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Abstract

We consider a scene, containing many objects moving with
constant velocity along straight line paths, seen from three ref-
erence viewpoints at three different times.The scene may even
consist only of moving objects with no static features. We wish
to create a new image sequence showing the scene from arbi-
trary viewing position and arbitrary time. We make use of a
newly discovered tool, the “dual Htensor”[1], that connects
together three views of a coplanar configuration of (unlabeled)
static and moving points. The newly synthesized images use
constant velocity in the world to achive realistic and physically
correct images.

1 Introduction
Consider the following dynamic image stabilization prob-

lem. We are given a coplanar configuration of static and mov-
ing objects (along straight line paths) seen in three different
views, each taken at a different time. Alternatively, the scene is
3D but the cameras’ optical centers are aligned, or the cameras
are affine — in other words, the image to image transforma-
tions are 3 � 3 homography matrices. The number of moving
objects can be very large — at the extreme, the entire scene may
consist of moving objects — and we are not given prior infor-
mation about which object is static and which objects are mov-
ing. The only information is the three views, and we assume
we can find dense correspondences between them by means of
image correlation, for example.

We wish to stabilize the sequence, i.e., factor out the view-
ing transformation, and create a new sequence in which the
static features are stable whereas the moving features are syn-
thesized at new time steps as if they had been moving at con-
stant velocities. The synthesis can take the form of interpola-
tion or extrapolation in time.

This type of dynamic synthesis problem is useful for creat-
ing representations, such as an image mosaic [11, 12], that con-
tain a temporal dimension in addition to the spatial dimensions.
Also of interest are graphics applications like view-morphing
or the more recent dynamic view morphing [6]. Other applica-
tions include collision analysis between a moving vision plat-
form and approaching vehicles, and image sequence compres-

sion. Our approach is most useful to these applications in sit-
uations where the scene is mostly planar, or the camera is un-
dergoing mostly rotational motion, and the scene is rich in dy-
namic information.

The major challenges in this task are twofold. First, the pro-
cess of factoring out the viewing transformation boils down to
recovering the image-to-image transformations, i.e., the pair-
wise homography matrices. However, the features are not nec-
essarily static in space, and moreover, there may be no static
features at all, i.e., all the matching triplets arise from mov-
ing features in space. In other words, we must use a technique
that can treat the measurements (matching triplets) arising from
static and moving points alike. To this end, we adopt the “dual
Htensor” recently introduced in [1], described in Section 2, and
modify it to our needs. During the synthesis process the ob-
jects on the world plane should be moving with constant ve-
locity, but because of perspective effects the constant velocity
is not necessarily conserved in the image coordinate system.
We show that constant velocity in the world plane can be gen-
erated by constructing a 1D projective transformation between
the time function and the the warping transformation. In this
manner, physically correct interpolation and extrapolation can
both be achieved during the synthesis process. It is then also
possible to use the transformation for collision analysis or for
any other application that requires us to predict the positions
of moving features, assuming constant-velocity motion, at any
time step.

A relatively large body of research exists on the synthesis of
physically correct new views from a small number of reference
views (cf. [2, 8, 9, 5]), but none of these apply directly to dy-
namic scenes. Recently, the problem of reconstruction (using
known camera-to-camera transformations) of moving points
along straight line and conic paths was introduced in [3, 7].
However, this method assumes that five or more views are
available (nine, for conics). More closely related to our work
is the dynamic view interpolation between pairs of views intro-
duced in [6]. As in our case, the camera-to-camera transforma-
tion is modeled by a homography matrix, but it is assumed to be
known (or recoverable by matching static points). Each mov-
ing object must somehow be segmented out (by forming lay-
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Figure 1. The dual homography tensor and moving points.
The collineations A;B are from view 2 to 1 and 3 to 1 re-
spectively. If the triplet p; p0; p00 are projections of a moving
point along a line on � then p; Ap0;Bp00 are collinear in view
1. Thus, p>(Ap0 � Bp00) = 0, or pip0jp00kHijk = 0 where
Hijk = �inua

n
j b

u
k .

ers, one per object) and a number of matching points must be
identified on each object for the purpose of recovering its rela-
tive motion (object fundamental matrix) and computing a pre-
warping transformation for the object. In our approach, it is not
required to segment the scene into static and moving points,
and there is no requirement for separate pre-warping of each
moving object in order to create a constant-velocity synthesis.
Furthermore, the synthesis process is physically correct at all
time steps, not only for those between (interpolation) the orig-
inal reference views but also for time steps beyond them (ex-
trapolation).

2 Background: Homographies and Dual Hten-
sors

In the projective plane any four points in general position
can be uniquely mapped into any other four points. Such a
mapping is called a collineation and is defined, up to scale, by
a 3�3 invertible matrix. Such matrices are sometimes referred
to as homographies. A collineation is defined by four pairs of
matching points; each pair provides two linear constraints on
the entries of the homography matrix. If H is a homography
matrix defined by four matching pairs of points, thenH�T (in-
verse transpose) is the dual homography that maps lines onto
lines.

The projective plane is useful for modeling the image plane.
Consider a collection of points P1; :::; Pn in space lying on a
plane � viewed from two viewpoints. The projections of Pi
are pi; p

0
i in views 1,2 respectively. Because the collineations

form a group, there exists a unique homography matrixH� that
satisfies the relation H�pi �= p0i, i = 1; :::; n, where �= de-
notes equality up to scale. H� is uniquely determined by four
matching pairs from the set of n matching pairs. Moreover,
H�T

� s �= s0 will map between matching lines s; s0 arising from
3D lines lying in the plane �. Likewise, H>

� s
0 �= s will map

between matching lines from view 2 to view 1.
Consider three views of a planar surface with the homogra-

phy matrices A;B from views 2 to 1 and from 3 to 1 respec-
tively. Let a point P be moving on the planar surface along
some straight line path simultaneously with the motion of the
camera. Let the projection of P at time t1 onto view 1 be p, the
projection of P at time t2 onto view 2 be p0, and the projection
of P at time t3 onto view 3 be p00 — see Fig. 1). Because P

traces a straight line path we must have

p>(Ap0 �Bp00) = det(p;Ap0; Bp00) = 0

whether the pointP did not move, i.e., the optical rays through
p; p0; p00 intersect at a point, or P did move (the optical rays
intersect on a line). Therefore, the triplet of matching points
p; p0; p00 contributes a measurement regardless of whether P is
static or dynamic. The measurement is towards the following
object:

Hijk = �inua
n
j b

u
k: (1)

where �inu is the cross product tensor, and the measurement
itself is simply pip0jp00kHijk = 0. To understand what this
means we must make a detour into tensor notation.

When working with tensor objects it matters whether the co-
ordinate vectors stand for points or lines. A point is an object
whose coordinates are specified with superscripts, i.e., pi =

(p1; p2; p3). These are called contravariant vectors. A line in
P2 is called a covariant vector and is represented by subscripts,
i.e., sj = (s1; s2; s3). Indices repeated in covariant and con-
travariant forms are summed over, i.e., pisi = p1s1 + p2s2 +

p3s3. This is known as a contraction. For example, if p is a
point incident to (i.e., lying on) a line s in P2, then pisi = 0.

Vectors are also called tensors of valence 1. 2-valent tensors
(matrices) have two indices and the transformation they repre-
sent depends on the covariant-contravariant positioning of the
indices. For example, aji is a mapping from points to points (a
collineation, for example), and hyperplanes (lines inP2) to hy-
perplanes, because ajip

i = qj and a
j
isj = ri (in matrix form:

Ap = q andA>s = r); aij maps points to hyperplanes; and aij

maps hyperplanes to points. When viewed as a matrix the row
and column positionsare determined accordingly: inaji and aji
the index i runs over the columns and j runs over the rows; thus
bkja

j
i = cki isBA = C in matrix form. An outer product of two

1-valent tensors (vectors), aibj, is a 2-valent tensor cji whose
i; j entries are aib

j; note that in matrix form C = ba>. A 3-
valent tensor has three indices, sayHjk

i . The positioningof the
indices reveals the geometric nature of the mapping: for exam-
ple, pisjH

jk
i must be a point because the i,j indices drop out in

the contraction process and we are left with a contravariant vec-
tor (the index k is a superscript). Thus Hjk

i maps a point in the
first coordinate frame and a line in the second coordinate frame
into a point in the third coordinate frame. A single contraction,
say piHjk

i , of a 3-valent tensor leaves us with a matrix. Note
that when p is (1; 0; 0) or (0; 1; 0), or (0; 0; 1) the result is a
“slice” of the tensor.

The cross process (vector product) operation c = a� b can
be written as a “skew-symmetric” matrix c = [a]�b. We can
rewrite this in tensor form where ck = �ijka

ibj is the cross
product of two points (contravariant vectors) resulting in the
line (covariant vector) ck. Similarly, ck = �ijkaibj represents
the point intersection of the two lines ai and bj.



The tensor Hijk defined above was introduced in [1] and
referred to as a “dual homography tensor” or dual Htensor in
short. We see that each matching triplet p; p0; p00 contributes
one linear equation

pip0jp00kHijk = 0

to the 27 entries of the dual Htensor, regardless of whether the
matches arose from a static or moving point (along a straight-
line path). Furthermore, in [1] it was shown that if among the
measurements, x triplets are known to arise from static points,
then the minimal number of moving points in the total set of
measurements should be at least 16�4x. In other words, in an
completely unsegmented situation, i.e., it is not known whether
a matching triplet has arisen from a static or moving point, one
needs at least 26 matching triplets, out of which 16 must arise
from moving points. At the other extreme, if four matching
triplets are known to arise from static points, then these four
matching triplets are all one needs to solve for Hijk.

3 Synthesis of Dynamic Scenes
Suppose we are given a set of matching triplets p; p0; p00 in

views 1,2,3 respectively. This can be aquired either by means
of dense matching (optical flow) as we do, or using a series
of sparse line segment correspondences of [10], The match-
ing triplets may arise from static or from moving points. In
the completely unlabeled configuration, i.e., when there is no
prior information as to what measurement is static and what is
dynamic, we will need at least 26 measurements of matching
triplets (out of which at least 16 arise from dynamic points) for
a linear solution for the dual Htensor from pip0jp00kHijk = 0.
If some of the measurements are labeled as arising from static
points, fewer matching triplets are necessary (see the previous
section).

Once Hijk is recovered from the image measurements we
can factor out the viewing transformation between pairs of im-
ages using the image-to-image mapping induced by the planar
surface. Suppose we would like to map view 1 onto view 3,
i.e., for every point p in view 1 we back-project the intersec-
tion of the optical ray through p and the planar surface onto p00

in view 3. This is done as follows (see Fig. 2):
The double contraction of pip0jHijk is the projection of the

straight line path of the scene point onto view 3. If the pair p; p0

arise from a static point then pip0jHijk vanishes. Let p0 range
over the two unit vectors e = (1; 0; 0) and �e = (0; 1; 0); then

p00 �= (piejHijk) � (pi�ejHijk)

Hence every point in one view can be mapped directly onto its
matching point in any of the remaining two views, for example

p0 �= (piekHijk) � (pi�ekHijk)

p �= (p0jekHijk)� (p0j�ekHijk)

Therefore, once the dual Htensor is recovered from any con-
figuration of static and dynamic points it can be used to stabi-
lize the static portion of the scene by warping the views onto a
canonical coordinate frame — which could be any one of the
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Figure 2. The dual Htensor can form a direct image-to-image
mapping (a collineation) between pairs of views. (a) Consider
a point �0 in view 2 and its matching points �; �00 in views
1,3. The matrix �0jHijk maps between two pencils of lines,
one through � in view 1 and the other through �00 in view 3.
Thus, pi�0jHijk is a line through the matching point p00 . (b)
We can therefore represent p00 as the intersection of two lines
(piejHijk) � (pi�ejHijk) where e; �e are any two vectors, say
the standard basis e = (1; 0; 0) and �e = (0; 1; 0).
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Figure 3. The point p0 is forward-warped to position pt in the
reference frame (view 1). The back-projection of p0 onto view
1 is p0h which coincides with p if p; p0 arise from a static point
in space.

original three frames (the reference view). The warping pro-
cess brings the static regions in the scene into alignment with
the reference view, whereas the dynamic regions are shifted
along the projection of the straight-line path onto the reference
view. We will now describe (i) the warping process, (ii) con-
stant velocity synthesis, and (iii) collision analysis of dynamic
features.

3.1 Dynamic Warping

Suppose we wish to synthesize the scene from the viewing
position of view 1 (t = 1) at the time steps 1 � t � 2. We can
use the natural embedding of the Cartesian plane in the projec-
tive plane P2 and identify the projective point p = [x; y; w]>

with the image point [u; v]> by [x; y; w]> 7! [x=w; y=w]> in
the computations below. Let pt be the (yet unknown) position
of pointp at time t. Let p0h the back-projected matching pointp0

onto view 1, i.e., p0h �= (p0jekHijk)�(p0j�ekHijk): Let U12 de-
note the image displacement from view 2 to view 1, i.e., U12 =

p� p0. Then the flow (dx; dy) needed to “forward warp” view
2 onto the reference view at time t, i.e., pt = p0+ [dx; dy]>, is

�
dx

dy

�
= U12 + (t � 1)(p0h � p) (2)



Note that if p; p0 arise from a static point, then p0h
�= p, i.e.,

p0h = p; therefore we have U12+(t�1)0 = U12 for all values
of t, so that pt will remain fixed at p regardless of the value of
t. A dynamic point, on the other hand, will move along the line
connecting p and p0h. See Fig. 3 for an illustration.

Next, we wish to determine the time step t that conforms to
constant-velocity motion in world coordinates, i.e., in the scene
coordinate system. This will enable us to synthesize both inter-
polated and extrapolated motion of the dynamic regions.

We want to produce physically valid images, so we need to
preserve the correct speeds of the objects. Note that an object
moving at constant speed in the world can produce a point mov-
ing at varying speed on the image. Since the projection pro-
cess is a projective transformation, we know that the cross ra-
tio must be preserved. When converting T into t, we want to
preserve this cross ratio.

We will use the fact that we have three images at our dis-
posal and create a 1D collineation between the progression of
time T in world coordinates and the term t in equation (2). A
constant velocity in world coordinates is a succession 1; 2; 3; T

where 1; 2; 3 correspond to the times of taking the three orig-
inal images, respectively. We wish to find for every choice of
T the corresponding value of t. Let p00h be the back-projected
matching point p00 onto view 1, i.e. p00h

�= (p00kejHijk) �
(p00k�ejHijk): Then at time T = 3 we should have

t =
kp00h � pk

kp0
h � pk

+ 1

Hence we have a 1D collineation A that maps the basis
(1; 1); (2; 1); (3; 1) onto the basis (1; 1); (2; 1); (kp00h � pk +

kp0h � pk; kp0h � pk) For every chosen value of T we have�
t

1

�
�= A

�
T

1

�

Because three points uniquely determine a 1D collineation, we
can determine in this way the synthesized position pt for any
time T , not necessarily between 1 and 3.

To handle problems arising from occlusion we note that
when 1 � t � 2, pt can be generated by forward-warping
p0 as described above or by forward-warping p — the result of
which should be the same except in areas under occlusion. We
characterize the regions that have less information (due to oc-
clusion) by measuring a “dilation” factor from the dense corre-
spondence field. A region which is revealed during the camera
motion or object motion will stretch or shrink depending on the
direction of flow measurement (view 1 to 2 or 2 to 1). It is al-
ways preferable to take a region from the direction that results
in a shrinkage rather than an expansion. Therefore, we con-
sider the flow in both directionsU12 andU21, and for each pixel
we choose the source image from which to perform forward-
warping that results in the smallest expansion, as measured by
the perimeter of the triangle defined by forward-warping the
neighbors in directions (N,SW,SE) using either U12 or U21.

4 Experiments
We have conducted a number of experiments in synthesiz-

ing new images at extrapolated time steps, i.e., T > 3 and

(a) First Image. (b) Edges of the second view
overlayed on the third view.

(c) Second Image. (d) Edges of the first view
overlayed on the extrapolated
image.

(e) Third Image. (f) Enlarged section of 5(d).

Figure 5. Time-extrapolation experiment. (a,c,e) are the
original images, (b) displays the overlay of two of the original
images, and (d,f) are extrapolated views overlaid on top of the
reference image; note that the static features are aligned.

T < 1, and also from novel viewing positions. We have also
used the concepts above to determine time to collision in mov-
ing vehicle situations. Regarding synthesis of novel images,
consider Fig. 4, depicting images of a road sequence. The mo-
tion of the camera was mostly rotational, as can be seen from
the overlay of the first and last images in Fig. 4c. The dual Ht-
ensor was recovered from a dense flow field that was computed
in a coarse-to-fine framework [4]. Fig. 4d shows a synthesized
image extrapolated backwards in time toT = �4. The overlay
of a portion of this image onto the reference image is shown in
Fig. 4g. Likewise, Figs. 4e,h show an image extrapolated for-
ward in time toT = 6 and its overlay onto the reference image.
Finally, Figs. 4f,i show a synthesized top view of the two time-
extrapolated scenes of Figs. 4d,e.

Fig. 5 depicts another situation involving three images of a
mostly planar scene with moving toy vehicles. Fig. 5d shows
an overlay of two out of the three views, and in Fig. 5e,f an
time-extrapolated image is synthesized overlayed on the refer-
ence image. Note that the static features are aligned and the
dynamic features are displaced as a function of time.

In the last experiment, shown in Fig. 6, we made use of
the ability to correctly synthesize the position of dynamic fea-
tures across time to predict time to collisionbetween a forward-
moving vision platform (on a vehicle) and neighboring vehi-



(a) First Image. (b) Last Image. (c) First and Last.

(d) Extrapolation, time=-4. (e) Extrapolation, time=+6. (f) Top view of (d)

(g) Zoom of (d) (h) Zoom of (e) (i) Top view of (d) and (e)
combined

Figure 4. Time-extrapolation experiments with a road sequence. (a,b) are the two extreme views, and (c) is their overlay, demonstrating
that the camera has undergone mostly rotational motion. (d) Synthesized image extrapolated backwards in time to T = �4. (e) Image
extrapolated forward in time to T = 6. (g,h) Overlay of (d,e) with reference image. (f,i) Top view of images (d,e).

cles. This is done as follows. We are given three images of
the scene when the camera is moving forward (along a straight
line), and the dual Htensor computed from the roadway (robust
estimation picks out the roadway as the dominant planar region
in the scene). We pick a fixed location p = p0 = p00 = (x; y; 1)

in the three views corresponding to the center of the roadway.
Because the vehicle is moving along a straight line we are guar-
anteed that the corresponding object points trace a straight-line
path. Therefore, the dual Htensor will back-project p0; p00 onto
view 1 and create three collinear points p; p0h; p

00
h. Suppose, we

have a moving vehicle tracked along the three views; then its
matching points q; q0; q00 also create a triplet of collinear points
q; q0h; q

00

h in view 1. The intersection of the two lines will pre-
dict the point of collision in view 1. The collision will occur if
there exist a time t such that pt �= qt using the 1D collineation
framework defined in the previous section. Alternatively, a col-
lision will occur if the cross ratio of the quadruples p; p0h; p

00

h; S

and q; q0h; q
00

h; S are equal to one another, where S is the colli-
sion point in image 1. Fig. 6 illustrates this idea by marking the
collision point in (d) and the back-projected points in (e).

5 Summary

We have presented a technique for synthesizing new im-
ages of dynamic scenes containing many objects moving along
straight-line paths. The method can handle any mixture of
static and dynamic features, including the extreme case in
which all the measurements arise from dynamic features. Our

method is based on two principles: (i) the use of the dual Ht-
ensor as an image-to-image mapping, and (ii) introducing a 1D
collineation between the time steps in the world coordinates
and the time steps in the reference image coordinates. The
latter allows us to create interpolations and extrapolations in
time and to predict the positions of dynamic features, assum-
ing constant-velocity motion, at any time step. We have im-
plemented these idea for two applications: (i) dynamic morph-
ing, (ii) collision analysis. Other applications which were not
addressed here, that may benefit from these results, include dy-
namic image mosaicking and image sequence compression.
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