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AbstractÐWe describe a new direct method for estimating structure and motion from image intensities of multiple views. We extend

the direct methods of Horn and Weldon [18] to three views. Adding the third view enables us to solve for motion and compute a dense

depth map of the scene, directly from image spatio-temporal derivatives in a linear manner without first having to find point

correspondences or compute optical flow. We describe the advantages and limitations of this method which are then verified with

experiments using real images

Index TermsÐShape representation and recovery, 3D recovery from 2D, shape from motion, image sequence analysis, algebraic and

projective geometry.
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1 INTRODUCTION

THE geometry of multiple views of a 3D scene is well-
understood. There exist geometric constraints, which

relate corresponding features (points and lines) in multiple
views to the camera geometry. These constraints take the
form of the trilinear tensor equations for three views and
the epipolar constraints for two views. Given a set of feature
correspondences, we can recover the camera geometry and,
in particular, the camera motion (or the relative position of
multiple cameras). But finding correspondences is a hard
problem, and the features must be recovered accurately in
order to correctly recover camera motion.

Feature correspondence, whether optical flow or discrete
features, is based in some form or another on the constant
brightness assumption. In its strictest form, the constant
brightness constraint assumes that the brightness of the
corresponding point does not change between views.
Alternatively, we might look at some function of the
brightness, possibly a nonlinear function such as brightness
edges. The constant brightness constraint is a good
approximation for many surfaces in the real world,
especially if the motion is small. However, the constant
brightness constraint is not strong enough to give us true
correspondences. Local measurements, for example, cannot
give ªoptical flowº but only normal flow, the image flow
estimates in the direction of the image brightness gradient.
This is a particular problem in scenes with long, nearly
straight edges. We will show some examples later in the
paper.

In this paper, we present the model-based brightness
constraints where we combine geometric motion models

with the brightness constraint. This provides us with a
stronger constraint that can be used for direct estimation of
structure and motion. We can threreby bypass the corre-
spondence problem and recover the camera motion directly
from the image brightness values. This results in accurate
motion estimates and good 3D reconstruction in very
challenging scenes.

We now provide the key ideas behind the new method.
The optical flow constraint equation [17] provides a matching
constraint between a point in one image and a line passing
through the corresponding point in the second image. In
other words, for every point in one image, it gives us the
equation of a line along which the corresponding point
must lie in the second image. By point, we refer to every
pixel in the image which has a none zero brightness
derivative. The equation is given in terms of the spatio-
temporal derivatives of the image brightness and the line is
parallel to the iso-brightness contour in the first image. The
ªoptical flow constraint equationº is a first order approx-
imation and assumes that the image motion (and, hence,
typically, the camera motion) is small.

There are no geometric constraints on point-line corre-
spondences between two views. This can be shown using
the following reasoning: A point in the image defines a line
in space. A line in the second image defines a plane in
space. A line and a plane always intersect. Therefore, given
a set of points in one image and a set of corresponding lines
in the second image, for every camera geometry there exists
a valid 3D interpretation and no constraint on the geometry
exists. We must therefore use three view geometry, where a
point in one view and lines through the corresponding
points in two other views, provide a constraint, which can
be written in the form of the trilinear tensor [31], [13], [39].
The 27 coefficients of the ªtrilinear tensorº encapsulate the
camera motions and the internal parameters of the camera
such as the focal length. The new method can therefore be
viewed as a necessary extension of the ªdirect methodsº of
Horn and Weldon [18] from two views (one motion) to
three views (two motions). These methods are dubbed

992 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 22, NO. 9, SEPTEMBER 2000

. G.P. Stein is with MobilEye Vision Technology Ltd., Ramot Arazim, 24
Mishof Hadkalim St., Jerusalem, 97278 Israel.
E-mail: gideon@moibleye.com.

. A. Shashua is with the Hebrew University of Jerusalem, Jerusalem 91904,
Israel. E-mail: shashua@cs.huji.ac.

Manuscript received 19 Feb. 1999; revised 11 Aug. 1999; accepted 12 Jan.
2000.
Recommended for acceptance by P. Flynn.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number 109255.

0162-8828/00/$10.00 ß 2000 IEEE



ªdirect methodsº because they do not require prior
computation of optical flow.

By combining the optical flow constraint equation [17]
with the geometric model of the ªtrilinear tensorº [31], [13],
[39], we obtain the tensor brightness constraint [43] that
describes the relationship between the spatio-temporal
brightness derivatives at each pixel in the image with the
camera parameters modeled by the 27 coefficients of the
trilinear tensor. This ªtensor brightness constraintº pro-
vides one linear equation per pixel in the image which
results in a highly overconstrained set of equations. The
ªtensor brightness constraintº is valid for the most general
case (projective) where the cameras undergo general motion
and we do not know the internal camera parameters which
might vary from frame to frame. We then proceed through a
hierarchy of reduced motion models, first by assuming
calibrated cameras and, then, by assuming the Longuett-
Higgins and Prazdny small motion model [21] resulting in
reduced model-based brightness constraints for those
motion models.

1.1 Related Work

1.1.1 Correspondence-Based Methods

The standard approach to the problem of structure from
motion is to first compute correspondences. These might be
either dense correspondence in the form of optical flow [17],
[22], [26] or feature correspondence [5], [49], [8]. Then, the
correspondences are used to compute the camera motion
and scene structure. The advantage of our method over
both optical flow methods [20], [22], [14], [29], [46] and
feature-based methods [47], [8], [37], [38], [1] is that no prior
computation of correspondences is needed, a computation
which in itself is error prone. Since we obtain a linear
system of equations that combines together the information
from all the pixels in the image, we avoid the aperture
problem without having to apply a smoothness assumption.

By avoiding the need to explicitly detect feature points, we
can use information from areas where gradient information
is weak such as shadow edges.

These advantages are highlighted in a scene, such as in
Fig. 1. The scene contains a background of straight bars, a
plaster bust in the foreground, and an oblique line cutting
the bars. The background bars provide an unreliable source
of information for point-to-point correspondence because of
the aperture problem. Even large regions of the image have
no information which constrains the flow in the Y direction.
Many feature points in the image do not correspond to real
feature points in the 3D world. For example, the intersection
of the bars and the line in the image do not correspond to
physical features in 3D since the line does not lie on the
background plane. Fig. 2 shows a detail of the optical flow
field in the upper left of the scene where these two
problems occur. The flow was computed using a widely
available, ªindustrial strength,º optical flow program [3],
[2]. (For more examples, see Section 5.3.)

Finally, the texture on the plaster bust varies smoothly
and is low contrast thereby giving rise only to a relatively
small number of reliable features to track. Yet, our method
produces a full 3D model of the scene as demonstrated in
Fig. 3a and Fig. 3b. Many natural scenes, such as tree
branches or man made objects such as window frames,
lamp posts and fences, often give rise to these problems.

1.1.2 Direct Methods

The ªdirect methodsº were pioneered by Horn and Weldon
in [18]. Using only a single image pair, they ended up with
N equations in N � 5 unknowns, where N is the number of
points in the image. The unknowns are the N unknown
depths and the three translation and three rotation para-
meters with one unknown dropping out because translation
and depth can only be found up to a common scale factor.
The problem is therefore ill-posed and additional con-
straints are needed. Negahdaripour and Horn [27] present a

STEIN AND SHASHUA: MODEL-BASED BRIGHTNESS CONSTRAINTS: ON DIRECT ESTIMATION OF STRUCTURE AND MOTION 993

Fig. 1. The three input images (a), (b), and (c) and the estimated depth
map (d). The motion between images (a) and (b) is horizontal. The
motion is small, but can be seen in the width of the rightmost vertical
stripe and in the parallax between the cylinder on the right and the
vertical stripes behind it. The motion of between images (a) and (c) was
vertical.

Fig. 2. Detail of optical flow computed for Fig. 1. (a) Correct optical flow
computed using motion and depth map recovered by the direct method.
The camera motion was horizontal parallel to the image plane. The flow
vectors have a zero Y component. (b) Optical flow computed using
Bergen and Hingorani optical flow program. Note in the upper left corner
the flow vectors have a strong Y component. This is due to the aperture
problem where even a large window (aperture) will see image gradients
in only one direction giving no constraint on the Y component of the flow.
Near the intersections (in the image) of the diagonal line and the vertical
bars the flow has a small Y component. This error occurs because the
program ºtracksº the intersection point as if it were a real ºfeatureº point,
but the lines do not intersect in space. Although smaller in magnitude,
this is the more significant error because the program will also give a
high confidence to this value.



closed form solution assuming a planar or quadratic
surface. Szeliski and Kang [45] describe an iterative solution
using splines to enforce a smoothness constraint on the
depth. McQuirk [23] shows that in a pure translation model
the subset of the image points with a nonzero spatial
derivative but a zero time derivative gives the direction of
motion, thus, the focus of expansion (FOE) is on a line
perpendicular to the gradient at these points. A significant
drawback of this method is that it uses only a small subset
of the image points and ignores most of the image data.

Heel [15] constructs a Kalman filter to build up a
structure model from more than one image pair, but the
core computation is fundamentally the same single image
pair computation. The basic idea is that the Horn and
Weldon equation is linear in depth if motion is known and
linear in motion if depth is known. Heel initially assumes a
depth (constant depth surface) and estimates the motion
and then uses the motion to estimate the depth. The depth
map is then warped using the computed motion and used
as the initial depth estimate for the next image pair in the
sequence. The question of convergence is not answered and
failures are not reported. Results are only shown for pure
translation. Heel limits the motion to image motions of less
than three pixels which is one of the limiting factors in the
accuracy of the surface reconstructions. Within a
coarse-to-fine implementation (Section 4.4), our method
can handle much larger image motions averaging up to
50 pixels for 640� 480 resolution images, thereby increasing
the dynamic range by an order of magnitude.

Michaels [24]usesthreeframes(twomotions).Eachmotion
gives N equations totaling 2N equations. The unknowns are
theN unknown depths and the 2� 6 translation and rotation
parameters. Again, one parameter drops out because of the
translation and depth scale ambiguity. He solves the
2N equations with N � 11 unknowns as a large nonlinear
optimization problem using the Levenberg-Marquart algo-
rithm[25].Sinceit tookaverylongtimetoconverge, resultsare
shown for very low resolution images only. He also shows
theoretically that a large field of view (� 120o) is required for
accurate direct estimation of motion given structure. Since
estimation of motion given structure is a key stage in the
process,hesuggests thatawidefieldofviewisrequiredfor the
whole process of estimation of structure and motion. Kumar
and Anandan [20] first align a dominant plane in the images.

The residual image motion is epipolar motion (i.e., pure

translation). The epipole of the residual motion is found using

iterative techniques starting with an initial guess. Others who

have explored planar alignment include [19], [30]. The

theoretical framework for planar alignment can also be found

in [33].
More recently, Fermuller and Aloimonos [10], [11]

describe global geometric properties of the flow-field that

give rise to direct relationships between the measurement of

normal flow and the ego-motion parameters solved by

means of search techniques. They apply the depth is positive

constraint and try to find an optimally smooth surface.
The tensor brightness constraint was first presented in

[36] and a practical implementation with results was first

described in [43]. In this paper, we present new theoretical

results which lead to a modification of the algorithm. The

modified algorithm gives accurate motion estimates even in

the presence of considerable camera rotation. We present

new quantitative and qualitative results including some

with hand-held cameras and outdoor scenes.

2 MATHEMATICAL BACKGROUND

2.1 Notation

We will use uppercase bold to denote matrices (e.g., A).

Vectors representing 3D points which will be upper case

and not bold. Other vectors and scalars will be in lower case.
We will occasionally use tensorial notations. We use the

covariant-contravariant summation convention: A point is

an object whose n coordinates are specified with super-

scripts, i.e., pi � �p1; p2; . . . ; pn�. These are called contra-

variant vectors. An element in the dual space (representing

hyperplanesÐlines in P2), is called a covariant vector and is

represented by subscripts, i.e., sj � �s1; s2; . . . ; sn�. Indices

repeated in covariant and contravariant forms are summed

over, i.e., pisi � p1s1 � p2s2 � . . .� pnsn. This is known as a

contraction. An outer-product of two one-valence tensors

(vectors), aib
j, is a two-valence tensor (matrix) cji whose i; j

entries are aib
jÐnote that in matrix form C � ba>.

Matching image points across three views will be

denoted by p; p0; p00; the homogeneous coordinates will be

referred to as pi; p0j; p00k, or alternatively as nonhomoge-

neous image coordinates �x; y�; �x0; y0�; �x00; y00�Ðhence,

pi � �x; y; 1�, etc.
We will now consider three perspective views  ,  0, and

 00 of a 3D scene. Fig. 4 shows a 3D point P 2 P3 and its

image in the three views p 2  , p0 2  0, and p00 2  00. Without

loss of generality, we can align the 3D world coordinate

system with the coordinate system of the first camera:

p �
x
y
1

0@ 1A � I; 0� �P: �1�

Thus, P � �x; y; 1; ��>. After we have set the first camera

coordinate system, the other two camera coordinate

systems are in general given by:
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Fig. 3. Three-dimensional rendering of the estimated depth map from
images in Fig. 1. These images show the inverse depth, k � 1

z , which is
the natural value to compute. In (b), the texture map was removed to
show the detail and the flaws.



p0 �
x0

y0

1

0@ 1A � ~AP � A; t0� �P � Ap� �t0 �2�

p00 �
x00

y00

1

0@ 1A � ~BP � B; t00� �P � Bp� �t00: �3�

The matrices A and B are homography matrices from

Image 1 to Image 2 and to Image 3, respectively, due to the

same plane �. The vectors t0 and t00 are the epipoles, the

projection center of camera one projected onto the image

planes of the second and thrid cameras, respectively. � is

the relative affine depth [34]. It is important to note that � is

independent of the second view point and, thus, has the

same value in (2) and (3). In a calibrated setting, (i.e., if the

intrinsic parameters are known), the matrices A and B are

rotations and the vectors t0 and t00 are the translations.

Finally, in the calibrated setting, � is replaced by k � 1
z .

We will now derive the triliner tensor of [31]. Let s0 and

s00 be lines through points p0 and p00, respectively:

s0>p0 � 0 s00>p00 � 0: �4�
Premultiplying the left and right hand sides of (2) by s0>

and (3) by s00>, we get:

s0>Ap� �s0>t0 � 0

s00>Bp� �s00>t00 � 0:
�5�

Eliminating � from the above equations results in the

equation:

s0>t0s00>Bpÿ s00>t00s0>Ap � 0: �6�
This can be written compactly using tensor notation:

pis00ks0jT jki � 0; �7�
where T is the tensor representing a bilinear function of the

camera matrices:

T jki � t0jbki ÿ t00ka
j

i : �8�
Equation (7) relates a point p in Image 1 and lines s0 and s00

passing through the corresponding points p0 and p00 in
Image 2 and Image 3, respectively. It is important to note that
the lines s0 and s00 do not have to correspond to any physical
line in space or the image. These constraints first became
prominent in [31] and the underlying theory has been
studied intensively in [37], [13], [35], [9], [48], [16], [32].

3 MODEL-Based BRIGHTNESS CONSTRAINTS

3.1 Photometric Constraints

Geometrically, a trilinear matching constraint is produced
by contracting the tensor with the point p in Image 1, any
line coincident with p0 in Image 2, and any line coincident
with p00 in Image 3. In particular, we may use the tangent to
the iso-brightness contour at p0 and p00, respectively, and
thus one can recover in principle the camera matrices across
three views in the context of the ªapertureº problem, as
suggested by [39]. However, there still remains the problem
of finding those matching tangents in the first place. This
we now solve.

A first order approximation of the constant brightness
constraint leads to the optical flow constraint equation [18]:

u0Ix � v0Iy � I 0t � 0; �9�
where �u0; v0� are the optical flow values at �x; y� between
Image 1 and Image 2 (i.e., u0 � x0 ÿ x and v0 � y0 ÿ y).
�Ix; Iy; I 0t� are the spatial and temporal derivatives at the
coordinates �x; y�. In practice, I 0t � I2�x; y� ÿ I1�x; y�.

The optical flow constraint (9) can be rewritten in the
form:

Ix; Iy; I
0
t

ÿ �>
u0; v0; 1� � � 0:

The line

s � Ix; Iy;ÿxIx ÿ yIy
ÿ �>

in the projective plane passes through the point p �
�x; y; 1�> since:

Ix; Iy;ÿxIx ÿ yIy
ÿ �>

x; y; 1� � � 0:

Combining those two equations together:

Ix

Iy

ÿxIx ÿ yIy

0B@
1CA
>

x

y

1

0B@
1CA� Ix

Iy

I 0t

0B@
1CA
>

u0

v0

1

0B@
1CA �

Ix

Iy

I 0t ÿ xIx ÿ yIy

0B@
1CA
>

x0

y0

1

0B@
1CA � 0;

�10�

where we have used x0 � x� u0 and y0 � y� v0. Therefore,
the line:

s0 �
Ix
Iy

I 0t ÿ xIx ÿ yIy

0@ 1A> �11�

passes through the point p0 � �x0; y0; 1�>.
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Fig. 4. The geometry of three views: Image 1, Image 2, and Image 3 are
three views obtained from cameras centered at o, o0, and o0 0,
respectively. Point P in the scene projects to image points p, p0, and
p0 0. s0 and s0 0 are any image lines passing through the points p0 and p0 0,
respectively.



Thus, the photometric constraints provide a matching
constraint between a point p and a line s0 passing through
the corresponding point p0 in Image 2, and between a point
p and a line s0 0 passing through the corresponding point p00

in Image 3. The lines:

s0 �
Ix
Iy

I 0t ÿ xIx ÿ yIy

0@ 1A �12�

and

s00 �
Ix
Iy

I 00t ÿ xIx ÿ yIy

0@ 1A �13�

are lines coincident with p0 and p00, respectively, and parallel
to the iso-brightness contour at �x; y�. I 00t is the temporal
derivative between the Image 3 and Image 1. (i.e.,
I 00t � I3�x; y� ÿ I1�x; y�.)
3.2 The Projective Model: The Tensor Brightness

Constraint

Substituting (12) and (13) into the tensor (8) results in the
tensor brightness constraint:

s00ks0jp
iT jki � 0: �14�

We have one such equation for each point on the image
where s00k and s0j can be computed from the image
gradients and pi � �x; y; 1� are the (projective) image
coordinates of the point in Image 0. We solve for T jki
which combines the motion and camera parameters. The
coordinates of the corresponding points �x0; y0� and �x00; y00� are
not required.

Every pixel with a nonvanishing gradient contributes
one linear equation to the 27 unknown parameters
comprising T jki . However, a configuration of a point in
the first image and two parallel lines in Images 2 and 3 is a
particular instance of a degenerate line configuration called
a Linear Line Complex. The general solution for the LLC
case is explored in [44]. In this particular case, the system of
equations can provide a linear solution to 21 of the
parameters and the remaining six parameters of T jki can
be determined using quadratic admissibility constraints.
Here, we provide a proof for this special case:

From (14), the coefficients of the terms T 12
i and the terms

T 21
i are both piIxIy. Therefore, the linear equations cannot

be solved for the six terms (T 12
i and T 21

i ) individually, but
only for the three sums

T 12
i � T 21

i ; i � 1 . . . 3:

The sumT 12
i � T 21

i provides one linear equation inT 12
i and

T 21
i . We will use the admissibility constraint on the Standard

Correlation Slices,Ti. The constraint states that the matrixTi is
of rank � 2. This leads to a quadratic equation in T 12

i and T 21
i .

The quadratic and linear equations together result in two
solutions for each pair T 12

i ; T 21
i ; i � 1:::3 for a total of eight

discrete solutions. A unique solution is obtainable by
applying further admissibility constraints, as shown in [44].

This added complexity in finding the unique solution
leads us to search for simpler models. Next, we consider the
case of a calibrated camera with the rotation limited to small
rotation angles.

3.3 The Small Rotation Model with Calibrated
Cameras

The next model is defined for small-angle rotations with
calibrated cameras. Assuming calibrated cameras (2) and (3)
become:

p0 � R0; t0� �P � R0p� kt0
p00 � R00; t00� �P � R00p� kt00 �15�

i.e., ~A � �R0; t0� and ~B � �R00; t00� and k � 1
z replaces � in (2)

and (3).
If we also assume small angle rotations and can therefore

make the approximations:

cos��� � 1; sin��� � �
then the rotation matrices can be approximated as:

R0 � I � �w0�x
� �

R00 � I � �w00�x
� �

;
�16�

where w0; w00 are the angular velocity vectors and ���x is the
skew-symmetric matrix of vector products. Now, (2) and (3)
become:

p0 � ~AP � I � �w0�x; t0
� �

P

p00 � ~BP � I � �w00�x; t00
� �

P:
�17�

We can now proceed along two paths. The different
results will give us some further insight into the problem.
First, we will substitute ~A � �I � �w0�x; t0� and ~B � �I �
�w00�x; t00� directly into (8) and then write out the tensor
explicitly:

T1 �
t01 ÿ t001 t01w

00
3 ÿ t002 ÿt01w002 ÿ t003

t02 ÿ t001w03 t02w
00

3 ÿ t002w03 ÿt02w002 ÿ t003w03
t03 � t001w02 t03w

00
3 � t002w02 ÿt03w002 � t003w02

24 35 �18�

T2 �
ÿt01w003 � t001w03 t01 � t002w03 t01w

00
1 � t003w03

ÿt02w003 ÿ t001 t02 ÿ t002 t02w
00

1 ÿ t003
ÿt03w003 ÿ t001w01 t03 ÿ t002w01 t03w

00
1 ÿ t003w01

24 35 �19�

T3 �
t01w

00
2 ÿ t001w02 ÿt01w001 ÿ t002w02 t01 ÿ t003w02

t02w
00

2 � t001w01 ÿt02w001 � t002w01 t02 � t003w01
t03w

00
2 ÿ t001 ÿt03w001 ÿ t002 t03 ÿ t003

24 35; �20�

where T1; T2, and T3 are the Standard Correlation Slices [46].
Studying the tensor terms, we notice that the terms are not
linearly independent and the following seven linear
equations hold:

T 1;2
1 � T 1;1

2 � T 2;1
1 ÿ T 2;2

2 � 0

T 2;1
2 � T 2;2

1 � T 1;2
2 ÿ T 1;1

1 � 0

T 1;1
3 � T 1;3

1 � T 3;1
1 ÿ T 3;3

3 � 0

T 3;3
1 � T 3;1

3 � T 1;3
3 ÿ T 1;1

1 � 0

T 3;3
2 � T 3;2

3 � T 2;3
3 ÿ T 2;2

2 � 0

T 2;2
3 � T 2;3

2 � T 3;2
2 ÿ T 3;3

3 � 0

T 1;3
2 � T 2;1

3 � T 2;3
1 � T 1;2

3 � T 3;2
1 � T 3;1

2 � 0:

�21�
Therefore, for the calibrated small rotation model, the
27-parameter Tensor Brightness Constraint reduces to a
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20-parameter constraint equation. Each point in the image

gives one homogeneous equation resulting in a set of

N homogeneous equations, where N is the number of

image points. This can be written in matrix form as:

Ax � 0;

where A is the N � 20 estimation matrix and x is the

20-parameter vector of the unknown intermediate para-

meters. There is a unique nontrivial solution if the estimation

matrix is of rank � 19. But, as in the projective case, the

system of homogeneous equations is degenerate and, in this

case, the rank of the estimation matrix is 16 not 19.
In [36], [43], a model-based brightness constraint for the

calibrated, small rotation model was derived in a different

way. Expanding (17):

p0 � I � �w0�x
� �

p� kt0 �22�
and taking the dot product of the left-hand-side and right-

hand-side terms with s0 (12) results in the equation:

0 � s0>p� s0>�w0�xp� ks0>t0: �23�
This can be simplified to the form:

ks0>t0 � q0>w0 � I 0t � 0 �24�
by noting that s0>p � I 0t and s0>�w0�xp � q0>w0 if we define:

q0 � p� s0 �
ÿIy � y�I 0t ÿ xIx ÿ yIy�
Ix ÿ x�I 0t ÿ xIx ÿ yIy�

xIy ÿ yIx

0@ 1A: �25�

In a similar manner, for the second motion:

ks0 0>t00 � q00>w00 � I 00t � 0; �26�
where

q0 0 � p� s0 0 �
ÿIy � y�I 00t ÿ xIx ÿ yIy�
Ix ÿ x�I 00t ÿ xIx ÿ yIy�

xIy ÿ yIx

0@ 1A:
Multiplying (24) by s0 0>t00 and (25) by s0>t0 and subtracting,

we obtain the following 24-parameter model-based bright-

ness constraint as a reduction of the tensor brightness

constraint:

I 00ts0
>
t0 ÿ I 0ts00>t00 � s0>�t0w00>�q00 ÿ s00>�t00w0>�q0 � 0: �26�

The resulting 24-parameter model (26) is not as compact as

the 20-parameter model we obtained by direct substitution

of the small rotation approximation into the tensor bright-

ness constraint equation. We find that the 24�N estimation

matrix obtained using the 24-parameter model is again of

rank = 16. Due to the high degeneracy of the linear

equations, neither the 24-parameter model nor the

20-parameter model are convenient to work with.

3.4 The 15-Parameter, Small Motion Model

A unique solution is obtained when we reduce the motion

model further to include infinitesimal motion using the

model introduced by Longuet-Higgins and Prazdny [21].

The LH&P model assumes in addition to small rotation that

t0z
Z � 1. The motion field equations for the first camera

motion are then:

u0 � 1

z
�t01 ÿ xt03� ÿ w03y� w02�1� x2� ÿ w01xy

v0 � 1

z
�t02 ÿ yt03� � w03xÿ w01�1� y2� � w02xy:

�27�

By substituting (27) into the optical flow constraint

equation:

u0Ix � v0Iy � I 0t � 0 �28�
and rearranging the terms, we obtain:

ks>t0 � q>w0 � I 0t � 0; �29�
where k � 1

z denotes the inverse depth at each pixel location

and where s; q are defined below:

s �
Ix
Iy

ÿxIx ÿ yIy

0@ 1A �30�

and

q � p� s �
ÿIy ÿ y�xIx � yIy�
Ix � x�xIx � yIy�

xIy ÿ yIx

0@ 1A: �31�

Equation (29), which was first derived in [27], [18], can also

be derived directly from (24) by making the LH&P

assumptions:
t0z
Z � 1,

w0yx
f � 1, and

w0xy
f � 1.

Similarly, for the second motion:

ks>t00 � q>w00 � I 00t � 0 �32�
By eliminatingk from (29) and (32), we obtain the 15-parameter

model-based brightness constraint:

I 00tsT t0 ÿ I 0tsT t00 � sT �t0w00T ÿ t00w0T �q � 0: �33�
Equation (33) is a key equation. There is one such equation

for every point in the image. The unknowns are the motion

parameters t0, t00, w0, and w00. The values I 0t, I
00
t, s, and v, can

all be computed from image derivatives and the coordinates

of the point in Image 1. Given the solution to the ego-motion

parameters (to be described later), one can recover the

dense depth map from (29) and (32).
Before showing how to solve (33) for both rotation and

translation, we will start with the simple case of pure

translation. This case arises, in practice, when we can either

assure pure translation or we have previously rectified the

images (perhaps by registering a common plane in the

images as in [20], [19], [30]). It is also an important case from

a theoretical point of view. We will show that there are

problems in recovering the motion parameters in the case of

collinear motion. If collinear motion causes a problem for

the pure translation case, it will also create a problem for the

more general translation and rotation case.

3.5 Pure Translation

The pure translational small-motion model takes the

simplest form:
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I 00tsT t0 ÿ I 0tsT t00 � 0: �34�
We have one such equation for each image point and we
can write it out in the matrix form:

At � 0;

where:

t � t0x t0y t0z t0x
0 t0y

0 t0z
0ÿ �T

:

and A is an N � 6 matrix with the ith row (corresponding to
the ith pixel) given by:

I 00tsi1 I 00tsi2 I 00tsi3 ÿI 0tsi1 ÿI 0tsi2 ÿI 0tsi3� �:
To avoid the trivial solution t � 0, we add the constraint
ktk � 1. The least-squares problem now maps to the
problem of finding ktk � 1 that minimizes:

tTATAt � 0:

The solution is the eigenvector of ATA corresponding to the
smallest eigenvalue.

3.5.1 The Singularity of Collinear Motion

This method fails when the two motions are in the same (or
opposite) directions. In the pure translation case,

ks>t0 � I 0t � 0 �35�
and

ks>t00 � I 00t � 0: �36�
If the second translation vector t00 is proportional to the
translation vector t0 then (36) is simply a scaled version of
(35) adding no new information. The solution will, there-
fore, be ill-conditioned when t0 � �t00 for a scalar �. This is a
drawback in many applications (e.g., 3D reconstruction
from a monocular image sequence). In Section 6.1, we
present some early research on ways to overcome this
problem. The initial results look promising.

3.6 Solving for Translation and Rotation

In (33), the ego-motion parameters are embedded in a
15-parameter model: six translation parameters and the
nine outer-product terms �t0w00T ÿ t00w0T �. Each pixel pro-
vides one linear equation, thus N pixels provide a system
Ac � 0, where A is an N � 15 measurement matrix and c is
the 15-vector of unknown parameters. The least-squares
solution is the eigenvector of A>A corresponding to the
smallest eigenvalue. Without noise, the eigenvalue will be
zero and the solution is in the null space of A>A. The
solution is unique if the null space is one-dimensional and
the rank of A is 14. We will prove, however, that the null
space is at least two-dimensional.

Proposition 1. Let A be the N � 15 measurement matrix
associated with the homogeneous (33), where N � 15. Then
the null space of the matrix A>A is of dimension greater or
equal to 2 and Rank�A� � 13.

Proof. Since

s>q � s>�p� s� � 0

the vector

c0 � �0; 0; 0; 0; 0; 0; 1; 0; 0; 0; 1; 0; 0; 0; 1�T

is in the null space of A.
The vector c0 corresponds to:

t0 � 0
t00 � 0

t0w00T ÿ t00w0T� � � 1 0 0
0 1 0
0 0 1

24 35:
Therefore, c0 is clearly not an admissible solution and,

therefore, the null space of A includes two vectors: the

vector c0 and the true solution. It follows that the rank of

A is at most 13. tu
The method of solution is based on the following

observation. Let b0 be another vector of the null-space (for

example, let c0 and b0 be the two eigenvectors of A>A

corresponding to the two smallest eigenvalues), then the

desired solution vector b is a linear combination of the two:

b � b0 ÿ �c0: �37�
We note that c0 is in the null space of A regardless of noise

in the data and will, therefore, correspond to an eigenvalue

of zero, up to numerical precision. Theoretically, b0 is also in

the null space of A, but only in the case of noise free data

and exact motion model. Therefore, b0 is the eigenvector

corresponding to the second smallest eigenvalue. Next, we

show how to determine �.

3.6.1 Solution Using the Rank = 2 Constraint

In order to find � given c0 and b0, we enforce the constraint

that:

Rank�t0w00T ÿ t00w0T � � 2:

Clearly, the choice of � will have no affect in the first six

elements of the vector b. Let us arrange the last nine elements

of b, b0, and c0 into the corresponding 3� 3 matrices B, B0,

and C0. We are now looking for an � such that:

Rank�B0 ÿ �C0� � 2: �38�
In our case, C0 is the identity matrix, so (38) becomes:

Rank�B0 ÿ �I� � 2

and the solution for � is given simply by the eigenvalues of

B0. Since B0 is a 3� 3 matrix, this results in up to three

discrete solutions. We now prove that only one of those can

be a valid solution.

Theorem 1. The 15-parameter model has a unique solution. Let:

B � t0w00T ÿ t00w0T� �
: �39�

Let:

~B � t0w00T ÿ t00w0T� �� �I: �40�
Then, the equation:

~B � t0 ~w00T ÿ t00 ~w0T� � �41�
has a solution for ~w00; ~w0 given t0; t00 iff � � 0.
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Proof. The if part of the proof is trivial. For � � 0, ~w00 � w00,
and ~w0 � w0 is a solution for (41). To prove the only if

part, suppose there exist ~w00; ~w0 that is a solution for (41).

Then,

t0w00T ÿ t00w0T� �� �I � t0 ~w00T ÿ t00 ~w0T� �
: �42�

Let q be a vector such that qT t0 � 0, qT t00 � 0, and q 6�~0.

Multiply the left and right side of (42) by qT to get:

qT t0w00T
� �ÿ qT t00w0T

� �� qT�I � qT t0 ~w00T
� �ÿ qT t00 ~w0T

� �
:

�43�
Since qT t0 � 0 and qT t00 � 0, most of the terms in (43)

become zero and we are left with:

qT�I �~0: �44�
Since q 6�~0, then � � 0. tu

3.6.2 The Algorithm for Finding Motion Parameters

Based on the previous arguments, the algorithm for finding

the motion parameters is as follows:

1. Compute the N � 15 matrix A from (33).
2. Find the eigenvector corresponding to the second

smallest eigenvalue of the matrix ATA. This is b0.
(The vector c0 corresponds to the smallest.)

3. The first six elements of b0 are the translations, t0,
t00.

4. Arrange the last nine elements of b0 into a 3� 3 matrix
B0.

5. Construct three possible rank two matrices Bi;i�1::3

from B0:

Bi � B0 ÿ �iI; �45�
where �i;i�1::3 are the three eigenvalues of B0.

6. For each �i;i�1::3 solve:

�t0w00T ÿ t00w0T � � B;

for w0 and w0 0, given t0 and t00 from Step 3. This a set

of nine linear equations in the six unknowns (w0, w00)
and is solved using least squares.

7. From Theorem 1, only one of the three solutions is
correct. Weselect thesolution thatbest fits thedata.For
each of the three solutions, use the 12-parameters t0, t00,
w0, and w00 to form the 15 intermediate parameter
vector bi and then compute the error:

Ei � bTi ATAbi: �46�
Of the three solutions, select the solution which

gives the smallest error.

3.6.3 Solve as a Nonlinear Optimization

In Section 3.6.2, we use linear methods to solve for the

motion parameters. In order to do so, we have treated the

15 intermediate parameters as linearly independent

parameters while they are in fact bilinear combinations

of 12 independent parameters. It is often possible to

improve the motion estimates by using the linear solution

as a starting point for nonlinear optimization techniques
[7]. In our experiments, we did not find that a nonlinear
optimization stage improved the results. This is possibly
because the iterative framework (Section 4.2) is in itself a
form of nonlinear optimization.

The nonlinear optimization procedure is brought here
for completeness. Our general problem is to find motion
parameters t0, t00, w0, and w00 that minimize the cost function:

E�t0; t00; w0; w00� � b>A>Ab; �47�
where A is the estimation matrix derived from (33) and
b�t0; t00; w0; w00� is the fifteen element vector of bilinear
functions of the motion parameters.

One method would be to find motion parameters t0, t00,
w0, and w00 that minimize (47). In order to avoid the trivial
solution, we need to add a constraint such as:
jt0j2 � jt00j2 � 1. This becomes a 12-parameter nonlinear
constrained optimization problem.

The process can be simplified by noting that (33) can be
rewritten in the form:

I 00t ÿ w00>q00
ÿ �

s0>t0 ÿ I 0t ÿ w0>q0
ÿ �

s00>t00 � 0 �48�
given a set of rotation values w0 and w00, one can compute
the least-squares estimate of t0 and t00 using linear methods
and also compute the least-squares error (47). One can then
use nonlinear search techniques to find w0 and w00 which
minimize this least-squares error. This becomes a six
parameter unconstrained optimization problem.

4 IMPLEMENTATION DETAILS

4.1 Computing the Depth, Smoothing, and
Interpolation

After recovering the camera motion (Section 3.6.2), we use
(29) and (32) to compute the depth at every point.
Information is combined from both image pairs by
minimizing the least-squares error:

E � min arg
k

X2

j�1

ksT tj � qTwj � Ijt
� �2

:

Here, j � 1 and j � 2 denote values from the first and
second image pairs, respectively.

There are points in the image where the brightness
gradients are close to zero (and, therefore, sT tj ' 0) and the
estimation of k will be ill-conditioned at those points. In
order to overcome this problem, we use a local region of
support around the point of interest. In it's simplest form,
we assume the depth is constant in the region and
minimize:

E � min arg
k

X
x;y2R

X
j

��x; y�jsT tjjp ksT tj � qTwj � Ijt
� �2

;

�49�
where the windowing function ��x; y� allows one to
increase the weights of the points closer to the center of
the region. The jsT tjjp term reduces the weight of points
which have a small gradient or where the gradient is
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perpendicular to the camera motion since these cases are
highly affected by noise. We used p � 1.

During the iteration process, we typically used a region
R of 7� 7 to 11� 11. For ªprettierº results in the last
iteration, we typically reduced the region R to 1� 1 but
added a very weak global smoothness term and performed
multigrid membrane interpolation [28]. The smoothness
term stabilizes regions where there is no image gradient so
very small regions of support can be used.

4.2 Iterative Refinement

The constant brightness constraint is a linearized form of
the Sum Square Difference (SSD) criterion. The linear
solution can be thought of as a single iteration of Newton's
method applied to the problem. Iterative refinement is
performed as follows:

1. Calculate motion (using (33)).
2. Compute depth (using (49)).
3. Using the depth and motion, warp Images 2, and 3

towards Image 1 (Section 4.3).
4. Compute new time derivatives I 0t and I 00t.
5. Compute a new motion and depth estimate.

In the ideal case, as the final result, the warped images
should appear nearly identical to Image 1. One must be
careful and not simply compute the incremental changes in
the translation �t0 and �t00 . As the images are warped closer
together and the translation estimate approaches zero, the
system of (33) will become ill-conditioned. Furthermore,
since the equations are homogeneous, we must enforce a
constraint such as jt0j2 � jt00j2 � 1 to avoid the trivial
solution. We would not wish to apply such a constraint to
�t0 and �t00. Thus, one must compute the full translation
model (previous iteration plus the incremental change to
the translation). This problem does not arise for the
rotations: w0 and w0 0. It is, in fact, convenient to warp the
images using the best rotation estimate and then compute
only the incremental improvement in the rotations: �w0 and
�w00. For example, we might choose to warp the images
using a more exact rotation model than the linearized small
rotation model.

The method for computing the full translation model and
incremental rotation is now described. Let 	1, 	2, and 	3 be
the three images. Assume we have k̂, t̂j , ŵj, from the
previous iteration. (Here, again, we use j to stand for either 0

or 00.) The translation components of image motion ûjt and
v̂jt , and the rotational components ûjr and v̂jr can be
computed using k̂, t̂j, and ŵj in (27). Then, these are used
to warp images 	2 to 	̂2 and 	3 to 	̂3. After warping, the
images satisfy the brightness constraint equation:

Ixdu
0 � Iydv0 � Î 0t � 0

Ixdu
00 � Iydv00 � Î 00t � 0;

�50�

where the temporal derivatives at each pixel are given by:

Î 0t � 	̂2 ÿ	1

Î 00t � 	̂3 ÿ	1

�51�

and duj, dvj are the (still unknown) differences between
computed image motions and the real image motions:

duj � uj ÿ ûjt ÿ ûjr
dvj � vj ÿ v̂jt ÿ v̂jr:

�52�

Let:

�j � Ixûjt � Iyv̂jt ; �53�
which can also be written as:

�j � k̂sT t̂j: �54�
Substituting (53) and (52) in (50), we get:

Ix�u0 ÿ û0r� � Iy�v0 ÿ v̂
0
r� � �Î 0t ÿ �0� � 0

Ix�u00 ÿ û0 0r � � Iy�v00 ÿ v̂
0 0
r� � �Î 00t ÿ �00� � 0:

�55�

Substituting (27) in (55), we get modified versions of the

(29) and (32)

ksT t0 � qT �w0 � �I 0t ÿ �0� � 0

ksT t00 � qT �w00 � �I 00t ÿ �00� � 0:
�56�

We start our first iteration with k̂, t̂j, ŵj all zero and,

therefore, � � 0 as well.

4.3 Image Warping

Given an estimate of the camera motion and the depth at

every point, we can warp Image 2 towards Image 1. Image

warping, in general, is described in [50]. Let I 0old be the

original Image 2 and let I 0new be the warped image we are

trying to create. We must first define functions xold�x; y; . . .�
and yold�x; y; . . .� which, given image coordinates in the new

image �x; y� and possibly some extra parameters (symbo-

lized by ; . . . ), return the coordinates of the corresponding

point in the old image (xold; yold).
In our case, the extra parameters are the camera motions t0

and w0 and the depth map at every point k�x; y�. The

functions xold and yold depend on the motion model. In our

implementation, we used the LH&P small motion model

(27). Therefore,

xold � x� u0

� x� 1

z
�t01 ÿ xt03� ÿ w03y� w02�1� x2� ÿ w01xy

�57�

and

yold � y� v0

� y� 1

z
�t02 ÿ yt03� � w03xÿ w01�1� y2� � w02xy:

�58�

After defining xold and yold, we can compute the value for

every pixel in I 0new according to the formula:

I 0new�x; y� �
I 0old�xold�x; y; . . .�; yold�x; y; . . .��;

if�xold; yold� 2 I 0old
0; otherwise:

8<: �59�

There are two points to note:

. The values of xold and yold are, in general, noninteger
so we use bilinear interpolation to compute the
appropriate pixel values. Bilinear interpolation
works better than nearest-neighbor. The use of the
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more complex bicubic interpolation resulted in no
noticeable improvement over bilinear interpolation.

. If the coordinates (xold, yold) are outside the coordi-
nates of the image, then, we use the value 0. These
points should be marked as invalid and not used in
subsequent motion and depth computation.

4.4 Coarse-to-Fine Processing

In order to deal with image motions larger than one pixel,
we use a Gaussian pyramid for coarse to fine processing [2],
[4]. Each of the three images is filtered by an approximation
to a Gaussian filter and subsampled to create an image of
half the size (in each dimension). This operation is
performed recursively to create a pyramid with four or
five levels depending on the size of the original image. The
following 5� 5 kernel was used as the filter:

1

256
�

1 4 6 4 1
4 16 24 16 4
6 24 36 24 6
4 16 24 16 4
1 4 6 4 1

266664
377775:

This filter is separable and can be implemented by
convolving the rows and columns of the image, twice each,
with the filter f � �0:25; 0:5; 0:25�.

Starting from the coarsest level, we perform a few
iterations to compute motion and depth according to the
scheme described in Section 4.2. The brightness derivatives
(Ix; Iy; I

0
t; I
0 0
t) are computed using the subsampled images.

After computing the motion and depth, we create a finer
depth map from the coarse depth map using bilinear
interpolation. We then use the interpolated depth map and
the motion estimates as the starting values for the iterations
at the finer level.

4.5 Field of View

In this section, we will first demonstrate how, in the general
problem of determining camera motion from motion fields,
when the field of view is narrow, there exists an ambiguity
between rotation and translation. We will also note the
errors in the estimation of the rotation if we use the wrong
focal length value. Then, we show how this ambiguity is
observed in the shape of the cost function (47) from three
views. Finally, we describe how to achieve stable and
accurate motion estimates in the presence of rotation even
without very wide fields of view.

4.5.1 Rotation-Translation Ambiguity from Motion Fields

It is well-known that for a medium to narrow field of view,
the motion field due to camera rotation around the Y axis,
can be indistinguishable from the motion field due to some
translation along the X axis and an appropriate depth
surface. A similar ambiguity exists between rotations
around the X axis and translations along the Y axis.

In Fig. 5, we see that for medium-narrow fields of view
(30o), the flow due to rotation around the Y axis is parallel
to the X axis. The length of the flow vectors due to rotation
is slightly shorter, closer to the Y axis. A similar flow field
can be produced by camera translation along the X axis
with a surface that is curved so that points in the center of
the image are more distant. There are motion flows that

unambiguously indicate a translational component to the

motion: motions fields that include a focus-of-expansion or

show parallax effects. Nevertheless, even these fields are

ambiguous since a rotational component could be added to

the motion, compensated for by a change in the translation

and depth to produce the same motion field. In some cases,

the resulting depth map will include negative depths

indicating some obvious error. This is often formulated as

the depth positive constraint [12] which can be used to limit

the range of motion ambiguity.
With wider fields of view (i.e., shorter focal lengths), the

ambiguity disappears. The motion fields, due to rotation,

cannot be modeled by translational motion. Fig. 6a also

shows the motion fields due to rotation with fields of view

of 53o and 90o. The distribution of the Y component of the

flow has the unique characteristics of rotational flow. For

wide fields of view, the Y component points towards the

X axis on the right of the image and away from the X axis

on the left of the image (for this particular sign of the

rotatation).
The motion field for a wide field of view is unambiguous if

we know the focal length, or equivalently, the field of view

(i.e., the camera's internal parameters are known). If our

estimate of the focal length is incorrect, then the motion and

structure estimates which best fit the flow field will be

incorrect. If the focal length estimate is smaller than the true

focal length, then the estimated angle of rotation will be

smaller than the true rotation angle (in absolute values).

Fig. 6a shows the Y component of the motion field for a

rotation of ÿ4:5o around the Y axis using a focal length of

400pixels and the same measurements for a focal length of

200pixels and a rotation of ÿ2:5o. Fig. 6b shows the

X component of the flow. The Y components are similar.

The X components are very different, but these can be

accounted for by adjusting the translation and depth

estimates.
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Fig. 5. Motion flow field due to rotation around the Y axis for wide,
medium, and narrow fields of view. The arrows for the wide field of view
(short, black arrows) and the medium field of view (medium length, pale
short arrows) have been offset in the Y direction for clarity. For the
narrow field of view (f � 800pixels, FOV = 30o), the flow field is large and
almost parallel to the X axis. For medium fields of view (f � 400) and
wide fields of view (f � 200), the X component of the flow is smaller but
there is a noticeable Y component.



4.5.2 Rotation-Translation Ambiguity in the

15-Parameter Model

The rotation translation ambiguity can also be observed
while using the 15-parameter model. Fig. 7 shows the shape
of the cost function (47) near the global minimum. These are
simulation results for focal lengths of 50, 100, and 200. The
image size was 320� 240. It is not possible to plot the full

12-dimensional surface so the figures show only the shape
of the function as we vary two motion parameters at a time.
Figs. 7d, 7e, and 7f show the effect of varying w0x and t0y,
where we expect to see ambiguity and the effect of varying
w0x and t0x, where no ambiguity is expected. In Fig. 7f, the
long diagonal valley shape of the cost function indicates the
ambiguity of the motion estimate for narrower fields of
view.

4.5.3 The Solution

As we have seen, in order to get reasonable rotation and
translation estimates, a wide field of view is required. The
theoretical results of [24] and simulation results indicate
that very wide fields of view are required (120o or greater).

These are hard to achieve with standard lenses. With
narrower fields of view, the iterative scheme described in
Section 4.2 fails to converge. In previously published work
[43], we managed to stabilize the results for small rotation
angles by unknowingly biasing the results towards small
rotation. This was done by setting the focal length
parameter to 50 instead of around 600. For a 640� 480 size
image, this implied a field of view of 150o instead of the
correct 55o. As a result, the rotation estimates were
considerably smaller than the true values. This also resulted
in errors in the translation and depth estimates.

It is important to note that while the magnitude of the
angle estimates in [43] were too small, the estimated axis of
rotation was correct. In fact, the results show a linear
relationship between the true angle and the estimated
angle. That the rotation values were always smaller than the
true values is consistent with the simulation results shown
in Fig. 6. This leads us to the following simple modification
to the iterative scheme (Section 4.2):

1. For the estimation of motion use a focal length
parameter f << ftrue.

2. During the image warping stage use the correct
focal length to rotate Images 2 and Image 3 towards
Image 1.

This modification required no changes to the structure of
the algorithm since the coarse-to-fine and iterative mechan-
isms were already in place. The results shown in Section 5.4
show that the modified algorithm gives accurate rotation
estimates even for medium fields of view (55o).

4.5.4 How Does This Affect the Translation Estimates?

How does using the wrong focal length affect the transla-
tion estimates? Looking at (33) (and, also, (29), (32), and
(49)), we see that the translations t0 and t00 always appear in
a dot product with s, where:

s �
Ix
Iy

ÿxIx ÿ yIy

0@ 1A:
The first and second terms of s are not affected by the focal
length estimate. Therefore, there is no effect on the
translation estimate in the X and Y direction tx and ty. In
the third term, x and y are supposed to be the normalized
image coordinates. If we use the wrong focal length, then
the estimated Z translation (tz) will be scaled accordingly.

tZ
tZtrue

� f

ftrue
:

Using this simple relationship, we can recover the true
translation direction from the estimated one even if we use
a focal length value which is much smaller than the true
value.

4.6 Final TouchesÐRecompute the Depth Keeping
the Motion Constant

Initially, during the first iterations and at the coarsest levels
of the pyramid, the motion estimates are not accurate and
cause errors in the depth estimates. Sometimes, particularly
near the borders of the image, these errors are large enough
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Fig. 6. The X and Y components of the motion field due a rotation
around the Y axis of ÿ4:5o with a focal length of 400pixels and for a
rotation of ÿ2:5o with a focal length of 200pixels. The arrows for the
200pixels camera have been plotted offset right in (a) and up in (b). Note
that the Y flow components are very similar.



to affect the new derivatives, I 0t and I 00t in such a way that at

the next iteration, even when the motion estimates are more

accurate, the depth values are still badly in error. This tends

to be a local problem and does not affect the global motion

estimates but it does create local ªholesº in the depth map.
To fix this problem, after computing the motion at the

finest level, we go back down the pyramid and recompute

the depth while keeping the motion estimate constant. This,

in effect, becomes a three camera stereo computation. Fig. 8

shows an example of the depth estimates before and after

the second pass.

5 EXPERIMENTS AND RESULTS

5.1 Overview

In this section, we perform experiments which test various

aspects of the direct estimation of motion and structure.

Experiments 5.2 and 5.3 deal with the pure translation case.

In Experiment 5.2, we test the accuracy of heading

estimation for noncollinear motion. Experiment 5.3 tests a

standard optical flow program on some of the same input

images and compares the results with the ªdirect methods.º
We then move on to the case where the motion involves

both translation and rotation. Experiment 5.4 revisits the

image sequence used in Stein and Shashua [43]. We show

that the improvements described in Section 4.5.3 greatly

improve the rotation estimates. In Experiment 5.5, we

repeat the heading estimation experiments but this time, the

motion includes some rotation. We also show that not

taking into account even small rotations (� 0:5o) leads to

large errors in heading estimates. In Experiment 5.6, we test

the accuracy of Euclidean reconstruction using the simple

image of a cube. We measure whether the right-angles

between the cube faces are correctly recovered.
In all the preceding experiments, the camera was

mounted on a motion stage so that ground truth motion

could be known accurately. In Experiment 5.7, we repeat the

Euclidean reconstruction experiments, but this time with a

hand-held camera. We show that if we neglect the rotation,

the shape recovery is noisy. We also show that if we neglect

radial lens distortion, then the reconstruction is qualitatively

good but the Euclidean measurements, such as angles, are

less accurate. This agrees with the observations regarding

lens distortion and the trilinear tensor in [41]. Experiments

5.8 and 5.9 show results with simple outdoor scenes.

5.2 Accuracy of Heading Estimates for Pure
Translation

In this experiment, we measure the accuracy of the

estimation of the camera motion direction (heading direc-

tion) in the case of pure translation. We also gauge the effect

of the nonlinear lens distortion.
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Fig. 7. The shape of the cost function around the minimum for various fields of view. These simulation results were computed after the program
converged to the final motion and depth estimates. For visualization, only two of the 12 parameters were changed at one time. Note that for a
narrower field of view (f), the cost function has the shape of a narrow diagonal valley. This indicates an ambiguity between translation along the
X axis and rotations around the Y axis.

Fig. 8. An example of a local depth error (a) fixed by a second pass

down the pyramid performing ªdepth-onlyº computation (b) (see text).



5.2.1 Experimental Procedure

The camera (Pulnix TM9701) was mounted on a motion
stage with three degrees of computer controlled motion:
horizontal translation, vertical translation, and rotation
around the camera's Y axis (Fig. 9). The camera lens was
(4.9 mm lens / 82o FOV).

The camera's Y axis was aligned with the vertical axis of
the stage. Initially, the camera was positioned so that the
optical axis was aligned with the horizontal axis of the
translation stage. The accuracy of the alignment was �1o.
One can verify the alignment around the Z axis by tracking
a point as one translates the camera 12 mm in the vertical
direction. The x coordinate of the point must not move by
more than one pixel for every 50 pixels in vertical motion.
The alignment between the rotation stage and the vertical
translation stage is guaranteed by the stage manufacturer.
The alignment around the X axis is more difficult to verify
but one can compare the parallax due to rotation at point at
the bottom and top of the image (see [40]).

The camera was rotated �o and an image captured. Then,
the camera was translated vertically 12:5 mm and an image
captured. Finally, the camera was translated horizontally

10 mm and a third image captured. Thus, we captured an
image triplet where the camera motion was pure translation
with one of the motions vertical and the second at a heading
of �o. This was repeated for angles � � 0o; 10o; . . . ; 90o.

5.2.2 Results

Motion and depth estimation was performed with and
without lens distortion correction. Fig. 10 shows the
heading estimates. The heading estimates are within a few
degrees. Notice that when the true heading was inside the
FOV, the errors were less than 1o. When the true heading
was outside the FOV, the errors increased to 1ÿ 2o. This is a
case of a wide angle lens. The errors were considerably
larger when lens distortion was not taken into account
(solid line in Fig. 10b).

5.3 Comparison with Optical Flow Techniques

After computing the motion and depth from an image triplet,
we can compute the motion flow using the motion (27). In
this experiment, we compare the optical flow estimates
obtained in this manner with the flow estimates computed
directly from two of the images using an ªindustry standardº
optical flow program. The program is based on code by
Bergen and Hingorani of the Sarnoff Corporation [3]. We use
two sets of images which have been chosen to be particularly
difficult for optical flow programs.

5.3.1 Experimental Procedure

Fig. 1 shows three images of a real scene: two paper
cylinders, a plaster bust, and a black metal bar in front of a
background of vertical stripes. The two motions are pure
translation, vertical and horizontal, parallel to the image
plane. Fig. 3a shows the recovered depth map for the
sequence. The results are qualitatively correct. In Fig. 3b, the
texture mapping was removed for clarity. The difficulties in
the scene are explained in the Introduction (Section 1) and
expanded upon in the results section below.
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Fig. 9. Schematic diagram of the pure translation experiment. Camera

heading is set by the angle �. Motion 2 and Motion 3 are collinear.

Fig. 10 (a) Heading estimate from a translating camera. Pure translation was assumed. The 4:9mm lens gives a 82o FOV along the X axis.

(b) Difference between heading estimate and motion stage reading (ªTrue Headingº).



From the depth map and motion, the motion flow was

computed using (27). The flow field was also computed

using the optical flow program and the results compared.
This experiment was repeated for a second set of images

shown in Fig. 14a, 14b, and 14c. The main difficulty here is

that most of the gradients are smooth, a low contrast. The

strongest edges appear at the occluding contour of the bust

and these edges do not represent real features.

5.3.2 Results

Fig. 11a shows the estimated flow computed from the

recovered depth and motion. The camera motion was

horizontal parallel to the image plane. The flow vectors

have a zero Y component. Fig. 11b shows the magnitude of

the flow vectors. Fig. 11c shows the flow estimated from two

images using an optical flow program. Near the vertical bars

on the left, the flow vectors have a strong Y component. This

is due to the aperture problem. Even a large window

(aperture) will see image gradients in only one direction

giving no constraint on the Y component of the flow.
On the cylinder to the lower right of the bust, the

magnitude of the flow vectors is too small. This is due to the

fact that the edges were horizontal and parallel to the

horizontal epipolar lines. This means that the depth

estimates for these points are unreliable (Fig. 11d). This

problem does not occur in Fig. 11b because two motions,

one horizontal and one vertical, were used to compute the

original depth map.
An enlarged detail of one of the more difficult regions is

shown Fig. 12. A critical error occurs near the intersections

(in the image) of the diagonal line and the vertical bars.
The results for the second set of images are shown in

Fig. 13. Errors in the flow direction can be seen near the

edges of the bust. The most significant errors are errors in

magnitude of the flow in the background areas. These can

be seen clearly by comparing the mesh plots.
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Fig. 11. Optical flow computed for Fig. 1. (a) Correct optical flow computed using depth map and recovered motion. The camera motion was
horizontal parallel to the image plane. The flow vectors have a zero Y component. (c) Optical flow computed using code from Bergen and Hingorani.
Near the vertical bars on the left, the flow vectors have a strong Y component. This is due to the aperture problem. Even a large window (aperture)
will see image gradients in only one direction giving no constraint on the Y component of the flow.



This experiment was intended to highlight the problems
with optical flow techniques and how they are overcome by
using direct methods. While this was not a simple ªstraw
manº and the optical flow program was one of the best
available, a full system based on optical flow would have
more components intended to overcome the problems
described. Together with flow vectors, the optical flow
program would compute a confidence ellipse for each
vector. These estimates would then be combined using
robust methods to reject outliers during the motion
computation. After the camera motion was estimated, the
flow would be recomputed using the epipolar constraint
and the new flow would be used to compute the depth.
Probably three views would be used with different camera
motions. Building such a worthy competitor and fine tuning
it to these image sets is, of course, beyond the scope of this
paper, but this description does give an idea of the
complexity of such a system.

5.4 Translation and Rotation (Reanalysis of Data
from Stein and Shashua, [43])

In this experiment, we test the modified algorithm for
recovering both translation and rotation (Section 4.5.3) on
the same data set used by Stein and Shashua [43].

5.4.1 Experimental Procedure

The images used by [43] were taken with an 8:5 mm lens in
the following way: The camera was translated first
vertically (10 mm) and then horizontally (5 mm) to the
right. At this third position, the camera was rotated to
various angles ranging from ÿ4:0o to 1:0o. The depth in the
scene ranged from 170 mm to 400 mm.

Fig. 14a, 14b, and 14c show three of the input images in
the sequence. The flow, due to a rotation ofÿ1:8o in Fig. 14b,
is much greater than the flow due to the translation. The
direction of the flow, due to rotation by a negative angle,
was in the same direction as the image flow induced by the
translation.

5.4.2 Results

Fig. 14d shows the recovered depth map using images in
Fig. 14a, 14b, and 14c. Fig. 14e, and 14f show the
3D rendering of the depth map.

Fig. 15 shows the recovered rotation estimates for true

rotations ranging from ÿ4:0o to 0:8o. Outside this range, the

old version of the algorithm did not converge. Using the

new algorithm, the rotation estimates are within 5 percent

of the correct value. There is no scaling error as was

observed using the old method.
The new algorithm also has a wider range of conver-

gence. The original images were not available for larger

rotations, but a similar setup yielded good results for

rotation for the range of ÿ5:0o to 5:0o. Since rotations can

create large amounts of image flow, the key to the

successful convergence is having strong signals with low

spatial frequency such as the white head on a darker

background. This leads to convergence at the coarse level

which is then used as the starting point for motion estimates

at finer levels. Strong repetitive high frequency patterns,

such as checkerboard patterns, are more difficult.

5.5 Motion Heading Estimation with Rotation

The aim of this experiment is to test the motion estimation

algorithm over a wide variety of motion directions when

the motion included some rotation. For example, this

experiment tests whether the algorithm works when the

direction of motion is inside and outside the FOV. We also

find the error created by neglecting even small amounts of

rotation. The two translations are noncollinear.

5.5.1 Experimental Procedure

The camera setup is similar to that of Experiment 1

(Section 5.2). The camera is rotated to a particular heading

direction �0o; 10o; . . . ; 90o�. The camera was translated verti-

cally and then horizontally. After the horizontal translation,

the camera was rotated �0:5o and �1:0o. Therefore, for each

image heading, we have an image triplet which is translation

only and then triplets where the second motion also includes

some small rotations. The rotation axis of the stage passed

within 5 mm of the camera center of projection thus rotations

of 1:0o produce translations of less than 1 mm. Fig. 16 shows

input images where the horizontal translation heading was

60o to the camera optical axis.
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Fig. 12. (a) Detail from the top left corner of Fig. 11a. (b) Detail from the top left corner of Fig. 11c. Along the vertical bars, there is a strong
Y component but this is to be expected due to the aperture problem. Lower down, near the intersections (in the image) of the diagonal line and the
vertical bars, the flow has a small Y component. This error occurs because the program ªtracksº the intersection point as if it were a real ªfeatureº
point, but the lines do not intersect in space. Although smaller in magnitude, this is the more significant error because the program will also give a
high confidence to this value.



5.5.2 Results

Depth and motion estimates were computed either assum-

ing pure translation or allowing possible rotation. The

results for various motion and motion-assumption combi-

nations are shown in Fig. 17, Fig. 18, and Fig. 19. We notice

that for even a small rotation (0:5o), the heading estimate is

off by over 10o if we do not take the rotation into account.

When we estimate both rotation and translation, the motion

estimates are good (RMS error 2:1o) although not as good as

those obtained from a purely translating camera under the

pure translation assumption (RMS error 1:44o).
Fig. 16e shows the depth map estimated from the images in

Fig. 16a, 16c, and 16d allowing for both translation and
rotation. The depth map is qualitatively correct even though
the second camera motion includedÿ1:0o rotation. Rotations
of this order of magnitude are significant. Fig. 16f shows the
depth map estimated assuming pure translation when in fact
the second camera motion included 0:5o rotation.

5.6 Euclidean Structure Estimation in the Presence
of Rotation

In this section, we evaluate the Euclidean structure
estimation when the motion includes rotation. We use a
simple scene, a cube, in front of a planar background. We
perform the 3D reconstruction of the scene. We then
measure whether the right-angles between the cube faces
are correctly recovered.

5.6.1 Experimental Procedure

Fig. 20 shows the simple scene of a textured cube in front of a
flat, low-contrast, background. The camera (8:5 mm lens /
52o FOV) was translated vertically and then horizontally
parallel to the image plane. The camera was then rotated to
�2:0o and ÿ1:0o from its original heading.

Since we were interested in the 3D structure and not just
motion estimates, after estimating both structure and
motion, we went back down the pyramid and recomputed
the structure while keeping the motion estimates constant
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Fig. 13. Optical flow computed for Fig. 14. (a) Correct optical flow computed using depth map and recovered motion. The camera motion was
horizontal parallel to the image plane. The flow vectors have a zero Y component. (c) Optical flow computed using code from Bergen and Hingorani.
Errors in flow direction can be seen near the edges of the bust. The most significant errors are errors in magnitude of the flow in the background
areas. These can been seen clearly by comparing the mesh plots.



(Section 5.6). The depth estimates before and after the

second pass are shown in Fig. 20d and Fig. 20f, respectively.

In Fig. 20d, there is a ªholeº on the right of the depth map.

This is due to the appearance of a white patch near the

border of the image. As with occlusions, this sudden
appearance violates the constant brightness assumption.
The situation is fixed by the second pass. In general, points
near the edge of the depth map are unreliable.

5.6.2 Results

The rotation estimates were 1:68o and ÿ0:67o for true

rotations of �2:0o and ÿ1:0o, respectively. The 3D rendering

of the cube is shown in Fig. 21 and Fig. 22. The wire-frame

rendering of the overhead views (Fig. 21b and Fig. 22b)

show the recovered angle between the cube faces. The

estimated angles were 95o and 86o, respectively. Fig. 21d

shows a side view of the cube. The estimated angle between

the top and side face of the cube is 90o.

5.7 Euclidean Structure Estimation Using a Hand-
Held Camera

In the previous experiments, the camera was mounted on a

motion stage so that ground truth motion values were

available. In this experiment, the camera was hand-held to

show that the system can deal with the more natural

situation. Simple objects were used to create the scene so

that it would be easier to evaluate the shape reconstruction.

5.7.1 Experimental Procedure

A progressive scan camera (Pulnix TMC9701) with a wide

angle lens (4:9 mm lens / 82o FOV) was hooked up directly

to the frame grabber of an SGI Indy workstation. The

cameras help in the hand with no tripod. An image

sequence of 30 frames was captured while the camera was

moved up and down and side to side, the combination of

which produced a circular motion. An effort was made to

keep the camera rotation down to a minimum.
From the image sequence, three images were selected

which seemed to give two distinct motion directions. Fig. 23a,
23b, and 23c show the three input images of the cube.

5.7.2 Results

The motion and depth was estimated for three different
cases. First, the motion and depth was estimated allowing
for both rotation and translation and taking into account the
radial distortion. In the second case, motion was estimated
allowing for both rotation and translation but neglecting
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Fig. 14. The three input images (a), (b), and (c) used for
3D reconstruction. Motion �a! b� was a horizontal translation with a
ÿ1:8o rotation around the Y axis. Motion �a! c� was a vertical
translation. This is a challenging set of images because the texture is
smooth with low contrast. The strongest edge ªfeaturesº appear along
the occluding contour of the head, but this edge does not, in fact,
correspond to a real feature in the world. (d) The estimated depth map.
The estimated rotation was ÿ1:62o. There are, of course, errors around
the boundary of the image where there is no overlap between the
images. (e) and (f) Three-dimensional rendering of depth map in (d).

Fig. 15. Estimated rotation as a function of true rotation. (a) Old results: Although there is the correct linear relationship, there also appears to be a

significant scale error (note Y axis). (b) New resultsÐthe rotation estimates are correct.



radial distortion. The resulting depth map is qualitatively

the same, but the measured angles between the cubes faces

are larger and further from the true value of 90o (Fig. 24c

and 24d). In the third case, which assumed pure translation,

the resulting depth map again appears to be qualitatively

the same, but the 3D renderings (Fig. 24e and 24f) clearly

show that the results are more noisy and further from true

Euclidean reconstruction.
Errors in depth reconstruction, when we neglect the

rotation, are to be expected according to [7]. They show that

for small total rotation angles (jwj), the error in depth due to

an error in rotation (j�wj) is given by:

�Z

Z
� f

juj
� �

j�wj� �;

where f is the focal length and juj is the magnitude of the

image motion. In our case, by assuming pure translation,

we get a rotation error of 1:45o or 0:025rad (Table 1). The

average image motions were on the order of 15pixels and

the focal length f � 180. So, we expect:
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Fig. 17. Heading estimates from a moving camera. (PT-PT) Both true

motion and motion model were pure translation. (0:5o-PT) True motion

included 0:5o and motion model was pure translation. Note that even a

small rotation, such as 0:5o, is enough to create large heading estimation

errors if rotation is not taken into account. (PT-Rot,�1:0o-Rot,ÿ1:0o-Rot)

Motion model included rotation Actual rotations were 0o; 1:0o;ÿ1:0o.

(8:5mm lens / 52o FOV).

Fig. 18. Heading estimate error: The difference between heading

estimate and motion stage reading. Even in the presence of camera

rotation (�1:0o-Rot, ÿ1:0o-Rot) the heading estimation errors are small

(RMS error 2:1o) although not as good when obtained from purely

translating camera under the pure translation assumption (PT-PT)

where the RMS error was 1:44o. (8:5mm lens / 52o FOV).

Fig. 16. Four of the input images used in the experiment to test motion
heading estimation in the presence of rotation. Motion (a) to (d) is
vertical motion. Motion (a) to (b) is horizontal motion forward and to the
left (60o from the camera optical axis). Motion (a) to (c) has the same
translation as (a) to (b) but also with a rotation of 1:0o. In this case, the
flow, due to rotation of 1:0o, cancels out the flow, due to translation in the
area of the face and more than cancels out the flow in regions of greater
depth. (e) Depth map estimated after computing both translation and
rotation. The second camera motion included ÿ1:0o rotation. (f) Depth
map estimated assuming pure translation when the second camera
motion included 0:5o rotation. Notice the depth errors in the background.
(Lens 8:5 mm lens / 52oFOV).

Fig. 19. Rotation estimates obtained from a camera translating in

different translation directions with some added rotation. Actual rotations

were 0o; 1:0o;ÿ1:0o. (camera with 8:5mm lens / 52o FOV).



�Z

Z
� 0:3:

Dutta and Snyder [6] refer to depth from image motion. The

errors we observe are not so large, but are definitely

noticeable. We also note that even if we neglect the rotation,

none of the depth estimates were negative so a depth is

positive constraint, as suggested by [12], would not help in

this example.

5.8 Outdoor ScenesÐChurch Wall

In this experiment, we tested the algorithm on outdoor

scenes. These experiments are important because they show

that the photometric constraints can be used in uncontrolled

lighting conditions. Fig. 25a, 25b, and 25c show three

images of a small part of a church wall. The camera was a

Sony Hi8 camcorder with the lens open as wide as possible

(FOV 40o). The camera was mounted on a tripod. Moving

the camera horizontally (a! b) was quite smooth, but

moving the camera up and down included about

0:5o rotation. Fig. 25d shows the recovered depth map

which can be seen to be qualitatively correct. The Euclidean

3D renderings of the depth map are shown in Fig. 26.

5.9 Outdoor Scene 2ÐSide Entrance

Fig. 27 shows three views of the side entrance to a building.

The camera was a progressive scan camera (Pulnix

TMC9701) with a wide angle lens (4.9 mm / FOV 82o).

The camera output was recorded on a Sony Hi8 camcorder.

The camera was mounted on a tripod and an effort was

made to reduce the amount of rotation, but rotation was

0:32o. Fig. 27d shows the recovered depth map. The

3D Euclidean rendering of the depth map is shown in

Fig. 28.

6 SUMMARY AND FUTURE WORK

We have presented a general relationship between the spatio-

temporal derivatives of three frames and the ego-motion
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Fig. 20. A simple scene used to test 3D Euclidean reconstruction: A
cube constructed from cork blocks in front of a flat background. Motion
(a) to (b) was vertical. Motion (a) to (c) was a sideways translation with
ÿ1:0o rotation. Motion (a) to (e) was the same sideways translation but
with �2:0o rotation. (d) Initial depth map from images (a), (b), and (c).
Note how the disappearance of a white blob in the background near the
right edge of the image creates an error in one region of the depth map.
(f) After second pass of depth estimation, the ªholeº is fixed (see text).

Fig. 21. Three-dimensional rendering of the recovered scene. The
camera motion included ÿ1:0o rotation. (a) Overhead view. The
estimated camera position is marked by the sphere in bottom right-
hand corner. (b) An enlarged view of the corner of the cube. The angle
between the faces of the cube is estimated 95o instead of 90o.
(c) Enlarged wire-frame side view of the cube. The estimated angle
between the top face of the cube and the right face is 90o. (d) Side view
of the segmented cube from up and to the side. (e) Another view of the
scene showing the foreground/background segmentation. The depth
estimates of the back panel are noisy because they are further away
from the camera and because the texture does not have strong
gradients.



parameters of the two motions. This relationship was derived
first for the general case where the ego-motion model
comprises the 27 coefficients of the trilinear tensor and then
for the small-motion model of Longuet-Higgins and Prazdny.

These relationships are model-based brightness con-
straints which provide a linear constraint per pixel in the
imageÐthereby providing a method for direct structure
and motion estimation that cuts through the aperture
problem and without prior detection of feature points.
The linear constraints of the 27-parameter projective model
are degenerate and cannot lead directly to a unique solution
for the tensor coefficients although a unique solution can be
found using quadratic admissibility constraints. This added
complexity led us to implement, in practice, the simpler
small-motion model of Longuet-Higgins and Prazdny.

The implementation details of these model-based bright-
ness constraints are important and include four critical
elements: 1) embedding of the computations within a
coarse-to-fine (Gaussian pyramid) framework, 2) Newton

iterations over the brightness constraint equation, 3) post-

processing of smoothness and surface interpolation for

obtaining visually pleasing results, and 4) obtaining both

stability and accuracy by assuming a very short focal length

for the motion estimation, but using the correct focal length

for the image warping.
The algorithm was tested on a set of challenging real

image situations which contain very few ªgood featuresº

(local regions with significant variability of gradient
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Fig. 22. Three-dimensional rendering of the recovered cube. The
camera motion included �2:0o rotation. The cube has been segmented
from the background using depth based foreground/background
segmentation. (a) View from up and to the side. (b) Wire-frame
rendering of the overhead view. From the overhead view, the estimated
angle between the cube faces is 86o instead of 90o.

Fig. 23. A simple scene used to test 3D Euclidean reconstruction.
Camera was hand-held so exact motion between images (a), (b), and
(c) is not known. (d) and (e) Three-dimensional renderings of the
recovered shape. The motion estimation allowed for rotation and
translation and the input images were preprocessed to correct for lens
distortion. The estimated angle between cube faces is 96o instead of 90o.

TABLE 1
Rotation Estimates (in Degrees) from the Images in Fig. 23

The camera was hand-held so ground truth values of the motion are not
known.

Fig. 24. Top view of the cube scene in Fig. 23. (a) and (b) Motion and
depth was estimated allowing for rotation. The images were prepro-
cessed for radial distortion correction. The estimated angle between
cube faces was 97o. (c) and (d) No radial distortion correction. The
estimated angle between cube faces was 101o. (e) and (f) Motion was
estimated assuming pure translation. There are many errors in the depth
map and the angles estimate is 105o.



direction) which are necessary for optical flow and discrete
point matching algorithms. Yet, we obtained a faithful dense
depth map of the scene due to the fact that the algorithm is
not hindered by the presence of aperture effects.

6.1 Future WorkÐCollinear Motion

The method, as described so far, fails when the two motions
are in the same (or opposite) directions. This is a drawback
in many applications (e.g., 3D reconstruction from a
monocular image sequence). Here, we present some early
research on ways to overcome this problem. The initial
results look promising ([42]). We will investigate the pure
translation case because if it fails for pure translation, it will
also fail if there is some rotation.

For pure translation:

I 00ts>t0 ÿ I 0ts>t00 � 0 �60�
and

ks>t00 � I 00t � 0 �61�

ks>t0 � I 0t � 0: �62�
If the second translation vector t00 is proportional to the
translation vector t0, then (61) is simply a scaled version of (62)
adding no new information and the solution is ill-condi-
tioned. Another way of interpreting (62) and (61) is that a
motion t0 in one direction will create a change in the image I 0t
which is exactly the opposite of the change I 00t induced by a
motion t00 of equal magnitude and opposite direction to t0.

The LH&P model which assumes (tzZ << 1) and was used
to derive (62) and (61) is of course not exact unless the motion
in the Z direction is zero, but in any case, the contribution to
the optical flow due to translation in the Z direction, is small
unless the field of view is very wide. Therefore, for small
motion, the LH&P model will be quite accurate and the
equations will be ill-conditioned. This situation is closely
related to the case of reconstruction from line correspon-
dences. There is a critical combination of a line configuration
and camera motions which can be stated as follows:

Conjecture 1. Critical configuration of lines and motion. Let S
be a set of lines in 3D which have a common intersecting line L

(i.e., S ^ L � 0 for all S 2 S). Let s, s0, s00 be the projections of

the line S 2 S in the three views: Image 1, Image 2, and

Image 3. Let o, o0, and o00 be the corresponding camera centers.

If o, o0, and o00 all lie on a line Si 2 S, the corresponding lines

s, s0, s00 do not provide a unique solution to the camera motion.

We currently have no proof, but simulation experiments

confirm the theorem. This line configuration is the Linear

Line Complex (LLC) which is examined in [44]. In [44], it is

shown that for general motion, the tensor has a linear

degeneracy in the case of an LLC, but a unique solution is

obtained by taking into account nonlinear constraints. Here,
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Fig. 25. Detail of church wall: Three input views and resulting depth map.

(Sony Hi8 camcorder, FOV 40o).

Fig. 26. (a) Three-dimensional Euclidean rendering of the depth map in

Fig. 25d. (b) Enlarged view from a slightly different angle.



for the specific case where the camera motion is along a line

belonging to the LLC, there is a whole family of solutions.

The epipole could lie anywhere on the projection of the line

L onto the image. Thus, there is one degree of uncertainty in

addition to the scale factor ambiguity.
If we take the common to be the line at infinity on the XY

plane, we get the particular case where all the lines lie on

planes which are parallel to the image plane, and the

translations are collinear and also parallel to the image

plane. This is a critical condition according to Conjecture 1

and the direction of translation in the XY plane cannot be

recovered. In such a configuration, lines in Image 1 will be

parallel to corresponding lines in Image 2 and Image 3

(assuming no rotation).
How does this relate to our case? By using the first order

approximation of the optical flow constraint equation to get

the point-line-line correspondences, we have created, as an

artifact, a situation where all corresponding lines are

parallel. In reality, this is not the case unless all the lines

came from planes parallel to the image plane.

6.1.1 A Possible Solution

The Optical Flow Constraint Equation [17] was based on the

first order Taylor expansion of I�x; y; t� � I�x0; y0; t� �t�,
where t is used to denote time (not translation). Keeping the

second order terms of the Taylor expansion results in:

I�x� �x; y� �y; t� �t� �
I�x; y; t� � �xIx � �yIy � �tIt�
1

2!
�x2Exx � �y2Eyy � �t2Ett � 2�x�yExy�
ÿ

2�x�tExt � 2�y�tEyt
�� e:

�63�

Replacing �x � u0�t and �y � v0�t yields:

I�x� u�t; y� v�t; t� �t� �
I�x; y; t� � u0�tIx � v0�tIy � �tIt�
1

2!
�u�t�2Exx � �v0�t�2Eyy � �t2Ett�
�

2u0v0�t2Exy � 2u0�t2Ext � 2v0�t2Eyt
�

� e:

�64�

We notice that two of the second order terms are also linear

with u and v. If we keep those two terms, (at this point,

apart from convenience, we have no formal justification

why we should keep those two terms and not all the second

order terms) and apply the constant brightness assumption:

I�x; y; t� � I�x� �x; y� �y; t� �t�;
we get for the first motion:

u0�Ix � Ixt�t� � v0�Iy � Iyt�t� � I 0t � 0: �65�
Since I 0x � Ix � Ixt�t and I 0y � Iy � Iyt�t this becomes:

u0I 0x � v0I 0y � I 0t � 0: �66�
The original work by Horn and Schunk who used:

u0 �I
0
x�Ix�

2 � v0 �I 0y�Iy�2 � I 0t � 0.) Note that I 0x and I 0y are com-

puted at coordinates �x; y� not �x0; y0�. Similarly, for the

second motion:

u00I 00x � v00I 00y � I 00t � 0: �67�
Likewise, I 00x; I 00y are the brightness gradients in Image 3 at

coordinates �x; y�. That leads us to the equation:

I 00ts0>t0 ÿ I 0ts00>t00 � 0; �68�
where:
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Fig. 27. (a), (b), and (c) Three input views of a side entrance to a building

and resulting depth map (d). Camera was mounted on a tripod but

motion included up to 0:5o rotation.

Fig. 28. Three-dimensional renderings of the depth map in Fig. 27d. The
spheres in (a) and (b) indicate the estimated camera location. Note in
overhead view (d), true Euclidean structure is recovered with correct
90o angles.



s0 �
I 0x
I 0y

ÿxI 0x ÿ yI 0y

0@ 1A s00 �
I 00x
I 00y

ÿxI 00x ÿ yI 00y

0@ 1A : �69�

Now since s0 6� s00, the equations are better conditioned.
This depends on how much change there was in the
imagesº gradients. As we have noted, this depends on
whether the surface is parallel to the image plane or not.

A modification is required to the coarse-to-fine frame-
work and the iterative refinement which are described in
Section 4.4 and Section 4.2, respectively. For motion
estimation, Image 1 is warped (using forward warping)
towards Image 2 and Image 3. For depth estimation, Image 2
and Image 3 are warped towards Image 1.

We have shown a solution to the case of collinear motion
with pure translation and these ideas have been success-
fully implemented these ideas. It is not clear how to transfer
this to the general motion case and this remains an open
area of study.
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