
Off-road Path Following using Region Classification and Geometric Projection
Constraints∗

Yaniv Alon
Mobileye Ltd.

Jerusalem, Israel

Andras Ferencz
Mobileye Ltd.

Jerusalem, Israel

Amnon Shashua
School of Eng. and CS

The Hebrew University of Jerusalem

Abstract

We describe a realtime system for finding and tracking
unstructured paths in off-road conditions. The system was
designed as part of the recent Darpa Grand Challenge and
was tested over hundreds of miles of off-road driving. The
unique feature of our approach is to combine geometric
projection used for recovering Pitch and Yaw with Learn-
ing approaches for identifying familiar ”drivable” regions
in the scene. The region-based component segments the
image to ”path” and ”non-path” regions based on tex-
ture analysis borne out of a learning-by-examples principle.
The boundary-based component looks for the path bound-
ing lines assuming a geometric model of a planar pathway
bounded by parallel edges taken by a perspective camera.
The combined effect of both sub-systems forms a robust sys-
tem capable of finding the path even in situations where the
vehicle is positioned out of the path — a situation which
is not common for human drivers but is relevant for au-
tonomous driving where the vehicle may find itself occa-
sionally veering out of the path.

1. Introduction

The interest in paved and unstructured road/path follow-
ing has attracted interest for more than two decades with
early systems focused on paved road following [3, 12] (see
also survey in [2]) and more recent attempts to handle off-
road conditions — some of it triggered by the races of the
Darpa Grand Challenge off-road autonomous driving com-
petitions [4] held in 2004 and 2005 in the Mojave desert —
[10, 1, 9, 13, 15].

Paved road following is largely considered a ”solved”
problem as a growing number of automotive manufactur-
ers are offering lane departure warning systems. However,
off-road path detection and following poses several interest-

∗This work is part of Yaniv Alon’s MSc dissertation completed at the
Hebrew University. Andras Ferencz was at UC Bekeley during the time
when this work was completed.

(a) (b)

(c) (d)

Figure 1. Scenes from autonomous driving in the Mojave desert
taken from the 2004 DGC race. System output includes the left
and right path boundary point, the center point and the heading
orientation. Our system can detect the path even when the bound-
aries are somewhat ill-structured (a), the vehicle is in a sharp curve
(b), the path texture is not uniform (c), and the vehicle is off the
path.

ing and new challenges due to the unstructured nature of the
scene. Fig.1 illustrates some of the challenges one typically
faces: (i) path boundaries are somewhat ill-defined in cases
where strong non-boundary longitudinal edges are present
due to ditches, ruts, and tire marks of other vehicles, (ii) the
boundary (when present) may be defined by various differ-
ent texture properties such as due to vegetation, change of
path material or change of geometry (in mountainous driv-
ing) (iii) the type of terrain or path material may change
considerably from one area to the next, and (iv) unlike hu-
man driving, where the vehicle is alwayson path, in au-
tonomous driving the assumption that the ”drivable” area is
straight ahead does not always hold.

The existing approaches for off-road path following fall
into two categories: those that attempt to define the forward
”drivable” image region by combination of clustering and
texture analysis [9, 10] and those that seek the vanishing
point (determined by the Pitch and Yaw angles of the cam-
era relative to the road surface) as a way of defining the path

1

boundaries [15]. The first approach lacks a geometric model
of the path which can be described by a small number of pa-
rameters assuming that the path ahead is planar and viewed
by a perspective projection, whereas the second approach
focuses only on detecting boundaries (which when behaved
correctly could vote towards the position of the vanishing
point) and ignores the ”region-based” nature of the path.
Both approaches have their pros and cons but neither single
approach can handle the full extent of the required off-road
challenge.

In our work we propose combining a region-based clas-
sification subsystem of image texture to ”path” and ”non-
path” regions together with a geometric subsystem consist-
ing of a flat world assumption taken from a perspective pro-
jection for finding the path boundary lines. Both subsys-
tems complement each other thus combining the strengths
of both the region-based and boundary-based approaches.
Specifically, we use a variety of texture filters together with
a learning-by-examples Adaboost [6] classification engine
to form an initial image segmentation into Path and Non-
path image blocks. Independently, we use the same filters
to define candidate texture boundaries and use a projection-
warp search over the space of possible Pitch and Yaw pa-
rameters in order to select a pair of boundary lines which
are consistent with both the texture gradients and the geo-
metric model. The area-based and boundary-based modules
are then weighted by their confidence values to form a final
path model for each frame.

The system was implemented on a Power-PC PPC7467
1GHZ running at 20 frames per second. We have run the
system successfully on 6 hours of recorded data of the en-
tire 2004 DGC race and completed successfully around50
miles of the 2005 race — both held in the Mojave desert
[4]. The 2005 GDC race was in cooperation with the
Golem/UCLA group — the vehicle platform can be seen
in Fig. 2.

2. Feature Measurements for Classification
and Boundary Detection

As mentioned above, our system combines two modules
— region-based and boundary based — working in tandem.
The region based module classifies image blocks into Path
and Non-path labels based on a learning training set and the
boundary-based module fits a geometric camera constraint
on the boundaries of the path. Both modules require means
for measuring texture features — either to be later fed into
a classifier or as a basis for deciding where the boundaries
between the path and non-path regions may reside. In this
section we briefly describe three different feature extraction
schemes we used during research including oriented filters,
Walsh-Hadamard kernels and Moments.

Figure 2. The Golem/UCLA group vehicle used as our test plat-
form. In this installation the camera is mounted inside a housing
on top of a pole connected to the front bumper. Other installations
had the camera mounted on the windshield.

Oriented Gaussian Derivatives Filters We considered
an oriented Gaussian Derivatives filter bank similar to the
one used by Maliket al. [11] for partitioning grayscale im-
ages into disjoint regions with coherent brightness and tex-
ture. For a given scaleσ, the filter bank contains even and
odd-symmetric filters

ĝodd(x, y, σ) =
d2

dy2
(exp(

y2

2σ2
) exp(

x2

l22σ2
)) (1)

ĝeven(x, y, σ) = Hilbert(godd(x, y, σ)) (2)

and one center-surround filter

ĉs(x, y, σ) = exp(
y2

1.52σ2
) exp(

x2

1.52σ2
)

−exp(y2

0.52σ2
) exp(

x2

0.52σ2

The coefficientl = 3 is the aspect ratio between the two
1D Gaussians that form a quadrature pair ([5]) ĝodd and
ĝeven , i.e., having the same frequency response but differ
in phase. The actual filter bank contains zero-mean versions
godd, geven, cs normalized to unitL1 norm. For a given
scaleσ, the filter bank contains rotated versions ofgodd and
geven in four equally spaced orientations, and onecs filter
which makes it a total of nine filters per scale. The filter
response around each filter is calculated with two scales ad-
justed to the row position due to foreshortening (total of18
responses per pixel).

Walsh-Hadamard Kernels The Gaussian derivatives fil-
ter bank forms a computationally expensive approach which
could be prohibitive for a realtime system. We considered
using as an alternative a fast convolution approach based on

Figure 3. The16 Walsh-Hadamard4 × 4 binary kernels used for
texture analysis. Fast execution of convolution with the kernels
(see text) requires that the filters be used in a specific order (top-
bootm, left-right).

the Walsh-Hadamard filter bank which guarantees anO(1)
cost per pixel over the entire collection of filters. The 1D
filter bank of2k orthogonal filters proposed by [7] can be
described recursively by a binary tree whose leaves are the
filters:

U
(0)
s = 1

U
(k)
s = {[u(k−1)

s , α
(k)
i u(k−1)

s]}

s.t.u(k−1)
s ∈ U (k−1)

s , α
(k)
i ∈ {+1,−1}

whereα is a binary vector. The 2D filter bank is constructed
by creating rank-1 matrices using again a binaryα vector.
The crucial property of the WH kernels is that (i) they form
a basis, and (ii) they are efficiently convolved, and (iii) only
bit-shifts and integer additions and subtractions are required
(for more details see [7]). Fig. 3 displays the16 4× 4 filter
kernels we used in our experiments.

Moments Energy The third feature extraction approach
is based on the computations of high-order moments. The
discrete(p+ q)th order moment̂Fpq over a square window
of sizew × w is defined by (see [8, 16]):

F̂pq =
w/2∑

m=−w/2

w/2∑
n=−w/2

I(m,n)xp
my

q
n (3)

wherexm = m−i
w/2 andym = n−j

w/2 . We usedp, q ∈ N such
that p + q ≤ 2 and w=3. Convolution of the input image
I(x, y) with F̂pq results in six filter response imageŝIpq.
The filter response images are then normalized:

Ipq(x, y) = max(1, σ ∗ |Îpq(x, y)− ψ(Îpq)|) (4)

whereψ(Îpq) is the mean value of̂Ipq andσ is a normal-
ization factor that was set to0.001 in our implementation.
Example of the filter responses over a warped image can be
seen in Fig.6(c).

3. Path Detection using Classification

The feature extraction methods described above are used
as a representation for a block-wise path classification pro-
cedure using an Adaboost classifier over a training set. The
input imageÎ is normalized:

I =
Î − σ(Î)
µ(Î)

(5)

whereσ(Î) andµ(Î) are the mean and standard deviation
values. For efficiency, we divide the image into partially
overlapping blocks of size16×16 (six pixel overlap in each
dimension). The filter banks described above are applied
to all image pixels and a descriptor vector is generated per
blockB in the following way.

• For the Gaussian filters we have18 responses per
pixel over all the pixels of a blockB and the de-
scriptor vector isV (B) = (hist(m), µf , σf , µB , σB)
wherehist(m) is the histogram over the filter IDs cor-
responding to the maximal response filter per pixel,
µf , σf are the mean and std of the maximal filter re-
sponses per pixel andµB , σB are the mean and std of
the (normalized) pixel values inB.

• For the Walsh-Hadamard filter bank, we have16 filter
responses per pixel. The descriptor vector of a block
B is V (B) = (µ1, .., µ16, σ1, ..., σ16) whereµi, σi are
the mean and std of the i’th filter response over all the
pixels ofB.

• For the moments filter bank, we have 6 filter responses
per pixel. The descriptor vector of a blockB is
V (B) = (µ1, .., µ6, σ1, ..., σ6) whereµi, σi are the
median and std of the i’th filter response over all the
pixels ofB.

The feature vectors per training blocksBi with labelsyi ∈
{−1, 1} were fed into an Adaboost classifier engine. Each
entry of the feature descriptor vector can be considered as a
”weak” learner in the sense that it forms a class discrimina-
tion. The main idea of AdaBoost is to assign each example
of the training set a weight. At the beginning all weights are
equal, but in every round the weak learner returns a hypoth-
esis, and the weights of all the miss-classified examples by
that hypothesis are increased. That way the weak learner
is forced to focus on the difficult examples of the training
set. The final hypothesis is a combination of the hypotheses
of all rounds, namely a weighted majority vote, where hy-
potheses with lower classification error have higher weight.

0 5 10 15 20 25 30 35 40 45 50
0.78

0.79

0.8

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

AdaBoost iteration index

cl
as

si
fic

at
io

n
ac

cu
ra

cy

Gausian filters, Adaboost
WH filters of size 4x4, Adaboost
WH filters of size 4x4, SVM
Gausian filters, SVM
Moments filters, Adaboost

Figure 4. Accuracy of the strong hypothesis during the first50
AdaBoost iterations over a text set of150 images picked from the
2004 DGC race. The filter banks include the Gaussian derivatives
(best performance, worst computation time), Walsh-Hadamard
gray-code filters (best computation time, reasonable performance)
and Moment filters (worst performance, medium level computa-
tion time). For comparison, we ran also SVM classifier on the
Gaussian and WH filters — the added accuracy is relatively small
whereas the additional computation time is very significant.

To test the accuracy of the classification we selected150
test images from6 hours recordings we had from the 2004
DGC race. We compared the accuracy of the Path detection
against the different feature extraction schemes and against
an SVM classifier trained on the WH and Gaussian filter
banks (see Fig.4). The best accuracy was achieved with
the Adaboost and SVM over the Gaussian derivatives fil-
ter bank and the SVM over the WH filter bank. The Ad-
aboost over WH filters was slightly behind (86% compared
to 88%) and was chosen as the preferred feature represen-
tation for the Adaboost engine due to its computational ef-
ficiency.

Once the blocks were assigned the labels of Path and
Non-path from the Adaboost classifier the system under-
went the following steps for defining the path region:

1. Sky: Since the sky region can deceptively appear sim-
ilar to a Path region we look for a minima over a row-sum
of Path labeled regions. The minimal row-sum point defines
the end-of-path mark which all Path regions above that mark
are ignored. (see Fig.5b).

2. Top Bounding Line: removal of spurious false posi-
tives near the horizon is done by defining for each column
x the top rowyx containing Path labeled regions:

yx = argmax
ȳ∈Yb(x)

ȳ∑
y=min(Yb(x))

C(x, y),

(a)

0 20 40 60 80 100 120

0

2

4

6

8

10

12

14

16

18

Number of Path blocks in row

R
ow

 in
de

x

(b)

Figure 5. Texture Classification Module: (a) Centers of blocks that
were classified as Path are marked in Black and Non-path blocks
shown in White. The overlaid straight lines are the path boundaries
and the top line marks the visibility path edge. (b) sum of the Path
classified blocks in each row. There is a local minimum near the
horizon — this is used to remove skyline blocks.

whereC(x, y) ∈ {−1, 1} are the block labels andYb(x) is
the set of center blocks coordinates. We sortyx in descend-
ing order and pick the 5th from the top as a virtual line, the
”top line” yo, which marks the last visible row of the path.
The top-line is used for an approximate range to the farthest
point on the path and also for deriving a confidence value
for the region-based path finding process for the frame in
question.

3. Left/Right Bounding Lines: the left and right bound-
ing lines of the path are derived via a minimal error separat-
ing line on each side of the path, as follows. A center line is
drawn as a least-squares fit to the geometric centers defined
by the positive blocks in each row. Two separator lines are
derived, one from each side of the center line, by searching
over the 2D space of position and orientation of the line so
that a separation error is minimized. The separation error
e(l) is minimizes the chances that Non-path blocks are con-
tained inside the Path region:e(l) = α|Fp(l)| + |FN (l)|
whereFp(l) is the set of the Path classified blocks that are
to the left of the separatorl, andFN (l) is the set of Non-
pathblocks that are to the right ofl (assuming left bounding
line — the description is reversed for the right-hand line).
Fig. 10(see section5) displays the precision-recall curve as
we change the parameterα. For our final system we chose
α = 4.0.

Fig. 5a shows an example of a frame with the classi-
fied blocks and the top, left and right separator lines which
bound the path region. The scheme described above works
well under various situations, but as mentioned in the in-
troduction, lacks the geometric notion of a path borne by
the assumption of a perspective camera, flat world assump-
tion and parallel path bounding lines in the scene. In the
next section we describe the projection-warp path boundary
scheme which looks for the bounding lines via a search for
the road’s vanishing point followed by a combination of the
two schemes to form a robust path finding system.

4. Path Boundaries via Projection-Warp itera-
tions

The techniques introduced is Section3work well in most
of the scenes which includes paths of similar properties to
those presented in the training set. However, the system
may encounter unfamiliar path textures, or path texture that
is very similar to non-path areas in the training set, and thus
report that it is unable to find a drivable area ahead.

In this section, we suggest a second technique, inspired
by the RALPH system for paved roads [12], which does not
rely on prior learned texture information. Instead, it makes
the assumption that the area immediately in-front of the ve-
hicle is on a path whose texture properties are different from
the surrounding non-drivable areas. For this cue to be reli-
able, we have to constrain the solution to a strict geomet-
ric model where the path boundary lies on straight parallel
edges. This allows us to reduce the drivable path problem to
4 degrees of freedom:(x, y) position of the vanishing point,
and left and right distance to the edge of the path.

The geometric constraint borne out of the flat world as-
sumption, perspective camera and parallel path boundaries
in the world suggest the following projection-warp scheme
[12] per frame: given a hypothesis of Pitch and Yaw angles
of the camera, the image is warped to form a top view in
world coordinates. In the warped image the path bound-
aries are supposed to beparallel vertical lines if indeed the
Pitch and Yaw angles are correct. A projection of the im-
age texture edges onto the horizontal axis will produce a 1D
profile whose peaks correspond to vertical texture edges in
the warped image. We look for a pair of dominant peaks
in the 1D profile and generate a score value which is then
maximized by search over the Pitch and Yaw angles.

In a nutshell, we start with the Pitch and Yaw angle es-
timates of the previous frame followed by an incremental
Pitch and Yaw estimation using optic-flow and a small mo-
tion model. The incremental estimation is based on the so-
lution of the motion equation per image point(x, y):

xwx + ywy = yu− xv,

where(u, v) are the flow (displacements) of the point(x, y)
andwx, wy are the Pitch and Yaw angles. We use point
tracking in the vicinity of the horizon and the close areas
in front of the camera in order to recoverwx, wy in a least-
squares fashion. The incremental Pitch and yaw angles are
added to the previous frame estimate to form the current
frame starting point for Pitch/Yaw finding. The image is
then warped with the current Pitch/Yaw estimate.

The warped image is divided into overlapping10 × 10
blocks with each pixel forming a block center. Using the
Walsh-Hadamard filter bank described above we estimate
the likelihoode−∆ that the vertical line passing through the
block center forms a texture gradient where∆ is theL1

distance between the WH vector descriptors of the two re-
spective halves of the block. Horizontal texture gradients
are projected vertically onto thex-axis for the purpose of
evaluating a Pitch/Yaw hypothesis. A strong hypothesis is
backed by a dominant pair of peaks in the projection (see
Fig. 6(d)). The path boundaries and other vertical elements
in the image create high values in the projection, while low
values are most likely caused by non-continuous vertical
texture gradients typically associated with bushes, rocks,
and so forth. The peaks in this projection are maximized
when the vanishing point hypothesis is correct and lines up
with the path edges (and possibly other parallel features).
To find high and narrow peaks, we convolve the projec-
tion with a box-shaped template. To score our vanishing
point hypothesis, we remove low peaks and then sum the
remaining ones. Maximum values for this score suggest a
strong hypothesis. By finding the highest peaks for these
hypotheses, our system is able to find the lateral position of
the left and right boundaries. Fig.6(e)shows the ”cleaned
up” 1D projection profile and the associated pair of peaks
corresponding to the path boundary lines.

Our projection-warp iterative scheme is summarized as
follows:

Algorithm 1 (Projection-Warp)
1) Calculate incremental Pitch and Yaw angles using

optic-flow and the small motion model. Using the previ-
ous frame and incremental estimates, generate the current
estimate of the vanishing point.
2) Create a warped based on the vanishing point.
3) Calculate vertical texture gradients within the warped
image using the WH filter bank on10 × 10 overlapping
blocks.
4) Define a reasonable range of Pitch and Yaw angles
around the current estimate.
5) For each vanishing point hypothesis, perform a warping
and project the gradient edges onto a 1D profile.
6) Clean-up the 1D profile by convolution with a box filter
and remove low peaks. Sum the remaining values and ob-
tain a score.
7) Repeat the project-warp steps and set the Pitch and Yaw
angles to those that maximize the projection score.

5. Results

We describe below a number of performance measures
we have collected of the system. The ultimate performance
test is how well it performs on the task of aiding the navi-
gational unit of an autonomous vehicle to safely traverse a
terrain at high speeds. Our system was used for this purpose
by the Golem/UCLA team competing in the 2005 DARPA
Grand Challenge. Our output was combined with other sen-
sors to allow the vehicle to stay within the path while driv-

(a) (b) (c)

(d) (e)

Figure 6. Projection-Warp Search: (a) original image with the
overlaid path boundary and vanishing point results. (b) the warped
image. (c) texture gradients magnitude. (d) projection: vertical
sum of gradients. (e) projection profile followed by convolution
with a box filter. The two lines on top of the histogram marks the
path boundaries.

ing at speeds up to50 mph on straight segments as well as
to navigate mountainous trails.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7. Sample images and system output from 6 hours of driv-
ing in the Mojave desert (2004 DGC race). The path is marked
by two left-right boundary points and a center point with heading
orientation. The ”X” mark in (h) coincides with Zero confidence
(i.e., system deactivates momentarily) due to confusion with mul-
tiple shadows. In (i) the path is detected even though the vehicle
is not centered on the path (a situation which is common for au-
tonomous driving).

Our system was trained over 200 randomly selected im-
ages from 6 hours of video over 140 miles of trails in the
Mojave desert covering the course of DARPA Grand Chal-
lenge 2004. The trails cover a large variety of terrain types

(a) (b) (c)

(d) (e) (f)

Figure 8. The Path /Non-path texture classification (a),(d) is fol-
lowed by sky blocks removal and by fitting three lines (arranged
as a trapezoid) to the Path blocks. In (b),(e) all the blocks within
the trapezoid are labeled as Path, and all the others as Non-path.
Finally, the path boundaries at a given distance is calculated (c),(f)
together with the path center and heading angle.

including sandy straight paths, gravel covered winding trails
and rocky mountain passes. The video was recorded with a
camera located inside the cabin and mounted on the wind-
shield near the rearview mirror. A field of view of 45 de-
grees was used during training but during the 2005 DGC
race a wider field of view of 80 degrees was adopted. Fol-
lowing the training phase, we tested the system performance
on the original 6 hours of video with a 45 degrees FOV and
with one hour of video recorded with an 80 degrees FOV.
Sample images of the system output during these tests are
shown in Fig.7, while Fig. 8 shows the results of each of
the main parts of the classification based algorithm.

Overall performance. The most meaningful overall
system performance measure is to count how often (what
fraction of frames) the system produced correct path edge
positions and, where appropriate, heading angles. Further-
more, it is crucial for the system to know when it can not
determine the path accurately, so that the vehicle can slow
down and rely more on information from other sensors. Our
results are broken down to different terrain types. For each,
representative challenging clips of 1000 frames were se-
lected (see Fig.9) and the system performance scored on
those sequences by a human observer. The path edge dis-
tance accuracy was computed by observing the position of
the road edge marks approximately 6 meters in front of the
vehicle. A frame was labeled incorrect if the path edge
marker at that location appeared to be more then 30 cm
(≈ 18 pixels) away from the actual path boundary. For
straight paths the perceived vanishing point of the path was
also marked, and our algorithm’s heading indicator was
compared to the lateral position of that point.

A. On relatively straight segments with a comfortably
wide path, the navigation system allows the vehicle to drive
at speeds up to50 mph. For those type of scenes (clip (a) in

(a) (b)

(c) (d)

Figure 9. Sample images from the three clips used for numerical
performance measures. (a) loosely marked path boundaries. (b)
crossing dry river bed with geometric elevation ahead. (c) moun-
tain pass. (d) Reaching the crest of the hill, short segment of the
road is visible, and the system reports low confidence detection.

Fig. 9), our system reported availability (high system con-
fidence)100% of the time while producing accurate path
boundary locations99.5% of the time. The mean angular
deviation of the heading angle from the manually marked
vanishing point was1.7 deg.

B. This clip is an example of an uneven terrain with ele-
vation changes. The vehicle passes through a dry river ditch
(Fig. 9(b)) where both the path texture and scene geometry
is difficult. When the vehicle reaches the crest of the hill
(Fig. 9(d)) only a short segment of road is visible. In this
case, the system reported low confidence (was unavailable)
8% of the time. When available, however, the accuracy in
boundary locations was98%.

C. This clip contains a winding mountain pass
(Fig. 9(c)), which is difficult due to path curvature as well
as texture variation. Nevertheless, our system was available
throughout the clip and achieved an accuracy of96% in de-
tecting the path boundary.

Method Comparison. Of the 2 methods presented in
the paper, we set the system to primarily rely on the texture
classification (section3) subsystem with the geometric sub-
system (section4) used as a fall back when thein-pathand
out-of-pathtexture could not be well classified. In scene
(A), due to the vegetation on the side, the texture could be
well classified while the exact location of the texture bound-
ary of the path is quite fuzzy. This heavily favors the clas-
sification approach: in fact, the geometric subsystem was
active less than2% of the time. On the other hand, clip(B)
had regions with non-typical texture: in this case, the geo-
metric subsystem was dominant between9 and20% of the
frames, depending on the exact parameter tuning.

Pixel-wise Performance.Another way to measure the

0.88 0.9 0.92
0.93

0.94

0.95

0.96

Recall

P
re

ci
si

on

A=2
A=3
A=4
A=5

Figure 10. Precision-recall curve.

performance of the path classification is to count the number
of path pixels that were correctly and incorrectly labeled.
We randomly selected 60 frames from the 6 hours of video,
hand labeled the Path and Non-pathpixels, and computed
the precision-recall curve for different choices ofα, the fac-
tor from section3. The precision-recall curve is presented
in Fig. 10. Only pixels below the manually labeled limit
line were included in those results.

We repeated this test for the 3 clips above (50 frames
each) and compared our results against that of [14] and [10].
While a direct comparison is impossible without running
the algorithms on the same clips, we attempted to convert
our statistics to the performance metrics that were employed
in those studies (“classification accuracy” and “pixel cover-
age” respectively). The comparison is summarized in Ta-
bles 1 and 2.

Weaknesses.As our algorithm relies on texture, our sys-
tem seems to perform less well (reporting low confidence)
where there are significant shadows present in the scene.
Unfortunately we currently do not have enough training or
testing data available to quantify or to attempt to overcome
this problem, therefore as a result the system outputs ”No
Path Visible” (an ”X” marking as seen in Fig.7h) in such
situations.

Supplemental Videos: We have posted in
http://www.cs.huji.ac.il/∼shashua/cvpr06/ three video
clips of our system at work under different terrain type
conditions from the 2004 race. The videos show the
original footage overlaid with graphics marking the path
left and right boundary points and the vehicle orientation
as has been recovered form the video (only). The clip
”mountain.mpg” shows a mountain passage terrain, the
clip ”texture.mpg” shows a typical desert type of terrain
with vegetation material on the sides of the path and the
clip ”elevationChanges.mpg” shows the situation of hill
climbing (system deactivates momentarily at the crest of
the hill).

Method Classification accuracy

Ours (random set of images) 90.0
Rasmussen 88.6

Table 1. Results: Classification accuracy metric.

Road type Pixel coverage

ill-structured boundaries 0.790
Ditches, large pitch changes 0.732
Winding mountain path 0.881
Random set of images 0.822
Lieb et al. 0.697

Table 2. Results: Pixel coverage metric.

6. Summary

We have described an off-road path-finding algorithm
that was designed as an aide for autonomous driving as
part of the recent 2005 DGC race. The unique feature
of the system is that it incorporates two different detec-
tion modalities one based on texture classification of image
into ”Path” and ”Non-path” regions followed by cleaning-
up processes for turning the classification result into a path
with straight-line boundaries and orientations. The second
module (projection-warp search) is based on a geometric
approach governed by camera parameters (Pitch and Yaw),
flat world assumption and parallel path boundaries in the
scene. The two modules run in parallel and the system out-
put is governed by the module with the highest confidence.
The texture classification module uses a Walsh-Hadamard
filter bank followed by an Adaboost trained classifier. The
projection-warp search combines motion estimation for an
initial camera parameters estimation followed by a search
maximizing the sharpness of peaks in the 1D projection of
the vertical texture gradients.

Acknowledgement

We thank Stefano Soatto and the entire UCLA and
Golem teams for the fruitful cooperation during the 2005
DGC race. This work was partly funded by a grant No.
0397545 from the Israeli defense ministry.

References

[1] J. Crisman and C. Thorpe. Unscarf, a color vi-
sion system for the detection of unstructured roads.
In Proceedings of IEEE International Conference on
Robotics and Automation, volume 3, pages 2496 –
2501, April 1991. 1

[2] G. N. DeSouza and A. C. Kak. Vision for mobile
robot navigation: A survey.IEEE Trans. Pattern Anal.
Mach. Intell., 24(2):237–267, 2002.1

[3] E. D. Dickmanns and A. Zapp. Autonomous high
speed road vehicle guidance by computer vision.
In R. Isermann, editor,Automatic Control—World
Congress, 1987: Selected Papers from the 10th Trien-
nial World Congress of the International Federation
of Automatic Control, pages 221–226, Munich, Ger-
many, jul 1987. 1

[4] http://www.darpa.mil/grandchallenge/.1, 2

[5] W. T. Freeman and E. H. Adelson. The design and use
of steerable filters.IEEE Trans. Pattern Analysis and
Machine Intelligence, 13(9):891–906, 1991.2

[6] Y. Freund and R. E. Schapire. Experiments with a
new boosting algorithm. InInternational Conference
on Machine Learning, pages 148–156, 1996.2

[7] Y. Hel-Or and H. Hel-Or. Real-time pattern matching
using projection kernels.IEEE Trans. Pattern Anal.
Mach. Intell., 27(9):1430–1445, September 2005.3

[8] M. Hu. Visual pattern recognition by moment in-
variants. IEEE Trans. Inform. Theory, 8(2):179–187,
February 1962.3

[9] D. Kuan, G. Phipps, and A.-C. Hsueh. Autonomous
robotic vehicle road following.IEEE Trans. Pattern
Anal. Mach. Intell., 10(5):648–658, 1988.1

[10] D. Lieb, A. Lookingbill, and S. Thrun. Adaptive road
following using self-supervised learning and reverse
optical flow. InProceedings of Robotics: Science and
Systems, Cambridge, USA, June 2005.1, 7

[11] J. Malik, S. Belongie, T. K. Leung, and J. Shi. Contour
and texture analysis for image segmentation.Interna-
tional Journal of Computer Vision, 43(1):7–27, 2001.
2

[12] D. Pomerleau. Ralph: Rapidly adapting lateral posi-
tion handler. InIEEE Symposium on Intelligent Vehi-
cles, pages 506 – 511, September 1995.1, 5

[13] C. Rasmussen. Laser range-, color-, and texture-based
classifiers for segmenting marginal roads. InIEEE
Conference on Computer Vision and Pattern Recog-
nition Technical Sketches, 2001. 1

[14] C. Rasmussen. Combining laser range, color, and tex-
ture cues for autonomous road following. InProceed-
ings of IEEE International Conference on Robotics
and Automation, volume 4, pages 4320 – 4325, 2002.
7

[15] C. Rasmussen. Grouping dominant orientations for
ill-structured road following. InCVPR (1), pages 470–
477, 2004. 1, 2

[16] M. Tucceryan. Moment-based texture segmentation.
Pattern Recogn. Lett., 15(7):659–668, 1994.3

