rank of the esti-
mation matrix for the 40 unknowns inA7�10 cannot exceed
35.

An immediate conclusion is that the minimal number of
points for the recovery ofA is 7. The free parametersa; b
can be resolved by noticing that thej’th column ofB�1M
has the following form:

B�1Mj =

0
BB@

wj �
a
b
wj

tj �
1

a
(q + [q]�wj)

1

a
j

1

a
jwj

1
CCA

Consider for example the columnj = 1. Denote
by �1; � � � ; �10 the entries of the column. Letu =
(�1; �2; �3)

> andv = (�8; �9; �10)
>. Then,a = 1

�7
and

au� v = bu from which we can recoverb.
To summarize, we perform the following steps:

1. Given the optic-flow matrixW (having at least 11
views), perform SVD to obtainW = KL. In this
process one can reduce measurement error by enforc-
ing the singular values from the 11’th position and up-
wards to vanish.

2. RecoverA up some arbitrary element of the 5-
dimensional null space (in recoveringA7�10. Let
S0 = KA andM 0 = A�1L.

3. Recovera; b from M 0. Construct the matrixB with
the entries1=a; 1=b in the proper places. Then,S =
S0B andM = B�1M 0. The recoveredS;M are the
structure and motion and velocities up to the global
translation/velocity ambiguity.
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We have therefore shown that we can recover the com-
plete SFM and point trajectories uniquely (up to the intrinsic
ambiguity of global shift of velocities) with a factorization-
based algorithm which requires the minimum of 11 views
and 7 points.

3.2 Static Scene

A particular case of the above is when the scene is static,
i.e., Vi vanishes for all points. This brings us back to
the rank 6 observation of [5] of the optic-flow matrixW ,
whereas here we can extend this further into a SFM algo-
rithm. Specifically, we have in this case

�
uij
vij

�
=

�
si � pi

1

zi
s>i

ri � pi
1

zi
r>

��
wj

tj

�

which when stacked together we obtain the form of eqn. 3
whereSx; Sy aren � 6 matrices andM is a 6 � m ma-
trix. Thus the rank of the2n �m measurement matrixW
is bounded by 6. LetW = KL provided by an SVD de-
composition ofW , then we seek a6� 6 matrixA such that
S = KA andM = A�1L. The constraints onA follow
the constraints onA1�3 andA4�6 discussed in the previous
section. We need therefore at least 6 points and 7 frames
in order to use a factorization principle to recover structure
and motion from an image sequence of a static scene.

4 Reduced Configurations

The situation we described so far wasgeneral in the
sense that the point positionsP1; :::; Pn and the veloci-
ties V1; :::; Vn live in a 3D space. Some practical sit-
uations arise, for example, when all the velocities are
coplanar (dimSpanfVig = 2) or along parallel lines
(dimSpanfVig = 1), or when the point configuration
P1; :::; Pn is coplanar at the starting stage (Pi + jVi may
not be coplanar), or any combination of the above.

We call these situations collectively asreduced configu-
rationsunlike degenerate, because in fact as we will show
there are no degeneracies — we can achieve the full recon-
struction (up to the global velocity shift ambiguity) as in
the general case — but there are additional subtleties that
require special handling.

4.1 Coplanar Trajectories

Assumedim SpanfVig = 2, i.e., there existsn =
[n1; n2; n3]

> andl such that every velocityVi in the scene
satisfiesn>Vi = l. This constraint affects the number of
degrees of freedom ofA7�10 which instead of having 5 de-
grees of freedom will have now 6. We have the following
claim:

Claim 2 WhendimSpanfVig = 2, the rank of the estima-
tion matrix for the 40 unknowns ofA7�10 is bounded by
34.

Proof: As in Claim 1, ambiguity in the estimation ofA
from the equationsSx = KxA arises if we can replaceVi
with V 0

i such thatSx(V 0

i ) = SxB for some matrixB. The
number of free variables inB will determine the number of
degrees of freedom in determiningA. Let

V 0

i = aVi + q + bzipi + f(Vi � n)

where the vectorq and the scalarsa; b; f are free variables.
Recall the following identities:

a� (b� c) = (a>c)b� (a>b)c

(a� b)� c = (a>c)b� (c>b)a;

which are used for establishing the following identity:

si � (Vi � n) = (s>i n)Vi � (s>i Vi)n

= (s>i n)Vi � (s>i Vi)n� (n>Vi)si + (n>Vi)si

= (s>i n)Vi � (s>i Vi)n� (n>Vi)si + lsi

= (si � Vi)� n� (s>i n)Vi + lsi (14)

By substitution we find the entry 7 of thei’th row of Sx(V 0)
becomes:

a
1

zi
s>i Vi +

1

zi
s>i q + f

1

zi
s>i (Vi � n)

and entries8� 10 become:

a
1

zi
(si � Vi) +

1

zi
(si � q) + b(si � pi)

+f
1

zi
((si � Vi)� n� (s>i Vi)n+ lsi)

We have thatB7�10 has the following form:

B7�10 =

2
6666664

0
0 bI
0
q [q]� + flI
a �fn>

fn aI + f [n]�

3
7777775

SinceB7�10 contains 6 free variables (vectorq and scalars
a; b; f ), the rank of the estimation matrix for the 40 un-
knowns inA7�10 cannot exceed 34.

In order to solve for the free parameters we do the fol-
lowing. Since the entire model can be recovered up to a
global translation of the velocitiesVi we can translate the
coordinate system such that one arbitrarily chosen point,
sayp1, is static i.e.v1 = 0, and the trajectory plane passes
through the origin, i.e.,l = 0. To see why this is so, note

4



that by settinga = 1, b = f = 0, andq = �V1 we obtain
a matrixBo such thatSBo has all the velocitiesvi replaced
byvi�V1 and hence the entries7�10 of two of its rows van-
ish. It is therefore possible to add those 8 constraints on the
vanishing entries of the systemKA for solving forA7�10.
The rank of the estimation matrix forA7�10 becomes 37
(instead of 34) as described below.

Claim 3 By setting an arbitrary point, sayp1, as static, the
additional 8 constraints that arise from it shift the coordi-
nate system such that the trajectory plane passes through
the origin (l = 0) and the rank of the estimation matrix for
the40 unknowns ofA7�10 is bounded by 37.

Proof: Ambiguity in the estimation of A arises if we can
replaceVi with V 0i , such thatS(V 0i ) = SB. The number
of free variables inB will determine the number of degrees
of freedom in determiningA. The 8 additional constraints
enforceV 0

1
= 0, therefore:

0 = V 0

1 = aV1 + q + bz1p1 + f(V1 � n);

whereV1 = 0 as well. Thus,q is completely determined by
q = �bz1p1, and because

0 = s1 � (V1 � n) = (si � V1)� n� (s>1 n)V1 + ls1

we have also thatl = 0. Therefore, only 3 degrees of free-
dom remain inB which area; b; f .

We can recover the scalarsa; b and the vectorfn as
follows. Recall that via SVD we have the factorization
W = KL and in turnU = KxL andV = KyL. We
recoverA whereA7�10 is determined by choosing an ar-
bitrary solution from the 3-dimensional null space. Let
S0 = KA and M 0 = A�1L whereS0 = SB where
B7�10 (where we have free variables) as above. Thus,
W = S0M 0 = SBB�1M andM = BM 0. Consider the
j’th column ofM 0 and let the entries in the resulting vec-
tor be denoted as(m1;m2; �;m3) wheremi are vectors,
3 components each, and� is a scalar. IfB is chosen cor-
rectly then thej’th column ofBM 0 should have the form
(wj ; tj ; j; jwj). We have:

BM 0

j =

0
BB@

m1 + bm3

m2 + �q + [q]xm3

a�� fn>m3

fn �m3 + am3 + f [n]�m3

1
CCA ;

wherex �y denotes the vector(x1y1; x2y2; x3y3). This pro-
vides the following linear constraints ona; b; fn:

j(m1 + bm3) = fn �m3 + am3 + f [n]�m3

a�� fn>m3 = j

Thus, using several columns ofM 0 we can solve for
a; b; fn, and given b, we can recoverq (recallq = �bz1p1).

Note that sincel = 0, thena; b; fn; q completely determine
B. In Summary, we have shown that we can recoverS;M
up to the global shift byq = �V1 when the velocities span
a 2D space.

4.2 Coplanar Points at Starting Moment

AssumedimSpanfPig = 2, i.e., there existsn =
[n1; n2; n3]

> such that every pointPi in the scene satisfies
n>Pi = 1, or n>pi = 1

zi
. Just like in the coplanar tra-

jectories case, we have 6 degrees of freedom in recovering
A7�10:

Claim 4 Whendim SpanfPig = 2, the rank of the estima-
tion matrix for the 40 unknowns ofA7�10 is bounded by
34.

Proof: Following the proof of Claim 2, let

V 0

i = aVi + q + bzipi + fzi(pi � n)

where the vectorq and the scalarsa; b; f are free variables.
We can establish the following identity:

si � (pi � n) = (si � pi)� n+ si

by following the derivation of eqn. 14. By substitution we
find the entry 7 of thei’th row of Sx(V 0) becomes:

a
1

zi
s>i Vi +

1

zi
s>i q + fn>(si � pi)

and entries8� 10 become:

a
1

zi
(si � Vi) +

1

zi
(si � q) + b(si � pi)

+f(si � pi)� n+ f
1

zi
si

We have thatB7�10 has the following form:

B7�10 =

2
6666664

fn bI + f [n]�
q [q]� + fI
a 0 0 0
0
0 aI
0

3
7777775

SinceB7�10 contains 6 free variables (vectorq and scalars
a; b; f ), the rank of the estimation matrix for the 40 un-
knowns inA7�10 cannot exceed 34.

In order to determine the free variablesa; b and vectorfn
we do the following. LetW = KAA�1L = S0M 0 where
K;L determined by SVD ofW andA is determined by
choosing an arbitrary solution from the 6-dimensional null
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space. Denote thej’th column ofM 0 as(m1;m2; �;m3),
thenBM 0

j has the form:

BM 0

j =

0
BB@

m1 + �fn+ bm3 + f [n]�m3

m2 + �q + [q]xm3 + fm3

a�
am3

1
CCA ;

This provides the following linear constraints ona; b; fn:

a� = j
1

j
am3 = m1 + �fn+ bm3 + f [n]�m3

from which we can solve fora; b; fn (via several columns
of M 0). In order to separatef andn we can either shift the
velocities byq = V1 as was done in the previous section,
or alternatively, recoverzi (up to a global scale) fromA be-
cause the depth values are not affected by the ambiguity in
A7�10. Oncezi are recovered one can solve forn, and then
solve fora; b; f from the equations above. The recovery
of zi is also useful for purposes ofdistinguishingbetween
the rank 34 caused by coplanar trajectories and the rank 34
caused by coplanar points. Oncea; b; f; n are recovered,
one can substitute their values intoB above (up to a global
shift q). In Summary, we have shown that we can recover
S;M up to the global shiftq when the pointsPi span a 2D
space.

4.3 Parallel Trajectories

Another case of interest, as it may often occur in practi-
cal situations, is the case wheredimSpanfVig = 1, i.e., all
the straight-line trajectories are parallel to each other. As in
Section 4.1, we can assume that some arbitrary point, say
p1, is static, i.e.,V1 = 0. The implies that the all the (paral-
lel) line trajectories pass through the origin, i.e.,Vi = iV
(and1 = 0) for some fixed vectorV . The motion con-
straints for this special case are:

ui = s>i [w]xpi +
1

zi
s>i t+

i
zi
s>i (I + [w]x)V

vi = r>i [w]xpi +
1

zi
r>i t+

i
zi
r>i (I + [w]x)V

And the matricesS;M have the following form:

M =

2
4 w1 � � � wm

t1 � � � tm
(I � [w1]x)V � � � (I � [wm]x)mV

3
5
9�m

And:

S =

2
66666666664

s1 � p1
1

z1
s1

1
z1
s1

� � �
� � �

sn � pn
1

zn
sn

n
zn
sn

r1 � p1
1

z1
r1

1
z1
r1

� � �
� � �

rn � pn
1

zn
rn

n
zn
rn

3
77777777775
2n�9

Note that the ranks ofS andM are bounded by9, so also
rank(W ) � 9. Since depthzi and the velocitiesiV are
defined only up to scale, we have two degrees of freedom
embodied into the matrixB0 of the form:

B0 =

2
4 I3�3 0 0

0 �I3�3 0
0 0 �I3�3

3
5
9�9

such thatS0 = SB0 andM 0 = B�1

0
M are indistinguish-

able from the original pairS;M . Using SVD we find
K2n�9, andL9�m, such that there is a matrixA9�9 that
satisfies:S = KA, M = A�1L. We write estimation ma-
trices forA4�6 andA7�9. Each point contributes 5 linear
constraints onA4�6 andA7�9, those constraints have the
same form as in equations 4 - 8. Since we assume that the
first point is static, the last 3 columns in the first rows of
Sx; Sy must be zero, thus providing 6 additional constraints
to the estimation matrix forA7�9.

Claim 5 Using only constraints on the shape matrix,A can
be recovered only up to 3 degrees of freedom

Proof: Ambiguity in the solution forA4�6 andA7�9

arises if we can replacezi with z0i andi with 0i such that
Sx(z

0

i; 
0

i) = SxB for some matrixB. The number of free
variables inB will determine the number of degrees of free-
dom in determiningA. One can easily verify thatB has the
following form:

B =

2
4 I3�3 0 0

0 aI3�3 0
0 bI3�3 cI3�3

3
5
9�9

containing three free variables — two for the columnsA4�6

and one forA7�9). Note that because1 = 0 we were
allowed only to scale columnsA7�9.

One can solve for the scalarsa; b and the vectorV up
to a global scale as follows. Choose a solutionA from
the 3-parameter solution space (A4�6 from a 2-parameter
space, andA7�9 up to global scale). SetS0 = KA and
M 0 = A�1L and we are searching forB, whose structure
is described above, such thatS0 = SB, M 0 = B�1M . De-
noteM 0

j , thej’th column ofM 0, by (m1;m2;m3)
>. Then,
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(a) (b) (c)

(d) (e)

Figure 1. (a),(b),(c) 1st, 40th and 80th images of the traffic scene. (d) The tracked points and the road direction projected over the
reference frame. (e) Predicted locations of 3 of the tracked points.

BM 0

j = (m1; am2; bm2 + cm3)
> which should have the

form ofMj = (wj ; tj ; jV � jw� V )>. We have therefore
the constraint equation perj’th column ofM 0:

jV � jm1 � V = bm2 + cm3

which provides 3 homogeneous equations per column for
the unknownsb; c and vectorV . The scalara is set arbi-
trarily, thus we have shown that we can recoverS;M up
to the intrinsic ambiguity (matrixB0) of global scale ofzi
and global scale ofiV . Note that the method does not de-
pend on whether the point configurationPi lie on a 2D or
3D space.

5 Experiments

We have conducted a number of experiments of which
two will be described below. The first experiment involves
the parallel trajectoriesconfiguration (Section 4.3) taken
by a moving camera viewing a typical highway traffic scene
with moving vehicles. The second experiment involves
the coplanar trajectories(Section 4.1) configuration on a
semi-synthetic setup. It is semi-synthetic in the sense that
the scene is constructed by computer graphics rendering
whereas the image measurements are taken with the same
image-processing tools of point tracking as with the real-
image sequence.

Fig. 1(a-c) displays three images of a sequence of 80
frames of a highway traffic situation. The sequence was
taken by a hand-held video camera from a bridge over the
road. The constant velocity assumption in such a scene is
fairly reasonable and because the vehicles were moving on
a straight section of the road, the parallel trajectory model
is also reasonable.

Using the KLT point tracking package [2] we tracked 28
points on static objects and on different moving cars, mov-
ing at different speeds and along both lane directions. The
vectorV representing the direction of vehicle travel was
computed as described in Section 4.3 and projected onto
the reference image (first image of the sequence) displayed
in Fig. 1d. The projected line appears accurately aligned
with the road direction including the pitch angle (lines meet
at the true horizon). We then recovered the velocity mag-
nitudei of each point and made use of it for predicting
the position of the vehicle in subsequent frames (assuming
a constant velocity motion).

We also recovered the private velocity (which is a scale
of the common velocity) for each of the tracked points. This
enables us to predict the location of the point in anotherx
frames (i.e. afterx time intervals). In figure 1(e) we pro-
jected the expected movement of 3 of the points using the
frequency of6 time intervals. We can see that the truck
on the right moved a little slower than the white van on its

7



(a) (b) (c)

Figure 2. (a),(b) 2 images from the chess sequence. (d) 3 of the tracked points and their velocities projected onto the reference
frame.

left. Fig. 1e displays the predicted position of three points
— the predicted positions remain on the vehicle thus indi-
cating good accuracy in the recovery of the model (motion,
structure and velocities).

Fig. 2(a-c) displays three images, out of a sequence of
60 frames, of a coplanar trajectories configuration of chess
pieces in motion (points span a 3D space while velocities
span a 2D space). The recovered velocitiesVi were recov-
ered using the method in Section 4.1 and projected on the
reference image (Fig. 2d). The projected lines appear to
trace accurately the straight line motion of the chess pieces.

In both experiments fairly long sequences were taken
covering image displacements of dozens of pixels in some
cases. The effect of discrete motion (instead of infinitesi-
mal) on the final results was minimal, thus suggesting ro-
bustness of the approach.

6 Summary

We have introduced the small-motion equations for han-
dling multiple linearly moving points under constant veloc-
ity and a factorization-based algorithm for extracting the
parameters of scene structure, camera motion and point tra-
jectories from the image-flow measurements. Our method
covered a majority of situations of interest starting from the
general 3D point configuration and 3D line trajectories, to
combinations of 2D point configuration and 2D trajectories
up to 1D trajectories. In all those cases we have shown
that the information can be recovered (in a robust manner
as seen from the experiments) uniquely (up to an intrinsic
shift ambiguity).
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