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Abstract

Consider the situation of a monocular image sequence with known ego-motion
observing a 3D point moving simultaneously but along a path of up to second
order, i.e. it can trace a line in 3D or a conic shaped path. We wish to reconstruct
the 3D path from the projection of the tangent to the path at each time instance.
This problem is analogue to the \trajectory triangulation" of lines and conic
sections recently introduced in [1, 3], but instead of observing a point projection
we observe a tangent projection and thus obtain a far simpler solution to the
problem.

We show that the 3D path can be solved in a natural manner, and linearly,
using degenerate quadric envelopes - speci�cally the disk quadric. Our approach
works seamlessly with both linear and second order paths, thus there is no need
to know in advance the shape of the path as with the previous approaches for
which lines and conics were treated as distinct. Our approach is linear in both
straight line and conic paths, unlike the non-linear solution associated with point
trajectory [3].

We provide experiments that show that our method behaves extremely well on
a wide variety of scenarios, including those with multiple moving objects along
lines and conic shaped paths.

1 Introduction

There has been a recent drive towards extending the envelope of multi-view 3D
reconstruction and Image-based Rendering beyond the static scene assumption
in the sense of considering \dynamic" situations in which a point to be re-
constructed, or view-morphed, is moving simultaneously while the camera is in
motion [1, 3, 2] . In these situations only line-of-sight measurements are available,
that is, optical rays from distinct camera positions do not intersect (triangulate)
at a point in space (as in the conventional multi-view reconstruction paradigm),
thus new techniques need to be introduced in order to handle these cases. This
paradigm was named \trajectory triangulation" by [1, 3].



In this paper we consider a related problem de�ned as follows. Consider a
point P moving in space along a path 
 which could either be a straight line or
a conic in 3D, i.e., a path up to second order in space coordinates. The path 


is observed by a generally moving camera whose ego-motion (camera projection
matrices) is known. The observation takes the form of the projections of tangents
to the curve 
. In other words, in each image we see one (or more) tangents of 

as a line in the image plane (we refer to this as \tangent-of-sight" measurement)
and our task is to reconstruct 
 from the image measurements across multiple
(at least 2) views. See Fig. 1 for illustration of the problem.

Fig. 1. The conic/line path 
 is observed by a generally moving camera where each
image views the projection of a local tangent to the curve. The task is to reconstruct

 from such \tangent-of-sight" measurements across a sequence of views.

Note that in our problem an observation is a line segment (projection of
the tangent to 
 in space), where as in [1, 3] the observation is an image point
corresponding to a moving point P along 
. This change in problem de�nition
makes a signi�cant di�erence in the kind of tools one can use for the solution.
In the case of a point observation it was shown that when 
 is a straight line the
solution (Plucker coordinates of the line) is linear in the image observations and
5 views are necessary | whereas when 
 is a conic 9 views are necessary and
the solution is non-linear. Moreover, the solution assuming 
 is a conic would
break-down if 
 is a straight line (and will su�er from numerical instability in
case 
 is close to a straight line).

We will show that in the case of tangent-of-sight observations a natural tool
for approaching the reconstruction of 
 is the degenerate quadric envelope | in
particular the disk quadric. Quadric envelopes were introduced in the computer
vision literature in the context of camera self-calibration (the \absolute quadric"
[4]), but here we make a di�erent use of them. In our approach, each observation
contributes a linear equation for a disk quadric, thus in the case each image
contains only one observation one would need at least 9 views (or 8 views for a



4-fold ambiguity). Given the disk quadric it becomes a simple matter to extract
from it the parameters of 
 (3 parameters of the plane and 5 parameters of the
conic on the plane). Moreover, the technique would work seamlessly without
changes when 
 is a straight line as well.

On a practical level, measurements of line segments are quite naturally ob-
tained from images. Moreover, the occluding contour of a moving object would
provide the tangent-of-sight measurement necessary for our computations. Thus,
the introduction of tangent-of-sight observations in the realm \trajectory trian-
gulation" is both practical and feasible.

2 Background: Cameras and Quadric Loci and Envelopes

We will be working with the projective 3D space and the projective plane. In this
section we will describe the basic elements we will be working with: (i) camera
projection matrices, and (ii) Quadric envelopes and the disk quadric.

A point in the projective plane P2 is de�ned by three numbers, not all zero,
that form a coordinate vector de�ned up to a scale factor. The dual projective
plane represents the space of lines which are also de�ned by a triplet of numbers.
A point in the projective space P3 is de�ned by four numbers, not all zero, that
form a coordinate vector de�ned up to a scale factor. The dual projective space
P�
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represents the space of planes which are also de�ned by a quadruple of
numbers.

The projection from 3D space to 2D space is determined by a 3� 4 matrix.
If P; p are corresponding 3D and 2D points, then p �= MP , where �= denotes
equality up to scale. If � is a line in 2D, then �>M is the plane passing through
the line � and the projection center of the camera. The plane is referred to as
the \visual plane" of �.

A quadric locus is a second order polynomial of the 3D projective coordinates
representing points on a quadric surface. The points P 2 P3 satisfying the
equation P>QP = 0, where Q is a symmetrical 4 � 4 matrix de�ne a quadric
locus. If P is on the quadric surface, then QP is the tangent plane at that point.

A quadric envelope is a second order polynomial of the 3D coordinates of the
dual space - the space of planes. The planes U 2 P�
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that satisfy the equation
U>Q�U = 0, where Q� is a symmetric matrix, are tangents of a quadric surface.
If U is a tangent to the surface (belongs to the envelope), then Q�U is the point
on the surface de�ned by the intersection of the tangent plane and the surface.
If Q is full rank, then by the principle of point-plane duality we have

0 = (QP )>Q�(QP ) = P>(Q>Q�Q)P =) Q� = Q�T

In other words, one can move from point-equation to plane-equation of a quadric
simply by taking the cofactors matrix, i.e., Q� can be described by the cofactors
of Q (and vice versa).

A full rank quadric (locus and envelope) is called a proper quadric. A rank-3
quadric is called a quadric cone. Let QX = 0, then clearly the point X belongs



to the surface because X>QX = 0 as well. Let P be any other point on the
surface, i.e., P>QP = 0. Then, the entire line �P + �X is also on the surface:

(�P + �X )>Q(�P + �X ) = 0 8�; �:

Therefore, the quadric cone is generated by lines through the point (apex) X .
The co-factor matrix Q� is a rank-1 matrix as follows. All the planes through
X are tangent planes, i.e., U>Q�U = 0 and U>X = 0, i.e., the rows of Q� are
scaled versions of X , and U>Q�U = 0 is is the plane equation of X taken twice
(repeated plane).

A rank-3 quadric envelope is called a disk quadric. Let Q�Y = 0, then Y
is tangent to the surface because Y>Q�Y = 0 as well. If U belongs to the
envelope, i.e., U>Q�U = 0, then the pencil of planes �U + �Y belong to the
envelope as well. Therefore, the disk quadric is a \disk" of coplanar points where
the boundary of the disk is a conic section, that is, the envelope includes all the
planes through all the tangents to the boundary conic, i.e., 11 pencils of 11

planes (see Fig. 2). The matrix of co-factors is a rank-1 matrix whose rows are
scaled versions of Y, the plane of the disk.

Fig. 2. A disk quadric is a \disk" of coplanar points where the boundary of the disk
is a conic section, that is, the envelope includes all the planes through all the tangents
to the boundary conic, i.e., 11 pencils of 11 planes.

It is important to note that the application of the principle of duality (matrix
of cofactors) does not hold for rank-de�cient quadrics. The disk quadric is the
dual of the proper cone, yet the transformation between point-equation and
plane-equation cannot be achieved solely through the matrix of cofactors. We
will return to this issue later in the paper.

Finally, a rank-2 quadric locus describes a pair of distinct planes, and a rank-
2 quadric envelope describes a pair of distinct points. Table 1 summarizes the
rank classi�cations of quadric loci and quadric envelopes.



� Quadric Locus Quadric Envelope
4 Proper Quadric Proper Quadric Envelope
3 Proper Cone Disk Quadric
2 Pair of planes (line) Pair of points(line)
1 Repeated Plane Repeated Point

Table 1. Classi�cation of quadrics according to rank

3 Reconstruction of a Conic Path from Tangents-of-Sight

We wish to recover the path of an object moving in space from a sequence of
images without prior knowledge of the shape of the path (line in 3D or planar
conic in 3D). We will present a method for linearly recovering the path from 9
views, given their 9 projection matrices and a tangent to the path of motion in
each view. The output of the algorithm in the case of a planar conic will be the
3 parameters of the plane and the 5 parameters of the conic on that plane. In
case of a line the output will be the Plucker coordinates of the line in 3D. Our
method is based on the fact that both a planar conic in 3D and a line in 3D
have a representation as a degenerate quadric envelope.

Our problem can be stated as follows. We are given tangents of a moving
point (or equivalently we are observing a moving tangent line tracing a conic
envelope in space) across a number of views seen from a monocular sequence
with known ego-motion, i.e., the camera projection matrices are assumed to be
known. We wish to recover the conic path and to reconstruct the 3D position of
the moving point at each time instance. See Fig. 1.

Given the background on quadric envelopes, it becomes clear that the conic
trajectory is part of a disk quadric. The observations we obtain from the image
space is the projection of a pencil of planes (a tangent line to the boundary of
the disk quadric) at each time instance.

Let li be the tangent line measured in view i, and let Mi be the camera
projection matrix at time i. Then l>i Mi is the visual plane which is tangent to
the disk quadric. We have therefore the linear set of equations:

l>MiQ
�M>

i li = 0

which provides a unique solution for Q� using 9 views, or a 4-fold ambiguity
using 8 views (because we know that the determinant of Q� must vanish). It is
a reasonable assumption that if the moving camera is viewing a single moving
object we would be able to extract one tangent to the path of motion per image,
tracking some visible feature on the object, but we are not restricted to using
one tangent in each view. Indeed, if there appear to be multiple tangents to the
same path of motion, for example, when tracking a train consisting of many cars
moving along it's track (as shown in Fig. 3) more than one tangent can be used
per image. The 9 visual planes can be acquired along less than 9 images as well.
The only limitation on the number of images is that the sequence must be at
least 2 images long.



Given that we have found the disk quadric Q�, the reconstructed 3D points
are simply Pi

�= Q�M>

i li. The plane � on which the conic resides is the null
space of Q�, i.e., Q�� = 0. To recover the point-equation of the conic path we
do the following.

We have seen previously that with rank-de�cient quadrics the cofactors are
not su�cient for moving between plane-equation and point-equation form. We
describe the conic as the intersection of a proper cone and the plane �. The apex
of the proper cone can be chosen arbitrarily, thus let X be a the chosen apex of
the cone we wish to construct. U>Q�U = 0 describe the plane-equation of the
disk quadric and include all tangent planes to the conic we wish to recover, thus
by adding the constraint U>X = 0 we obtain a subset of the tangents planes
that de�ne the plane-equation of the enveloping cone whose apex is at X . For
every such tangent plane U , P = Q�U is a point on the conic section. We wish
to express U as a function (uniquely) of point coordinates P , as follows. We have
two sources of equations: Q�U = P and X>U = 0, i.e.,

�
Q�

X>

�
U =

�
P

0

�

and from the pseudo-inverse we obtain:

U = (Q�Q� + XX>)�1Q�P = Q#P:

Note that the matrix in parenthesis is of full rank because of the addition of
XX>. Substituting U in the plane-equation U>Q�U = 0 we obtain the point-
equation:

P>Q#>Q�Q#P = 0

i.e., the rank-3 quadric locus (quadric cone) is Q = Q#>Q�Q#. A numerical
example of transformation between plane and point equations for degenerate
quadrics would be helpful.

Suppose we are given the plane equation of a disk quadric:

U2
1 + 4U1U2 + 6U1U3 � 6U1U4 + U2

2+
U2
3 � 2U3U4 + U2

4 = 0
(1)

Or in matrix representation:

Q� =

2
664

1 2 3 �3
2 1 0 0
3 0 1 �1

�3 0 �1 1

3
775 (2)

The plane of the conic is given by the null space of Q� and is therefore the
plane [0; 0; 1; 1], or Z + 1 = 0. We now de�ne the cone K� of enveloping planes
tangent to Q� that coincide with the point X = [0; 0; 0; 1]T, by setting U4 = 0
in Eq. 1. We get the plane equation of K�:

U2
1 + 4U1U2 + 6U1U3 + U2

2 + U2
3 = 0 (3)



Or in matrix representation:

Q� =

2
664
1 2 3 0
2 1 0 0
3 0 1 0
0 0 0 0

3
775 (4)

Next, we translate the plane equation of the cone into its point equation, by
expressing it in the coordinates of the tangency point to a general plane U 2 K�:

K�U =

2
664
U1 + 2U2 + 3U3

2U1 + U2
3U1 + U3

0

3
775 =

0
BB@
X

Y

Z

W

1
CCA (5)

We solve Eq. 5 for U1; U2; U3 thus, expressing them as linear combinations of
X;Y; Z:

U1 =
�1
12
X + 1

6
Y + 1

4
Z

U2 =
2
3
Y + 1

6
X � 1

2
Z

U3 =
1
4
Z + 1

4
X � 1

2
Y

(6)

Substituting Eq. 6 for U1; U2; U3 in the plane equation, gives us the point equa-
tion of the cone K, in X;Y; Z:

X2 � 4XY � 6XZ � 8Y 2+
12Y Z � 3Z2 = 0

(7)

We now have the point equations of two surfaces, de�ning the conic in terms of
points in space.

The intersection of these two surfaces is the conic on the plane, the collection
of points which belong both to the cone and to the plane of the disk quadric.
The equation of the plane gives us Z = �1, which we substitute in Eq. 7 and
we get the equation of the conic on the plane:

X2 � 4XY + 6X � 8Y 2 � 12Y � 3 = 0 (8)

3.1 Recovering Plucker Coordinates of a Line

Given a quadric envelope Q� representing a line in 3D, we would like to recover
the Plucker coordinates of the line. As we learn from Table 1, Q� is of rank 2
and represents a line by encoding the information of a pair of 3D points that
coincide with the line. The null space of Q� is of dimension 2 and consists of two
planes:

null(Q�) = [�1; �2]

These planes satisfy �1Q
��T1 = 0, �2Q

��T2 = 0, thus they are tangent to Q�.
Since Q� is a line, it must lie on both planes �1 and �2, it is the line of intersection



of �1 and �2. We can �nd two points P;Q on the line of intersection and perform
the join operation on them to get the Plucker coordinates of the line.

[P;Q] = null

�
�1
�2

�
(9)

L = P ^Q

= [Xp �Xq; Yp � Yq; Zp � Zq ;

XpYq � YpXq ; XpZq � ZpXq;

YpZq � ZpYq ]

(10)

4 Experiments

We have conducted a number of experiments on both synthetic and real image
sequences. We report here a number of examples of real image sequences, varying
in the amount and type of measurements used for recovering the motion path

 of a moving object. For each experiment we will present the input sequence
(in whole or partially) showing the tangent-of-sight lines used as input and the
resulting images, which show the recovered path 
.

In all the examples, we used sequences taken by a hand-held moving camera.
The tangents in the images were marked manually and the projection matri-
ces were recovered from matching points in the static background | both the
tangents and the projection matrices were passed to the algorithm as input.

The �rst example demonstrates the unifying quality of the algorithm, han-
dling a scene containing both a conic trajectory and a line trajectory. We took
a sequence of 9 images viewing a toy train moving along its circular track and
a toy jeep moving along a straight line. Both for the trajectory of the train and
for the trajectory of the car, one tangent was used in each of the 9 images. The
tangents to the trajectory of the train were taken from the bottom of the engine
car. The tangents to the trajectory of the jeep were taken where the wheels touch
the chess-board. Fig. 3 shows the 9 input images, in each image the tangent to
the train is drawn in black and the tangent to the jeep is drawn in white

Fig. 4 shows the result of this experiment. The images shown are a subset of
the image sequence. In each image the recovered conic trajectory of the train,
projected to the image, is drawn in black and the recovered line trajectory of
the jeep is drawn in white.

The second example was designed for quantitative estimation of accuracy.
The example was created using 9 images viewing a spinning turntable, with one
tangent to the turntable taken in each image. In the background we placed a
static object, used for Euclidean calibration, consisting of three planes orthogonal
to each other featuring a regular chess-board pattern. The plane on the 
oor was
taken to be Y = 100 and the two other planes were taken to be X = 0 and Z = 0.
The projection matrices were created from points on the calibration object. The
size of each square on the grid is 2:5�2:5 cm, and was taken to be 10�10 in out
coordinate system. The height of the turntable is 3cm, the plane of the turntable



Fig. 3. Input sequence for 1st example, 9 images containing one tangent to each tra-
jectory per image. Tangents to conic trajectory are drawn in black, tangents to line
trajectory are drawn in white.

is thus the plane Y = 120. The plane of the conic recovered by the algorithm
was:

0:0026X + Y + 0:0292Z = 112:1446

which is very close to the known plane. Fig. 5 shows 4 of the input images used
in this example with the tangent taken in each image, the projection of the conic
onto each image and a regular grid on the plane of the conic.

5 Summary

We have introduced the problem of recovering the path of a moving object seen
from a moving camera using tangent-of-sight measurements and have shown that
the degenerate quadric envelope is a natural tool for the problem of reconstruct-
ing second-order paths in space.

Our technique is very simple as each observation provides a linear estimate
to a disk quadric that contains all the necessary information for recovering the
8 parameters of the conic shaped path. A byproduct of our approach is that the
system does not breakdown when the the path is a straight line as it is a special
case of a degenerate quadric envelope.



Fig. 4. Recovered planar conic (in black) and line (in white) are projected to several
reference images from the input sequence
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Fig. 5. 4 out of 9 images from input sequence used for numerical example. Images show
projection of the conic to each image drawn in black, tangent in each image drawn in
white and a regular grid of bright dots on the plane of the conic.


