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Algebraic Functions For Recognition

Amnon Shashua

Abstract—In the general case, a trilinear relationship between
three perspective views is shown to exist. The trilinearity result is
shown to be of much practical use in visual recognition by align-
ment—yielding a direct reprojection method that cuts through
the computations of camera transformation, scene structure and
epipolar geometry. Moreover, the direct method is linear and sets
a new lower theoretical bound on the minimal number of points
that are required for a linear solution for the task of reprojection.
The proof of the central result may be of further interest as it
demonstrates certain regularities across homographies of the
plane and introduces new view invariants. Experiments on simu-
lated and real image data were conducted, including a compara-
tive analysis with epipolar intersection and the linear combination
methods, with results indicating a greater degree of robustness in
practice and a higher level of performance in reprojection tasks.

Index Terms—Visual recognition, alignment, reprojection,
projective geometry, algebraic and geometric invariants.

I. INTRODUCTION

W E establish a general result about algebraic connections
across three perspective views of a 3D scene and dem-
onstrate its application to visual recognition via alignment. We
show that, in general, any three perspective views of a scene
satisfy a pair of trilinear functions of image coordinates. In the
limiting case, when all three views are orthographic, these
functions become linear and reduce to the form discovered by
[38]. Using the trilinear result one can manipulate views of an
object (such as generate novel views from two model views)
without recovering scene structure (metric or non-metric),
camera transformation, or even the epipolar geometry. Moreo-
ver, the trilinear functions can be recovered by linear methods
with a minimal configuration of seven points. The latter is
shown to be new lower bound on the minimal configuration
that is required for a general linear solution to the problem of
re-projecting a 3D scene onto an arbitrary novel view given
corresponding points across two reference views. Previous
solutions rely on recovering the epipolar geometry which, in
turn, requires a minimal configuration of eight points for a
linear solution.

The central results in this paper are contained in Theo-
rems 1, 2, and 3. The first theorem states that the variety of
views y of a fixed 3D object obtained by an uncalibrated pin-
hole camera satisfy a relation of the sort F(y, v, y,) = 0,
where y,, Y, are two arbitrary views of the object, and F has a
special trilinear form. The coefficients of F can be recovered
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linearly without establishing first the epipolar geometry, 3D
structure of the object, or camera motion. The auxiliary Lem-
mas required for the proof of Theorem 1 may be of interest on
their own as they establish certain regularities across projec-
tive transformations of the plane and introduce new view in-
variants (Lemma 4).

Theorem 2 addresses the problem of recovering the coeffi-
cients of the trilinear functions in the most economical way. It
is shown that among all possible trilinear functions across
three views, there exists at most four linearly independent such
functions. As a consequence, the coefficients of these func-
tions can be recovered linearly from seven corresponding
points across three views.

Theorem 3 is an obvious corollary of Theorem 1 but con-
tains a significant practical aspect. It is shown that if the views
V1, W, are obtained by parallel projection, then F reduces to a
special bilinear form—or, equivalently, that any perspective
view Wy can be obtained by a rational linear function of two
orthographic views. The reduction to a bilinear form implies
that simpler recognition schemes are possible if the two refer-
ence views (model views) stored in memory are orthographic.

These results may have several applications (discussed in
Section VI), but the one emphasized throughout this paper is
for the task of recognition of 3D objects via alignment. The
alignment approach for recognition ([37], [16], and references
therein) is based on the result that the equivalence class of
views of an object (ignoring self occlusions) undergoing 3D
rigid, affine or projective transformations can be captured by
storing a 3D model of the object, or simply by storing at least
two arbitrary “model” views of the object—assuming that the
correspondence problem between the model views can some-
how be solved ([27], [5], [33]). During recognition a small
number of corresponding points between the novel input view
and the model views of a particular candidate object are suffi-
cient to “reproject” the model onto the novel viewing position.
Recognition is achieved if the reprojected image is success-
fully matched against the input image. We refer to the problem
of predicting a novel view from a set of model views using a
limited number of corresponding points, as the problem of
reprojection.

The problem of reprojection can in principal be dealt with
via 3D reconstruction of shape and camera motion. This in-
cludes classical structure from motion methods for recovering
rigid camera motion parameters and metric shape [36], [18],
[35], [14], [15], and more recent methods for recovering non-
metric structure, i.e., assuming the objects undergo 3D affine
or projective transformations, or equivalently, that the cameras
are uncalibrated [17], [25], [39], [10], [13], [30]. The classic
approaches for perspective views are known to be unstable
under errors in image measurements, narrow field of view, and
internal camera calibration {3], [9], [12], and therefore, are
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unlikely to be of practical use for purposes of reprojection.
The non-metric approaches, as a general concept, have not
been fully tested on real images, but the methods proposed so
far rely on recovering first the epipolar geometry—a process
that is also known to be unstable in the presence of noise.

It is also known that the epipolar geometry alone is suffi-
cient to achieve reprojection by means of intersecting epipolar
lines {24], [6], [8], [26], [23], [11] using at least eight corre-
sponding points across the three views. This, however, is pos-
sible only if the centers of the three cameras are non-
collinear—which can lead to numerical instability unless the
centers are far from collinear—and any object point on the tri-
focal plane cannot be re-projected as well. Furthermore, as
with the non-metric reconstruction methods, obtaining the
epipolar geometry is at best a sensitive process even when
dozens of corresponding points are used and with the state of
the art methods (see Section V for more details and compara-
tive analysis with simulated and real images).

For purposes of stability, therefore, it is worthwhile exploring
more direct tools for achieving reprojection. For instance, in-
stead of reconstruction of shape and invariants we would like to
establish a direct connection between views expressed as func-
tions of image coordinates alone—which we call “algebraic
functions of views.” Such a result was established in the ortho-
graphic case by [38). There it was shown that any three ortho-
graphic views of an object satisfy a linear function of the corre-
sponding image coordinates—this we will show here is simply a
limiting case of larger set of algebraic functions, that in general
have a trilinear form. With these functions one can manipulate
views of an object, such as create new views, without the need to
recover shape or camera geometry as an intermediate step—all
what is needed is to appropriately combine the image coordi-
nates of two reference views. Also, with these functions, the
epipolar geometries are intertwined, leading not only to absence
of singularities, and a lower bound on the minimal configuration
of points, but as we shall see in the experimental section to more
accurate performance in the presence of errors in image meas-
urements. Part of this work (Theorem 1 only) was presented in
concise form in [31].

II. NOTATIONS

We consider object space to be the three-dimensional pro-
jective space P 3, and image space to be the two-dimensional
projective space P2 Let ® c P be a set of points standing
for a 3D object, and let w; c P denote views (arbitrary), in-
dexed by i, of ®. Given two cameras with centers located at
0, 0’ € P>, respectively, the epipoles are defined to be at the
intersection of the line OO” with both image planes. Because
the image plane is finite, we can assign, without loss of gen-
erality, the value 1 as the third homogeneous coordinate to
every observed image point. That is, if (x, y) are the observed
image coordinates of some point (with respect to some arbi-
trary origin—say the geometric center of the image), then
p = (x, y, 1) denotes the homogeneous coordinates of the im-
age plane. Note that this convention ignores special views in
which a point in @ is at infinity in those views—these singular
cases are not modeled here.

Since we will be working with at most three views at a time,
we denote the relevant epipoles as follows: let v € y; and
V' € y, be the corresponding epipoles between views y4, y,,
and let v € w, and v” € y; the corresponding epipoles be-
tween views yi, ;. Likewise, corresponding image points
across three views will be denoted by p = (x, y, 1), p’ = (', ', 1)
and p”=(x”, y% 1). The term “image coordinates” will denote
the non-homogeneous coordinate representation of P 2 eg.,
x, ), (¢, y), (x”, ) for the three corresponding points.

Planes will be denoted by m;, indexed by £, and just r if only
one plane is discussed. All planes are assumed to be arbitrary
and distinct from one another. The symbol = denotes equality
up to a scale, GL, stands for the group of n X n matrices, and
PGL, is the group defined up to a scale.

III. THE TRILINEAR FORM

The central results of this paper are presented in the follow-
ing two theorems. The remaining of the section is devoted to
the proof of this result and its implications.

THEOREM 1[Trilinearity]. Let w1, s, Y3 be three arbitrary
perspective views of some object, modeled by a set of points
in 3D. The image coordinates (x,y) € Wi, (X', ') € y, and
(x”% ¥ € yi of three corresponding points across three
views satisfy a pair of trilinear equations of the following
form:

xaux + 0y + 05) + X% (O4x + sy + O)

+ X' (0hx + Oy + O) + Qox + Oy + 02 =0,

and
¥ (Bix + Boy + Bs) + ¥ %' (Bax + Bsy + Ps)

+ X' (Byx + Bey + Bo) + Prox + Buy + P2 =0,
where the coefficients &, B, j = 1, ..., 12, are fixed for all
points, are uniquely defined up to an overall scale, and
o=0,j=1,..6.
The following auxiliary propositions are used as part of the
proof.

LEMMA 1 [Auxiliary—Existence]. Let A € PGL3 be the pro-
jective mapping (homography) y, = ¥, due to some plane
7. Let A be scaled to satisfy p, = Ap, + v/, where
P, € Wi and p, € y, are corresponding points coming from
an arbitrary point P, & . Then, for any corresponding pair
p€ v andp’ € y, coming from an arbitrary point P € P3,
we have

p=Ap+ kv

The coefficient k is independent of y», i.e., is invariant to
the choice of the second view.

The lemma, its proof and its theoretical and practical impli-
cations are discussed in detail in [28], [32]. Note that the par-
ticular case where the homography A is affine, and the epipole
V' is on the line at infinity, corresponds to the construction of
affine structure from two orthographic views [17]. In a nut-
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shell, a representation Ry of P 3 (tetrad of coordinates) can
always be chosen such that an arbitrary plane = is the plane at
infinity. Then, a general uncalibrated camera motion generates
representations R which can be shown to be related to R, by
an element of the affine group. Thus, the scalar k is an affine
invariant within a projective framework, and is called a rela-
tive affine invariant. A ratio of two such invariants, each cor-
responding to a different reference plane, is a projective in-
variant [32]. For our purposes, there is no need to discuss the
methods for recovering k—all we need is to use the existence
of a relative affine invariant k associated with some arbitrary
reference plane 7 which, in turn, gives rise to a homography A.

DEFINITION 1. Homographies A; € PGL; from y,— y,; due to
the same plane 7, are said to be scale-compatible if they
are scaled to satisfy Lemma 1, i.e., for any point P € @
projecting onto p € Y, and p' € v, there exists a scalar k
that satisfies

pl=Ap + ko,

for any view y, where vie y; is the epipole with yn (scaled
arbitrarily).

LEMMA 2 [Auxiliary—Uniqueness]. Let A, A’ € PGL;3 be two
homographies of Y, — , due to planes m, m, respec-
tively. Then, there exists a scalar s, that satisfies the equa-
tion:

A=-sA"=[av, BV, V],
for some coefficients , B, .

PROOF. Let g € y; be any point in the first view. There exists a
scalar s, that satisfies v = Aq - s,A’q. Let H = A - s A’, and
we have Hg = v'. But, as shown in [29], Av = V' for any
homography v, — 5 due to any plane. Therefore, Hv = V'
as well. The mapping of two distinct points g, v onto the
same point v’ could happen only if H is the homography due
to the meridian plane (coplanar with the projection center
0), thus Hp = v’ for all p € y4, and s, is a fixed scalar s.
The latter, in turn, implies that A is a matrix whose columns
are multiples of v". w]

LEMMA 3 [Auxiliary for Lemma 4]. Let A, A" € PGLj be
homographies from y, — vy, due to distinct planes m, T,
respectively, and B, B’ € PGL; be homographies from
yn —> ys due to my, T, respectively. Then, A" = AT for some
T e PGLy, and B=BCTC ™', where Cv = 7.

PROOF. Let A = A, lAl, where A;, A, are homographies from

Vi, Y, onto m;, respectively. Similarly B = B, 'B,, where
B,, B, are homographies from yj;, y; onto &, respectively.
Let AV = (¢, ¢3, c3)T, and let C = Al_]diag(cl, Cy, C3)A].
Then, B = AIC", and thus, we have B = B{'A,C’l. Note
that the only difference between A, and B, is due to the dif-
ferent location of the epipoles v, V', which is compensated

by C(Cv = V). Let E; € PGL;3 be the homography from v,

to m,, and E; € PGL; the homography from m, to ;. Then
with proper scaling of E; and E, we have

A’ = Ay'E)E, = AAT'E,E, = AT,
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and with proper scaling of C we have,
B = B;'E,EC”' = BCA'E,EC”' =BcTC™'. DO

LEMMA 4 [Auxiliary—Uniqueness]. For scale-compatible
homographies, the scalars s, ¢, B, v of Lemma 2 are invari-
ants indexed by Vi, m, m,. That is, given an arbitrary third
view ys, let B, B’ be the homographies from y, — Y due to
T, T, respectively. Let B be scale-compatible with A, and

B’ be scale-compatible with A’. Then,
B—sB =[o”, ", pv'].

PROOF. We show first that s is invariant, i.e., that B — sB’ is a
matrix whose columns are multiples of v”. From Lemma 2
and Lemma 3 there exists a matrix H, whose columns are
multiples of v/, a matrix T that satisfies A” = AT, and a scalar

s such that I — sT = A" H. After multiplying both sides by
BC, and then pre-multiplying by C ! we obtain
B—sBCTC™' = BCA'HC™".

From Lemma 3, we have B’ = BCTC ™. The matrix A7'H has
columns which are multiples of v (because AWV =v), CcA'H
is a matrix whose columns are multiple of v, and BCA'H is
a matrix whose columns are multiples of v”. Pre-multiplying
BCA™'H by C* does not change its form because every col-
umn of BCATHC is simply a linear combination of the
columns of BCA™H. As a result, B — sB’ is a matrix whose
columns are multiples of v”.

Let H=A — sA” and H = B—sB’. Since the homographies
are scale compatible, we have from Lemma 1 the existence
of invariants k, k" associated with an arbitrary p € y;, where
kis dueto 7, and K’ is due to mp: p' = Ap + kv' = A'p + k'v'
and p” = Bp + kv = B’p + k'v”. Then from Lemma 2 we
have Hp = (sk’ — k)" and I:Ip = (sk’—k)v”. Since p is arbi-
trary, this could happen only if the coefficients of the mul-
tiples of v/ in H and the coefficients of the multiples of v” in
H, coincide. a

PROOF OF THEOREM. Lemma 1 provides the existence part of
theorem, as follows. Since Lemma 1 holds for any plane,
choose a plane m; and let A, B be the scale-compatible
homographies ¥, — y, and y; — yA, respectively. Then,
for every point p € y,, with corresponding points p* € ¥,
p” € yn, there exists a scalar k that satisfies: p’ = Ap + k',
and p” = Bp + kv”. We can isolate k from both equations
and obtain:

.7 ’ 77 27 ’.
k= vi—x'vi  _ va=yvs Yy n—xv M
- ’ T - ’ T - ’ ’ T ’
(xa3—a]) P (ya3—a2) p (xaz“yal) pP
” ”_n ” ”n_n ", " ”n,
VimX Vs VoY Vs Yvn-xv @)
- - - s

(b =b)) p ("by=b,) P (x"by=y"by ) p
where by, by, b3 and a4, a,, as are the row vectors of A and B
and v' = (v], v4, v§), v = (vj> v3, v3). Because of the in-
variance of k we can equate terms of (1) with terms of (2)
and obtain trilinear functions of image coordinates across
three views. For example, by equating the first two terms in
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each of the equations, we obtain:
T 2
x"(vibs = vim) p—x"x'(vibs "Vé’a3)TP 3)

+ x'(viby —v{'a3)Tp-—(v1’bl 'Vl"al)TP =0.

In a similar fashion, after equating the first term of (1) with
the second term of (2), we obtain:
” ’ 7’ T ”_.r 7 ”, T
y"(vibs —vim) p=y"x'(vibs - vias) p @

+ x'(vébz —vé’a3)Tp—(v,’b2 -vya )TP =0.

Both equations are of the desired form, with the first six
coefficients identical across both equations.

The question of uniqueness arises because Lemma 1 holds
for any plane. If we choose a different plane, say m,, with
homographies A’, B’, then we must show that the new
homographies give rise to the same coefficients (up to an
overall scale). The parenthesized terms in (3) and (4) have

the general form: vib; —via;, for some i and j. Thus, we

need to show that there exists a scalar s that satisfies
v/(a; - sa)) = v/(b; - sb}).
This, however, follows directly from Lemmas 2 and4. 0O

The direct implication of the theorem is that one can gener-
ate a novel view (y3) by simply combining two model views
(1, ¥»). The coefficients ¢; and f; of the combination can be
recovered together as a solution of a linear system of 17 equa-
tions (24—6-1) given nine corresponding points across the
three views (more than nine points can be used for a least-
squares solution).

In the next theorem we obtain the lower bound on the num-
ber of points required for solving for the coefficients of the
trilinear functions. The existence part of the proof of Theo-
rem 1 indicates that there exists nine trilinear functions of that
type, with coefficients having the general form vb; —via,.
Thus, we have at most 27 distinct coefficients (up to a uniform
scale), and thus, if more than two of the nine trilinear functions
are linearly independent, we may solve for the coefficients
using less than nine points. The next theorem shows that at
most four of the trilinear functions are linearly independent
and consequently seven points are sufficient to solve for the
coefficients.

THEOREM 2. There exists nine distinct trilinear forms of the
type described in Theorem 1, of which at most four are
linearly independent. The coefficients of the four trilinear
forms can be recovered linearly with seven corresponding
points across the three views.

PROOF. The existence of nine trilinear forms follow directly
from (1) and (2). Let @; = v/b; —vja;. The nine forms are

given below (the first two are (3) and (4) repeated for con-
venience):

», T wr T T T
x"opp-x"x'app+x’azp-a;p=0,
T w o+, T 7T T
yapp—yxaynp+x’oayp-o,pp =0,

n T ” o, ’
x"ayp-x"yanp+yayp-ayp =0, (5)

x"a§3p—y”y'a}3p+y'a§2p—a§2p =0, ©
Y'Xaqp-x"xahp+x"ahp-y'aip=0, (1)
yadp-xyahp e -yalp =0, ®
Xy osp-x"x'agp+xayp-yap=0, ®
Yy alsp—y'xagptxapp-yanpp=0,  (10)
X"y ahp—x"x'app+y'Xayp-yyaip =0, (11

For a given triplet p, p’, p” the first four functions on the list
produce a 4 X 27 matrix. The rank of the matrix is four be-
cause it contains four orthogonal columns (columns associ-
ated with o4y, G4y, 01, and ), therefore these functions
are linearly independent. Since we have 27 coefficients, and
each triplet p, p’, p” contributes four linear equations, then
seven corresponding points across the three views provide a
sufficient number of equations for a linear solution for the
coefficients (given that the system is determined up to a
common scale, seven points produce two extra equations
which can be used for consistency checking or for obtaining
a least squares solution).

The remaining trilinear forms are linearly spanned by the
first four, as follows:

(7) = y"(3)-x"(4)
(8) = y(5)-x"(6)
©) = y3)-x0)
(10) = y'(4)- x'(6)
(11) = ¥y (3) = "y () + x"(6)~ y"x'(5)

where the numbers in parentheses represent the equation
numbers of the various trilinear functions. O

Taken together, both theorems provide a constructive means
for solving for the positions x”, y” in a novel view given the
correspondences p, p’ across two model views. This process of
generating a novel view can be easily accomplished without
the need to explicitly recover structure, camera transformation,
or even just the epipolar geometry—and requires fewer corre-
sponding points than any other known alternative.

The solution for x”, y” is unique without constraints on the
allowed camera transformations. There are, however, certain
camera configurations that require a different set of four trilin-
ear functions from the one suggested in the proof of Theo-
rem 2 . For example, the set of (5), (6), (9), and (10) are also
linearly independent. Thus, for example, in case v; and vj
vanish simultaneously, i.e., v/ = (0, 1, 0), then that set should
be used instead. Similarly, (3), (4), (9), and (10) are linearly
independent, and should be used in case v* = (1, 0, 0). Similar
situations arise with v’ = (1, 0, 0) and v” = (0, 1, 0) which can
be dealt by choosing the appropriate basis of four functions
from the six discussed above. Note that we have not addressed
the problem of singular configurations of seven points. For
example, its clear that if the seven points are coplanar, then
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their correspondences across the three views could not possi-
bly yield a unique solution to the problem of recovering the
coefficients. The matter of singular surfaces has been studied
for the eight-point case necessary for recovering the epipolar
geometry [19], [14], [22]. The same matter concerning the
results presented in this paper is an open problem.

Moving away from the need to recover the epipolar geome-
try carries distinct and significant advantages. To get a better
idea of these advantages, we consider briefly the process of
reprojection using epipolar geometry. The epipolar intersec-
tion method can be described succinctly (see [11]) as follows.
Let F,;3 and Fy; be the matrices (“fundamental” matrices in
recent terminology [10]) that satisfy p”Fi3p = 0, and p”F3p "= 0.
Then, by incidence of p” with its epipolar line, we have:

p”=Fip X Fyp'. (12)

Therefore, eight corresponding points across the three views
are sufficient for a linear solution of the two fundamental ma-
trices, and then all other object points can be re-projected onto
the third view. Equation (12) is also a trilinear form, but not of
the type introduced in Theorem 1. The differences include

1) epipolar intersection requires the correspondences com-
ing from eight points, rather than seven,

2) the position of p” is solved by a line intersection process
which is singular in the case the three camera centers are
collinear; in the trilinearity result the components of p”
are solved separately and the situation of three collinear
cameras is admissible,

3) the epipolar intersection process is decomposable, i.e.,
only two views are used at a time; whereas the epipolar
geometries in the trilinearity result are intertwined and
are not recoverable separately.

The latter implies a better numerically behaved method in the
presence of noise as well, and as will be shown later, the per-
formance, even using the minimal number of required points,
far exceeds the performance of epipolar intersection using
many more points. In other words, by avoiding the need to
recover the epipolar geometry we obtain a significant practical
advantage as well, since the epipolar geometry is the most er-
ror-sensitive component when working with perspective views.

The connection between the general result of trilinear func-
tions of views and the “linear combination of views” result
[38] for orthographic views, can easily be seen by setting A
and B to be affine in P2, and v; = v{ = 0. For example, (3)
reduces to

’ "’

T
vix” =vix’ +(via, —vib) p =0,
which is of the form
o x” + X’ + azx + 0y + 05 =0,

As in the perspective case, each point contributes four equations,
but here there is no advantage for using all four of them to re-
cover the coefficients, therefore we may use only two out of the
four equations, and require four corresponding points to recover
the coefficients. Thus, in the case where all three views are or-
thographic, x(y") is expressed as a linear combination of image
coordinates of the two other views—as discovered by [38].
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Consider the case for which the two reference (model)
views of an object are taken orthographically (using a tele lens
would provide a reasonable approximation), but during rec-
ognition any perspective view of the object is allowed. It can
easily be shown that the three views are then connected via
bilinear functions (instead of trilinear):

THEOREM 3 [Bilinearity] Within the conditions of Theorem 1,
in case the views y, and , are obtained by parallel pro-
Jection, then the pair of trilinear forms of Theorem 1 reduce
to the following pair of bilinear equations:

X'(ogx+0any +03) + ax”x’ + osx” + QX + oy +0 =0,

and

Y (Bix +Boy + By + By"x + Bsx’ + Bex + By +a =0,
where ay=f,j=1, ..., 4.

PROOF. Under these conditions we have from Lemma 1 that A
is affine in P and v = 0, therefore (3) reduces to:

”_rn_r

T T
x"(viby —via,)" p+vix"x’—v{x’+(via, —vib;) p=0.

Similarly, (4) reduces to:
T
¥’ (vib; —via, )Tp +viy"x = vix +(via, - vib,) p=0.
Both equations are of the desired form, with the first four
coefficients identical across both equations. m}

The remaining trilinear forms undergo a similar reduction,
and Theorem 2 still holds, i.e., we still have four linearly inde-
pendent bilinear forms. Consequently, we have 21 coefficients
up to a common scale (instead of 27) and four equations per
point, thus five corresponding points (instead of seven) are
sufficient for a linear solution.

A bilinear function of three views has two advantages over
the general trilinear function. First, as mentioned above, only
five corresponding points (instead of seven) across three views
are required for solving for the coefficients. Second, the lower
the degree of the algebraic function, the less sensitive the so-
lution may be in the presence of errors in measuring corre-
spondences. In other words, it is likely (though not necessary)
that the higher order terms, such as the term x"x x in (3), will
have a higher contribution to the overall error sensitivity of the
system.

Compared to the case when all views are assumed ortho-
graphic, this case is much less of an approximation. Since the
model views are taken only once, it is not unreasonable to re-
quire that they be taken in a special way, namely, with a tele
lens (assuming we are dealing with object recognition, rather
than scene recognition). If this requirement is satisfied, then
the recognition task is general since we allow any perspective
view to be taken during the recognition process.

V. EXPERIMENTAL DATA

The experiments described in this section were done in or-
der to evaluate the practical aspect of using the trilinear result
for reprojection compared to using epipolar intersection and
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the linear combination result of [38] (the latter we have shown
is simply a limiting case of the trilinear result).

The epipolar intersection method was implemented as de-
scribed in Section III by recovering first the fundamental ma-
trices. Although eight corresponding points are sufficient for a
linear solution, in practice one would use more than eight
points for recovering the fundamental matrices in a linear or
non-linear squares method. Since linear least squares methods
are still sensitive to image noise, we used the implementation
of a nonlinear method described in [20] which was kindly
provided by T. Luong and L. Quan (these were two implemen-
tations of the method proposed in [20]—in each case, the im-
plementation that provided the better results was adopted).

The first experiment is with simulation data showing that even
when the epipolar geometry is recovered accurately, it is still
significantly better to use the trilinear result which avoids the
process of line intersection. The second experiment is done on a
real set of images, comparing the performance of the various
methods and the number of corresponding points that are needed
in practice to achieve reasonable reprojection results.

A. Computer Simulations

We used an object of 46 points placed randomly with z co-
ordinates between 100 units and 120 units, and x, y coordi-
nates ranging randomly between —125 and +125. Focal length
was of 50 units and the first view was obtained by fx/z, fy/z.
The second view (y,) was generated by a rotation around the
point (0, 0, 100) with axis (0.14, 0.7, 0.7) and by an angle of
0.3 radians. The third view () was generated by a rotation
around an axis (0, 1, 0) with the same translation and angle.
Various amounts of random noise was applied to all points that
were to be re-projected onto a third view, but not to the eight
or seven points that were used for recovering the parameters
(fundamental matrices, or trilinear coefficients). The noise was
random, added separately to each coordinate and with varying
levels from 0.5 to 2.5 pixel error. We have done 1,000 trials as
follows: 20 random objects were created, and for each degree
of error the simulation was ran 10 times per object. We col-
lected the maximal reprojection error (in pixels) and the aver-
age reprojection error (averaged of all the points that were re-
projected). These numbers were collected separately for each
degree of error by averaging over all trials (200 of them) and
recording the standard deviation as well. Since no error were
added to the eight or seven points that were used to determine
the epipolar geometry and the trilinear coefficients, we simply
solved the associated linear systems of equations required to
obtain the fundamental matrices or the trilinear coefficients.

The results are shown in Fig. 1. The graph on the left shows
the performance of both algorithms for each level of image
noise by measuring the maximal reprojection error. We see
that under all noise levels, the trilinear method is significantly
better and also has a smaller standard deviation. Similarly for
the average reprojection error shown in the graph on the right.
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Fig. 1. Comparing the performance of the epipolar intersection method (the
dotted line) and the trilinear functions method (dashed line) in the presence of
image noise. The top graph shows the maximal reprojection error averaged
over 200 trials per noise level (bars represent standard deviation). The bottom
graph displays the average reprojection errors averaged over all reprojected
points averaged over the 200 trials per noise level.

This difference in performance is expected, as the trilinear
method takes all three views together, rather than every pair
separately, and thus avoids line intersections.
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Fig. 2. Top: Model view, ¥ (image size 256 x 240). Middle: Model view, v
(also image size 256 x 240). The overlayed squares on both images illustrate the
corresponding points (34 points). Bottom: Third view yA. Note that 3 is not in
between i and ¥, making the reprojection problem more challenging (e,
performance is more sensitive to image noise than in-between situations).
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B. Experiments On Real Images

Fig. 2 shows three views of the object we selected for the
experiment. The object is a sports shoe with added texture to
facilitate the correspondence process. This object was chosen
because of its complexity, i.e., it has a shape of a natural object
and cannot easily be described parametrically (as a collection
of planes or algebraic surfaces). Note that the situation de-
picted here is challenging because the re-projected view is not
in-between the two model views, i.e., one should expect a
larger sensitivity to image noise than in-between situations. A
set of 34 points were manually selected on one of the frames,
v, and their correspondences were automatically obtained
along all other frames used in this experiment. The correspon-
dence process is based on an implementation of a coarse-to-
fine optical-flow algorithm described in [7]. To achieve accu-
rate correspondences across distant views, intermediate in-
between frames were taken and the displacements across con-
secutive frames were added. The overall displacement field
was then used to push (“warp”) the first frame towards the
target frame and thus create a synthetic image. Optical-flow
was applied again between the synthetic frame and the target
frame and the resulting displacement was added to the overall
displacement obtained earlier. This process provides a dense
displacement field which is then sampled to obtain the corre-
spondences of the 34 points initially chosen in the first frame.
The results of this process are shown in Fig. 2 by displaying
squares centered around the computed locations of the corre-
sponding points. One can see that the correspondences ob-
tained in this manner are reasonable, and in most cases to sub-
pixel accuracy. One can readily automate further this process
by selecting points in the first frame for which the Hessian
matrix of spatial derivatives is well-conditioned—similar to
the confidence values suggested in the implementations of [4],
(7], [34]—however, the intention here was not so much to
build a complete system but to test the performance of the tri-
linear reprojection method and compare it to the performance
of epipolar intersection and the linear combination methods.

The trilinear method requires at least seven corresponding
points across the three views (we need 26 equations and seven
points provide 28 equations), whereas epipolar intersection can
be done (in principle) with eight points. The question we are
about to address is what is the number of points that are required
in practice (due to errors in correspondence, lens distortions and
other effects that are not adequately modeled by the pin-hole
camera model) to achieve reasonable performance?

The trilinear result was first applied with the minimal num-
ber of points (seven) for solving for the coefficients, and then
applied with 8, 9, and 10 points using a linear least-squares
solution (note that in general, better solutions may be obtained
by using SVD or Jacobi methods instead of linear least-
squares, but that was not attempted here). The results are
shown in Fig. 3. Seven points provide a reprojection with
maximal error of 3.3 pixels and average error of 0.98 pixels.
The solution using 10 points provided an improvement with
maximal error of 1.44 and average error of 0.44 pixels. The
performance using eight and nine points was reasonably in-
between the performances above. Using more points did not
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Fig. 3. Reprojection onto 3 using the trilinear result. The reprojected points
are marked as crosses, therefore they should be at the center of the squares for
accurate reprojection. At the top, the minimal number of points were used for
recovering the trilinear coefficients (seven points); the average pixel error
between the true and estimated locations is 0.98, and the maximal error is 3.3.
At the bottom, 10 points were used in a least squares fit; average error is 0.44
and maximal error is 1.44.

significantly improve the results; for example, when all 34
points were used the maximal error went down to 1.14 pixels
and average error stayed at 0.42 pixels.

Next the epipolar intersection method was applied. We used
two methods for recovering the fundamental matrices. One
method is by using the implementation of [20}], and the other is
by taking advantage that four of the corresponding points are
coming from a plane (the ground plane). In the former case,
much more than eight points were required in order to achieve
reasonable results. For example, when using all the 34 points,
the maximal error was 43.4 pixels and the average error was
9.58 pixels. In the latter case, we recovered first the homogra-
phy B due to the ground plane and then the epipole v” using
two additional points (those on the film cartridges). It is then
known (see [28], [21], [32]) that F}3 = [v"]B, where [v"] is the
antisymmetric matrix of v”. A similar procedure was used to

Fig. 4. Results of reprojection using intersection of epipolar lines. In the top
display, the ground plane points were used for recovering the fundamental
matrix (see text), and in the bottom display the fundamental matrices were
recovered from the implementation of [20] using all 34 points across the three
views. Maximum displacement error in the top display is 25.7 pixels, and
average error is 7.7 pixels. Maximal error in the bottom display is 43 .4 pixels,
and average error is 9.58 pixels.

recover Fa;. Therefore, only six points were used for reprojection,
but nevertheless, the results were slightly better: maximal error of
25.7 pixels and average error of 7.7 pixels. Fig. 4 shows these results.
Finally, we tested the performance of reprojection using the
linear combination method. Since the linear combination
method holds only for orthographic views, we are actually
testing the orthographic assumption under a perspective situa-
tion, or in other words, whether the higher (bilinear and trilin-
ear) order terms of the trilinear equations are significant or not.
The linear combination method requires at least four corre-
sponding points across the three views. We applied the method
with four, 10 (for comparison with the trilinear case shown in
Fig. 3), and all 34 points (the latter two using linear least
squares). The results are displayed in Fig. 5. The performance
in all cases are significantly poorer than when using the trilin-
ear functions, but better than the epipolar intersection method.
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Fig. 5. Results of reprojection using the linear combination of views proposed
by [38] (applicable to parallel projection). Top: The linear coefficients were
recovered from four corresponding points; maximal error is 56.7 pixels, and
average error is 20.3 pixels. Middle: The coefficients were recovered using 10
points in a linear least squares fashion; maximal error is 24.3 pixels, and
average error is 6.8 pixels. Bottom: The coefficients were recovered using all
34 points across the three views. Maximal error is 29.4 pixels, and average
error is 5.03 pixels.
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VI. DISCUSSION

We have seen that any view of a fixed 3D object can be ex-
pressed as a trilinear function with two reference views in the
general case, or as a bilinear function when the reference
views are created by means of parallel projection. These func-
tions provide alternative, much simpler, means for manipulat-
ing views of a scene than other methods. Moreover, they re-
quire fewer corresponding points in theory, and much fewer in
practice. Experimental results show that the trilinear functions
are also useful in practice yielding performance that is signifi-
cantly better than epipolar intersection or the linear combina-
tion method (although we emphasize that the linear combina-
tion was tested just to provide a base-line for comparison, i.e.,
to verify that the extra bilinear and trilinear terms indeed con-
tribute to better performance).

In general two views admit a “fundamental” matrix ([10])
representing the epipolar geometry between the two views, and
whose elements are subject to a cubic constraint (rank of the
matrix is 2). The trilinearity results (Theorems 1, 2) imply that
three views admit a tensor with 27 distinct elements. We have
seen that the tensor does not fail in cases where the epipolar
constraint fails, such as when the three cameras are along a
straight line (not an uncommon situation). The issue of singu-
lar configurations of seven points (besides the obvious singular
configuration of seven coplanar points) was not addressed in
this paper. However, the robustness of the reprojection results
may indicate that either such configurations are very rare or do
not exist. It would be, thus, important to investigate this issue
as it is widely believed that the numerical instability of the
epipolar constraint lies in the existence of such critical sur-
faces. The notion of the “trilinear” tensor, its properties, rela-
tion to the geometry of three views, and applications to 3D
reconstruction from multiple views, constitutes an important
future direction.

The application that was emphasized throughout the paper
is visual recognition via alignment. Reasonable performance
was obtained with the minimal number of required points
(seven) with the novel view (y5)—which may be too many if
the image to model matching is done by trying all possible
combinations of point matches. The existence of bilinear func-
tions in the special case where the model is orthographic, but
the novel view is perspective, is more encouraging from the
standpoint of counting points. Here we have the result that
only five corresponding points are required to obtain recogni-
tion of perspective views (provided we can satisfy the re-
quirement that the model is orthographic). We have not ex-
perimented with bilinear functions to see how many points
would be needed in practice, but plan to do that in the future.
Because of their simplicity, one may speculate that these alge-
braic functions will find uses in tasks other than visual recog-
nition—some of those are discussed below.

There may exist other applications where simplicity is of
major importance, whereas the number of points is less of a
concern. Consider for example, the application of model-based
compression. With the trilinear functions we need 17 parame-
ters to represent a view as a function of two reference views in
full correspondence (recall, 27 coefficients were used in order
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to reduce the number of corresponding points from nine to
seven). Assume both the sender and the receiver have the two
reference views and apply the same algorithm for obtaining
correspondences between the two views. To send a third view
(ignoring problems of self occlusions that may be dealt with
separately) the sender can solve for the 17 parameters using
many points, but eventually send only the 17 parameters. The
receiver then simply combines the two reference views in a
“rilinear way” given the received parameters. This is clearly a
domain where the number of points is not a major concern,
whereas simplicity, and robustness (as shown above) due to
the short-cut in the computations, is of great importance.

Related to image coding, an approach of image decomposi-
tion into “layers” was recently proposed by [1], [2]. In this
approach, a sequence of views is divided up into regions,
whose motion of each is described approximately by a 2D af-
fine transformation. The sender sends the first image followed
only by the six affine parameters for each region for each sub-
sequent frame. The use of algebraic functions of views can
potentially make this approach more powerful because instead
of dividing up the scene into planes one can attempt to divide
the scene into objects, each carries the 17 parameters describ-
ing its displacement onto the subsequent frame.

Another area of application may be in computer graphics.
Reprojection techniques provide a short-cut for image render-
ing. Given two fully rendered views of some 3D object, other
views (again ignoring self-occlusions) can be rendered by
simply “combining” the reference views. Again, the number of
corresponding points is less of a concern here.
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