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Abstract

We derive the clustering problem from first principles show-
ing that the goal of achieving a probabilistic, or ”hard”,
multi class clustering result is equivalent to the algebraic
problem of a completely positive factorization under a dou-
bly stochastic constraint. We show that spectral cluster-
ing, normalized cuts, kernel K-means and the various nor-
malizations of the associated affinity matrix are particu-
lar instances and approximations of this general princi-
ple. We propose an efficient algorithm for achieving a com-
pletely positive factorization and extend the basic cluster-
ing scheme to situations where partial label information is
available.

1. Introduction
The focus of this paper is twofold. On one hand we address
the problem of clustering with ”side information” which is
the problem of how to guide the clustering process when
partial labeling or pairwise label-consistency data is avail-
able externally. On the other hand we allow the continuum
from having some external guidance to having none. There-
fore, we also examine as a particular case the normal clus-
tering problem starting from some distance-based similarity
measures ending with a partitioning of the data intok clus-
ters.

We will start with deriving a general algebraic model
of clustering which contains as a particular case the well
known K-means and spectral clustering approaches [16, 8,
11, 10, 21] which gained much popularity over the last num-
ber of years. In a nutshell, we will show that clustering a
data set intok ≥ 2 clusters (whether hard or probabilistic
assignments) is equivalent to finding acompletely positive
(CP) factorization of the input affinity matrix under a dou-
bly stochastic constraint. Spectral clustering, for example,
is a crude approximation of the CP principle.

2. Clustering and Complete Positivity
Let xi ∈ Rd, i = 1, ..., n, be points which we wish to
assign tok clustersC1, .., Ck and letyi ∈ {1, ..., k} be

the associated (unknown) labels. There are two versions
to the problem: the ”hard” clustering scenario where the
k clusters are mutually exclusive and the probabilistic as-
signments (”soft” clustering) where the goal is to assign a
probabilityP (yi = j | xi) of point xi belonging to cluster
Cj .

Spectral clustering and K-means methods are based on
pairwise ”affinity” measures, which can be interpreted as
the probability of pairs of points to be associated with the
same cluster. LetKij = φ(xi)>φ(xj) = κ(xi, xj) be
a symmetric positive-semi-definite affinity function, e.g.
Kij = exp−‖xi−xj‖2/σ2

, providing a measure in the in-
terval(0, 1] with high values associated with pairs of points
that are likely to be clustered together (such as based on
Euclidean distance). The functionφ(x) is known as a ”fea-
ture” map responsible for representing the input vectors in
some high dimensional space — for the sake of simplicity
we need only to assume that a functionκ(xi, xj) exists such
that the pair-wise similarities form a positive-semi-definite
matrix K. The clustering problem is to make assignments
(either hard or probabilistic) given the affinity matrixK as
input.

We will begin with the hard clustering version. The
(kernel) K-means framework seeks an assignment which is
compact around centersu1, ..., uk:

min
C1, ..., Ck

u1, ..., uk

k∑
r=1

∑
xi∈Cr

‖φ(xi)− ur‖2 (1)

whereur = (1/nr)
∑

xi∈Cr
φ(xi) are the centers of the

clusters where|Cr| = nr. The affinity matrix enters into
play by substituting the definition ofur into the optimiza-
tion function which then, after some algebraic manipula-
tions, becomes:

max
C1,...,Ck

k∑
r=1

1
nr

∑
xi,xj∈Cr

κ(xi, xj) (2)

In order to ”algebralize” the optimization criterion, let
F be ann × n matrix whose entries areFij = 1/nr if
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(i, j) ∈ Cr and Fij = 0 otherwise. In other words, if
we sort the pointsxi according to cluster membership, then
F is a block diagonal matrix with blocksF1, ..., Fk where
Fr = (1/nr)11>. Then the optimization function eqn. 2
becomes:

max
F

trace(KF ) (3)

In order to solve this optimization problem we need to spell
out the proper constraints onF . There are three types of
constraints:

1. F is completely positive (CP) withcp− rank(F ) = k,
i.e., F = GG>, Gn×k ≥ 0 and rank(G) = k.
To see why this is so, letG = [g1, ..., gk] where
gr = (1/

√
nr)(0, .., 0, 1, ..., 1, 0, ..., 0)> where the1s

correspond to pointsxi ∈ Cr. Then grg>r is an n × n
matrix with Fr as ther’th block along the diagonal and
zero everywhere else, andF =

∑k
r=1 grg>r = GG>.

2. G>G = I, i.e.,G has orthonormal columns.

3. F is doubly stochastic, i.e.,F ≥ 0, F1 = 1 and
F>1 = 1.

In other words, if we find a matrixF that maximizes
trace(KF ), under the constraints above, then we have
found a solution to the original kernel K-means opti-
mization setup. Spectral clustering, for example, satisfies
only someof those constraints: substituteF = GG> in
trace(KF ) with the constraintG>G = I and obtain:

max
G

trace(G>KG) s.t. G>G = I,

whose solution is the leadingk eigenvectors ofK. Typi-
cally, the eigenvectors are treated as new coordinates in ak-
dimensional subspace ofRn, followed by clustering heuris-
tic approaches such as K-means, dynamic programing and
exhaustive search (cf. [8, 21] and references therein).

Practitioners of spectral clustering have also found out
that certain normalizations ofK have significant positive
effect on the clustering result. For example, the normaliza-
tion D−1/2KD−1/2 is employed by the Normalized-Cuts
[16] approach and by [8] whereD = diag(K1) is a diag-
onal matrix containing the sum of rows ofK1. In fact, this
normalization is an approximation to the process of replac-
ing K by the closest (under relative entropy error) doubly
stochastic matrix:

Proposition 1 For any non-negative symmetric matrix
K(0), iterating the processK(t+1) ← D−1/2K(t)D−1/2

with D = diag(K(t)1) converges to a doubly stochastic
matrix.

1We refer the reader to [19] for details on the relation between spectral
clustering and normalized cuts

The proof is based on showing that the permanent increases
monotonically, i.e. perm(K(t+1)) ≥ perm(K(t)). Be-
cause the permanent is bounded the process must converge
and if the permanent does not change (at the convergence
point) the resulting matrix must be doubly stochastic. Due
to lack of space we omit the proof but note this process is a
symmetrization of the well known procedure for turning a
non-negative matrix to a doubly stochastic matrix by alter-
nating normalizing the row and column sums [17].

To conclude so far, spectral clustering maximizes
trace(KF ) while enforcingF = GG>, G>G = I and
indirectly, via normalization of the affinity matrix, takes the
first step in making the affinity matrix become closer to a
doubly stochastic matrix. The point we will be making next
is that if one is forced to satisfy only partially the set of
constraints (1)-(3), thenG>G = I is the least important
— its removal is equivalent to making a probabilistic clus-
tering (as we shall see next). On the other hand, the non-
negativity constraintG ≥ 0 is crucial because without it the
entries ofG loose any physical meaning (which for that rea-
son spectral clustering is well defined fork = 2 clusters and
becomes heuristic in nature with larger number of clusters).

In the probabilistic setting, given the pairwise member-
ship probabilitiesKij (e.g.,Kij = e−‖xi−xj‖2), we wish to
recoverGij = P (yi = j | xi) the probability thatxi belongs
to the clusterCj . Under conditional independence assump-
tion yi⊥yj | {xi, xj}, we could evaluate the probability that
xi, xj are clustered together:

Kij =
k∑

r=1

P (yi = r | xi)P (yj = r | xj).

It is not difficult to see by inspection that:

Proposition 2 The input affinity matrixK is completely
positiveK = GG>, G ≥ 0, whereGij = P (yi = j | xi).

The doubly stochastic constraint arises from the assumption
of uniform priorsP (xi) = 1/n andP (yi = j) = 1/k using
the Bayes rule as follows:

(G>1)j =
n∑

i=1

P (yi = j | xi) =
n

k

∑
i

P (xi | yi = j) =
n

k
,

thus G>1 = (n/k)1. We have also: (G1)i =∑k
j=1 P (yi = j | xi) = 1, thusGG>1 = (n/k)1.
To conclude, the fundamental link between the input

affinity matrix K and the output clustering result is that
K is completely positive,K = GG>, G ≥ 0. In ad-
dition, K should be doubly stochastic (or replaced by the
closest doubly stochastic matrix) in order to respect the uni-
form prior assumption on the points and clusters. The dou-
bly stochastic constraint replaces the normalization heuris-
tic employed in the past by practitioners of spectral cluster-
ing. The orthonormality constraintG>G = I is relevant
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only for enforcing a hard clustering, i.e., a point can belong
to one cluster only. In spectral clustering the orthonormality
constraint receives a pivotal role (the eigen-decomposition
arises solely from the orthonormality) — where in fact it
should play a minor role given the analysis above. Instead,
the non-negativity is the crucial missing ingredient in the
factorization process. In other words, the clustering prob-
lem is directly tied to the algebraic problem of finding a
completely positive factorization.

Finally, the connection between clustering and non-
negativity has been raised in the past — but at a heuristic
level. The technique of non-negative matrix factorization
(NMF) [9, 7] has been used to cluster the document/word
matrix into a non-negative set of basis vectors. Documents
are then clustered by commonality with respect to the basis
vectors used in the reconstruction [12] . The non-negativity
constraint in these cases is motivated by achieving asparse
decomposition of the document/word matrix, meaning that
each document is represented by a relatively small collec-
tion of features (word tuples). As we saw above, the fun-
damental link between non-negativity and clustering arises
through a symmetric non-negative decomposition, rather
than a general NMF. Furthermore, the sparsity argument
(which may or may not make sense in NMF) does not really
apply to a symmetric decomposition.

2.1 The CP Factorization Algorithm

Given the affinity matrixK we wish to find a matrixF
which maximizestrace(KF ) under the constraints: (i)F is
doubly stochastic, (ii)F is completely positive with cp-rank
equal tok, i.e.,F = GG>, Gn×k ≥ 0. We will do that in
two phases, first replaceK with the closest symmetric dou-
bly stochastic matrixF , and then look for a CP factorization
of F by minimizing theL2 error: ‖F − GG>‖2 subject to
Gn×k ≥ 0. From the discussion above (Proposition 1), if
K is symmetric and non-negative we could iterate the pro-
cessD−1/2KD−1/2 whereD = diag(K1) and defineF
that way. Later we will describe an alternative procedure
based on an additive normalization which is relevant when
K has negative values (which happens when side informa-
tion is introduced to the clustering process). Thus, our focus
in this section is to find a CP decomposition ofF .

For non-negative positive semidefinite matricesV of
rank k, the problem ofminimal r for which V = GG>,
G ≥ 0 andrank(G) = r has been studied at length in the
literature (cf. [3]). This is the so calledcp-rankproblem.
The cp-rank is greater or equal to the rankk with the lat-
est upper bound standing atcp − rank ≤ k(k + 1)/2 − 1
[2]. Our case is special in the sense that the cp-rank is equal
to the rank, but that on its own is of no help in finding the
decomposition.

A similar decomposition task is the non-negative ma-
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Figure 1:The valuesGij is the probability that pointxi belongs
to clusterCj . The left-hand display contains10 points bridging
the two clear cut clusters. The right-hand display shows the two
values (row ofG) for each of the10 points. One clearly sees that
for the points at the extremes (where cluster membership is clear
cut) one of the values (along theY -axis) is indeed low (close to
zero) and the other is high. The pair of values tends to even out
as the points get closer to the middle where class membership is
ambiguous.

trix factorization (NMF) which looks for anL2 fit of WH,
W,H ≥ 0 and W ∈ Rl×k,H ∈ Rk×l to a given non-
negative matrixF . This problem has been studied as well
with a simple and effective iterative algorithm proposed by
[7]. One would hope that ifF is symmetric then the result-
ing factorizationWH would also come out symmetric and
moreover thatW = H> if F is also CP. This regretfully is
not the case as one can easily construct counter examples.
A recent study by [4] concludes that NMF would generate
a symmetric or CP decomposition only in very specialized
situations. Therefore the NMF machinery is of no help as
well.

What makes our task manageable is that the diagonal en-
tries ofK (the probability thatxi, xi are clustered together
— which is an undefined measure) can be omitted from con-
sideration. It is the diagonal elements that make the equa-
tion ‖F − GG>‖2 be of higher order than two — in other
words, if we can keep the energy function to be of a sec-
ond order then we could guarantee a converging positive
preserving gradient update scheme. Removing the diago-
nal elements ofK from consideration is also a particular
instance of aweighteddecomposition (see later).

We will derive now an iterative update rule and prove
its convergence. Letf() denote the optimization function
(1/2)‖F −

∑
j gjg>j ‖2 whereg1, ..., gk are the columns of

G. The differentialdf is derived below:

df = d
1
2

< F −
∑

j

gjg>j , F −
∑

j

gjg>j >

= <
∑

j

gjg>j − F , d(
∑

j

gjg>j ) >
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= <
∑

j

gjg>j − F ,
∑

j

(dgj)g
>
j + gj(dgj)

> >

where< A, B >=
∑

i,j aijbij is the inner-product opera-
tor. The partial derivative with respect togrs (thes’th entry
of gr) is:

∂f

∂grs
= <

∑
j

gjg>j − F , esg>r + gre>s >

= 2
∑

j

gjs(g>j gr)− 2g>r fs

wherefs is thes’th column ofF . The partial derivative of
the optimization function where the diagonal is weighted
out becomes:

∂f

∂grs
= 2

k∑
j=1

gjs

n∑
i=1,i 6=s

gjigri − 2
n∑

i=1,i 6=s

griFsi (4)

We will be using a ”positive preserving” gradient descent
schemegrs ← grs − δrs∂f/∂grs. Following [7] we set the
gradient step sizeδrs as follows:

δrs =
grs

2
∑k

j=1 gjs

∑n
i 6=s gjigri

(5)

After substitution of eqn. 5 into the gradient descent equa-
tion we obtain a multiplicative update rule:

grs ←
grs

∑n
i 6=s griFsi∑k

j=1 gjs

∑n
i 6=s gjigri

(6)

The update rule preserves positivity, i.e., if the initial guess
for G is non-negative andF is symmetric and non-negative,
then all future updates will maintain non-negativity. We
will now prove that this update rule reduces the optimiza-
tion energy. Letf(grs) be the energy as a function ofgrs

(all other entries ofG remain constant) and letg′rs be the
updated value according to eqn. 6. We wish to show that
if we make a gradient descent with a step sizeδrs given by
eqn. 5 (which as we saw leads to a positive-preserving up-
date), thenf(g′rs) ≤ f(grs). They key is thatδrs is smaller
than the inverse second derivative:

Proposition 3 The update schemeg′rs = grs−δrs∂f/∂grs,
with δrs given by eqn. 5 and the partial first derivative
is given by eqn. 4, reduces the optimization function, i.e.,
f(g′rs) ≤ f(grs).

Proof: The second derivative is:

∂2f

∂grs∂grs
= 2

n∑
i=1;i 6=s

g2
ri,

and the step sizeδrs satisfies:

δrs =
grs

2
∑k

j=1 gjs

∑n
i 6=s gjigri

≤ grs

2grs

∑n
i 6=s g2

ri

=
1

∂2f/∂grs∂grs

The Taylor expansion off(grs+h) with h = −δrs∂f/∂grs

is:

f(g′rs) = f(grs)− δrs(
∂f

∂grs
)2 +

1
2
δ2
rs(

∂f

∂grs
)2

∂2f

∂grs∂grs
,

from which follows:

f(grs)− f(g′rs) = δrs(
∂f

∂grs
)2(1− 1

2
δrs

∂2f

∂grs∂grs
) ≥ 0,

sinceδrs∂
2f/∂grs∂grs ≤ 1.

We apply the update rule in a Gauss-Seidel fashion ac-
cording to a row-major raster scan of the entries ofG (a
row-major raster scan has the advantage of enabling effi-
cient caching). Since the energy is lower-bounded, twice
differentiable, and is monotonically decreasing via the up-
date rule, yet cannot decrease beyond the lower bound (i.e.,
positive preserving), then the process will converge onto a
local minimum of the optimization function‖F − GG>‖2
with the diagonal removed.

Finally, a weighted decomposition can be performed
with a straightforward modification. Given a symmetric
non-negative weight matrixW we wish to recoverG ≥ 0
that minimizes‖F −GG>‖2W , where‖A‖2W =

∑
ij wija

2
ij

is a weighted norm. The need for a weighted decomposition
typically arises when not all entries of the affinity matrix are
computed, i.e., only a sample of the pairsxi, xj are drawn
and thusK (andF ) is sparse. This could happen with very
large datasets where it becomes too expensive to consider
all possible pairs of points. Since the vanishing entries of
K do not indicatea zero probability that the corresponding
pair of points belong to the same cluster, a weight matrix (in
this case binary) is necessary to weight-out the vanishing
entries ofF from the decomposition. Note that the preced-
ing analysis was a special case withW = 11>−I (matrix of
all 1s with a zero diagonal). The partial derivative becomes:

∂f

∂grs
= 2

k∑
j=1

gjs

n∑
i=1

wsigjigri − 2
n∑

i=1

wsigriFsi

and the update rule becomes:

grs ←
grs

∑n
i=1 wsigriFsi∑k

j=1 gjs

∑n
i=1 wsigjigri

(7)
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(a) (b) (c) (d)

Figure 2:Comparing multiplicative versus additive normalization (approximations of doubly stochastic) (a) Ncuts using the conventional
multiplicative normalization fork = 2 clusters compared to (b) using the additive normalization. (c) and (d) are withk = 5 clusters. Note
that in (d) the outer rim is assigned into a single cluster. The results of the CP factorization are almost identical to (b) and (d).

2.2 Clustering With Side Information

In this section we will introduce additional considerations
when partial label information is added to the mix — also
known as ”side” information. For example, a user may in-
dicate that a certain pair of points in the dataset are judged
to be similar and a certain other pair of points are judged
to arise from separate clusters. This type of information is
useful not only as a way to simplify a difficult clustering
task but also in some cases the data contains multiple clus-
tering solutions. For example, face images can be clustered
based on person identity or illumination variation or facial
expressions, documents can be clustered based on topic, au-
thorship or writing style, and so forth.

This type of problem was addressed in the past from var-
ious standpoints. In [20] the pairwise label consistency data
was used to shape the Euclidean distance metric by looking
for an optimal weighting matrix which parameterizes the
Mahalanobis distances in the data space. Others (cf. [15])
incorporate the label consistency into a k-means or more
generally a Gaussian mixture EM model to find a partition-
ing that reflect the user’s notion of meaningful clusters, or
use the side information for extracting meaningful features
from the data [5, 14].

We define a ”label consistency” symmetric matrixR
such thatRij = 1 if it is known apriori thatxi, xj are
clustered together,Rij = −1 if they are knownnot to be
clustered together, andRij = 0 if label consistency infor-
mation is not given. Replace the affinity matrixK with
K ′ = K + αR with 0 < α ≤ 1 is a balancing factor. The
non-vanishing entries ofR provide external (user based) in-
formation which could support or suppress the local affini-
ties.

The combined local and external affinity matrixK ′ is
symmetric butnot necessarilynon-negative. As we saw in
the previous section, the doubly-stochastic constraint is an
important ingredient in the success of the clustering process,
however, the multiplicative normalizationD−1/2K ′D−1/2

(whether as a single step or by iterating the normaliza-
tion until convergence) is not appropriate here. The mul-
tiplicative normalization will not turn a negative matrix to
a non-negative one, thus, instead we will introduce an ad-
ditive normalization by setting up the following optimiza-
tion function:minF ‖F −K ′‖2 subject to a scaled doubly
stochastic constraint:F>1 = F1 = β1, andF = F>. We
leave the non-negativity constraintF ≥ 0 to later. Since
‖F −K ′‖2 = trace((F −K ′)>(F −K ′)) we obtain the
optimization problem below (usingK ′ = K ′>):

max
F

trace(K ′F − 1
2
F>F ) (8)

s.t. F>1 = F1 = β1, F = F>.

Setting the derivative of the Lagrangian of eqn. 8 (noting
thatF should be symmetric) to zero yields:

F = K ′ + µ1> + 1µ>, (9)

whereµ is the vector of Lagrange multipliers. Multiply both
sides by1 noting thatF1 = β1 we obtain:

µ = (11> + nI)−1(βI −K ′)1

=
1
n

(I − 1
2n

11>)(βI −K ′)1

Substitutingµ back into eqn. 9 we obtain:

F = K ′ +

(
β

n
I +

1>K ′1
n2

I − 1
n

K ′

)
11> − 1

n
11>K ′

(10)
The parameterβ is now set so thatF ≥ 0. In other words,
the non-negativity requirement is circumvented by having a
scaled doubly stochasticity. We then proceed with the CP
decomposition process (looking forG ≥ 0 that minimizes
‖F −GG>‖2) described in the previous section.
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Figure 3:CP factorization (top row) versus Ncuts (bottom row). Additive normalization used for the dot patterns and multiplicative for
the real image examples.

3 Experiments

Our algorithm (update rule eqn. 6 or eqn. 7 in the weighted
case) produces a probabilistic assignment matrixG whose
valueGij is the probability that pointxi belongs to cluster
Cj (recall that the omission ofG>G = I makesG rep-
resent probabilistic assignments). A ”hard” clustering can
be made by assigningxi to the cluster with highest proba-
bility of assignment (maximum over the corresponding row
of G). Consider the point-set of Fig. 1 where most of the
points clearly fall into one of the two clusters except for
a subset of10 points bridging between the two point sets
along a straight line path. The matrixG has two columns,
thus for every point (row ofG) we have two values — one
should be high and the other should be low if indeed there is
a clear cut membership assignment. The right-hand display
of Fig. 1 shows the pair of values associated with each of
those10 bridging points. One clearly sees that for the points
at the extremes (where cluster membership is clear cut) one
of the values (along theY -axis) is indeed low (close to zero)
and the other is high. The pair of values tends to even out as
the points get closer to the middle where class membership
is ambiguous.

Next we look into comparative results with spectral clus-
tering (using Normalized-Cuts as the representative of the
class of algorithms). There are two issues to consider: one
is the choice of normalization of the affinity matrixK, i.e.,
multiplicative D−1/2KD−1/2 or additive (eqn. 10); and
the second is the choice of the clustering algorithm to see
whether the CP decomposition yields more accurate results
than spectral clustering.

As for normalization, in all our experiments the additive
normalization worked better than the conventional multi-
plicative. The additive normalization is the result of anL2

fit of a doubly stochastic matrix toK whereas the multi-
plicative normalization is anapproximationto a relative en-
tropy fit (Prop. 1). Since both the spectral and the CP factor-
ization rely on anL2 error model, having the normalization
step fall under a different error model introduces a loss in
the overall accuracy — this is our conjecture. Fig. 2 illus-
trates this with two different data sets (a),(b) and (c),(d).
The result of Ncuts (with the conventional multiplicative
normalization) withk = 2 is displayed in (a) and with the
additive normalization in (b). Likewise for (c) and (d) with
k = 5 clusters. Note that in (d) the points on the outer rim
are clustered together, unlike in (c). The performance of the
CP factorization was almost identical to (b) and (d), respec-
tively. Iterating the multiplicative normalization (Prop. 1)
had only a minor improvement to (a) and (c).

The disadvantage of the additive normalization is that
sparsity ofK is not preserved, i.e., vanishing entries inK
do not necessarily vanish followed by the normalization.
This is especially important when applying the clustering
scheme to grey-level images with the affinity matrix de-
signed such that the affinity between distant pixels are at-
tenuated — thus effectively creating a sparseK [16]. In
those cases we used the multiplicative normalization. Fig. 3
shows additional patterns and real image segmentation with
the resulting clustering by CP factorization (top row) and
Ncuts (bottom row). The dot patterns examples were ap-
plied with the additive normalization and the real image ex-
amples with the multiplicative and with the affinity matrix
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(a) (b)

Figure 5:(a) donut pattern clustered using K-means and CP fac-
torization. Both algorithms were subject to 1000 runs starting
from random initial guesses. The CP produced the same result
shown here for all trials where K-means succeeded only 9 out of
the 1000 trials. (b) same pattern but with only 10% of the pairwise
distances sampled — the remaining entries ofK were given zero
values. The CP clustering produced the correct result (shown in
(a)) whereas the Ncuts produced the result shown in (b).

design described in [16]. Fig. 4 illustrates the use of label
consistency information for improving a segmentation.

We also compared the accuracy of the clustering to the
K-means result over 1000 trials starting with random ini-
tial guesses. Unlike spectral clustering, both K-means and
CP factorization rely on an iterative scheme bound to set-
tle on a local optimum. Fig. 5a shows a donut pattern used
for this type of experiment. The resulting clustering was
consistently achieved on all 1000 trials of the test whereas
only 9 out of 1000 K-means runs succeeded in converging
to this solution (all other solutions roughly divided the pat-
tern across the diameter of the big circle).

Finally, we used the same pattern to test the weighted
version of the CP factorization (eqn. 7). We sampled 10% of
the pairs of points in the donut pattern and run the weighted
CP factorization using zero weights for all the un-sampled
entries inK. The resulting clustering was identical to
Fig. 5a whereas the Ncuts running on the same (sparse)K
produced the result in Fig. 5b. The poor result of Ncuts
is not surprising because the scheme has no way to know
that the vanishing entries ofK should not be considered. A
weighted version of spectral decomposition is fairly com-
plex (see [18]) whereas the weighted version of CP factor-
ization requires only a straightforward modification of the
original scheme.

4 Discussion

To achieve a good clustering result, the quality of the ”affin-
ity” matrix K, which measures the probabilityKij that the
pair xi, xj are clustered together, is by far the crucial ingre-
dient. This is similar to the roles played by feature mea-

surements and classification engines in pattern recognition
— given good discriminatory features even a naive classifier
will do. In this paper we focused on the clustering engine
and this is where most of the past research has been con-
ducted as well.

What we have shown in this paper is that all the past
research on this topic can be condensed into a single prin-
ciple which is thecomplete positivityof the affinity matrix
K = GG>, G ≥ 0. We have shown how to start from
the K-means scheme and arrive to the CP principle and also
how to start with a probabilistic scheme based on the no-
tion of conditional independence and arrive to the same CP
framework. We have seen that the normalization attempts
used in the past are related to a doubly stochastic constraint
on K arising from uniform priors on the data points. We
have shown that the difference between the kernel K-means
setup and the probabilistic setup is that with K-means one
adds an orthonormality constraintG>G = I which forces
”hard” clustering. The hard clustering desire is responsi-
ble for the spectral clustering algorithms which as a result
give an (unwarranted) pivotal role to orthonormality instead
of the more crucial constraint of non-negativity. In other
words, starting with an admissibleK (should be doubly
stochastic), a completely positive factorizationK = GG>,
G ≥ 0 will provide a probabilistic clustering, whereas an
orthonormal factorizationK = GG>, G>G = I (with-
out non-negativity) has no physical meaning (and which be-
comes worse beyond the special case of two clusters). Nev-
ertheless, from a practical standpoint, although all our ex-
periments have shown that the CP factorization generates
better clusters (especially withk > 2), the spectral cluster-
ing results were not that far behind. This brings us back to
the beginning of this section: the design and normalization
of the affinity matrix is by far more critical than anything
else in the clustering process.

Finally, the CP principle naturally extends to higher di-
mensions. In many clustering situations it is more natural
to compute affinities amongn-tuples, rather than among
pairs of data points. This has been pointed out recently
in [13, 1, 6]. Let Ki1,...,in be ann-way array (tensor)
representing the (known) probability that pointsxi1 , ..., xin

are clustered together, and letG be defined as before, i.e.,
Gij = P (yi = j | xi). Then, using the same arguments as
above (conditional independence), we have:

Ki1,...,in
=

k∑
r=1

P (yi1 = r | xi1) · · · P (yin
= r | xin

)

=
k∑

r=1

Gi1,r · · ·Gin,r

which means thatK =
∑k

r=1 gr ⊗ ... ⊗ gr =
∑

r g⊗n
r

whereG = [g1, ..., gk]. In other words, the affinity ten-
sor must be a super-symmetric non-negative rank=k tensor.
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(a) (b) (c) (d)

Figure 4: Use of label consistency to improve clustering. (a) CP segmentation withk = 5, (b) foreground (head and shoulders) and
background (part of the chair) strips. Points in the foreground are ”label consistent”,Rij = 1, and points between foreground and
background are ”label inconsistent”,Rij = −1. (c) CP clustering with side information, (d) the resulting ”head and shoulders” cluster.

The update rule devised for the casen = 2 can be naturally
extended to the generaln > 2 (left for future publication -
but for preliminary examples see [13]). Extending spectral
clustering and the analogy to graph cuts to higher dimen-
sions requires the use of hyper-graphs or ways of flattening
down the affinity tensor to a matrix followed by a spectral
decomposition [1, 6] — our comments above on the appar-
ent excessive role of orthonormality in spectral clustering
should be even further amplified in higher dimensions.
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