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Abstract. The topic of representation, recovery and manipulation of
three-dimensional (3D) scenes from two-dimensional (2D) images thereof,
provides a fertile ground for both intellectual theoretically inclined ques-
tions related to the algebra and geometry of the problem and to practical
applications such as Visual Recognition, Animation and View Synthesis,
recovery of scene structure and camera ego-motion, object detection and
tracking, multi-sensor alignment, etc.
The basic materials have been known since the turn of the century, but
the full scope of the problem has been under intensive study since 1992,
�rst on the algebra of two views and then on the algebra of multiple
views leading to a relatively mature understanding of what is known as
\multilinear matching constraints", and the \trilinear tensor" of three
or more views.
The purpose of this paper is, �rst and foremost, to provide a coherent
framework for expressing the ideas behind the analysis of multiple views.
Secondly, to integrate the various incremental results that have appeared
on the subject into one coherent manuscript.

1 Introduction

Given that three-dimensional (3D) objects in the world are modeled by point or
line sets, then their projection onto a number of distinct image planes produces
point or line sets that are related by correspondences. The relationship between
a 3D point/line and its 2D projections is easily described by a simple multilinear
equation whose parameters consist of the camera location (viewing position).

From an algebraic standpoint, since the 3D-to-2D relationship juxtaposes
the variables of object space, variables of image space and variables of view-
ing position, then one can isolate subsets of these variables and consider their
properties:

{ Matching Constraints: Given two or more views, it is possible to eliminate
the object variables and obtain multilinear functions of image measurements
(image variables) and (functions of) viewing variables. In other words, the
existence of a correspondence set is an algebraic constraint(s) in disguise
whose form becomes explicit via an elimination process and leaves us with
a \shape invariant" function.



{ Shape constraints: analogously, given a su�cient number of points one can
eliminate the viewing variables and obtain functions of image measurements
and object variables (known as indexing functions). In other words, it is
possible to factor out the role of the changing viewing position and remain
with a \view invariant" function.

The application aspect naturally follows the decomposition above and can
be roughly divided into two classes:

{ Applications for which irrelevant image variabilities are factored out: for
example, Visual Recognition of a 3D object under changing viewing positions
may use the Matching Constraints to create an equivalence class of the image
space generated by all views of the object; or may use the Shape Constraints
as an index into a shape library. In both cases, the desire is not to reconstruct
the value of unknown variables (say, the shape of the object from image
measurements), but rather to �nd a new representation that will facilitate
the matching process between input image to library models. This class of
applications includes also Object Tracking by means of image stabilization
processing, and Image-based Rendering (a.k.a View Synthesis) of 3D objects
directly from a sample of 2D images without recovering object shape.

{ Reconstruction Applications: here the goal is to recover the value of unknown
variables (shape or viewing positions) from the correspondence set. This line
of applications is part of Photogrammetry with origins starting at the turn
of the century. Both the Matching Constraints and the Shape Constraints
provide simple and linear methods for achieving this goal, but non-linear it-
erative methods, such as the \block bundle adjustment" of Photogrammetry,
are of much use as well.

One of the important ideas that has emerged in the recent years and is
related to these issues is the factorization/elimination principles from which the
multilinear matching constraints have arisen and consequently the discovery of
the Trilinear Tensor which has emerged as the basic building block of 3D visual
analysis.

The purpose of this paper is, �rst and foremost, to provide a coherent frame-
work for expressing the ideas behind the analysis of multiple views. Secondly, to
integrate the various incremental results that have appeared on the subject into
one coherent manuscript.

We will start with the special case of Parallel Projection (A�ne camera)
model in order to illuminate the central ideas, and proceed from there to the
general Perspective Projection (Projective camera) model and progress through
the derivation of the Matching Constraints, the Trilinear Tensor and its proper-
ties, the Fundamental matrix, and applications.

2 N-view and n-point Geometry With an A�ne Camera

The theory underlying the relationship among multiple a�ne views is well un-
derstood and will serve here to illuminate the goals one wishes to obtain in the
general case of perspective views.



An a�ne view is obtained when the projecting rays emanating from a 3D
object are all parallel to each other, and their intersection with an image plane
forms the \image" of the object from the vantage point de�ned by the direction
of rays. In general, we are also allowed to take pictures of pictures as well.
Let the 3D world consist of n points P1; :::; Pn, whose homogeneous coordinates
are (Xi; Yi; Zi; 1), i = 1; :::; n. Consider N distinct a�ne views  1; :::;  N. If we
ignore problems of occlusion (assuming the object is transparent), then each view
consists of n points pj

1
; :::; pjn, j = 1; :::; N , with non-homogeneous coordinates

(xji ; y
j
i ), i = 1; :::; n.

The relationship between the 3D and 2D spaces is represented by a 2 � 4
matrix per view:

pji =

�
a>j
b>j

�
Pi

where aj; bj are the rows of the matrix. The goal is to recover Pi (and/or the
camera transformations aj ; bj) from the image measurements alone (i.e., from
the set of image points). If the world is undergoing only rigid transformations,
then the 2 � 3 left principle minor of each camera transformation is a principle
minor of an orthonormal matrix (rotation in space), otherwise the world may
undergo a�ne transformations. Furthermore, one of the camera matrices may
be chosen arbitrarily and, for example, set to a = (1; 0; 0; 0) and b = (0; 1; 0; 0).
Note that even in the a�ne case the task is not straightforward because the
camera parameters and the space coordinates (both of which are unknown) are
coupled together, hence making the estimation a non-linear problem. But now
consider all the measurements stacked together:
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Thus, we clearly see that the rank of the 2N �n matrix of image measurements
is at most 4 (because the two matrices on the right hand side are at most of
rank 4 each). This observation was made independently by Tomasi & Kanade
[28] and Ullman & Basri [30] | each focusing on a di�erent aspect of this result.
Tomasi & Kanade took this result as an algorithm for reconstruction, namely,
the measurement matrix can be factored into two matrices one representing
motion and the other representing shape. The factorization can be done via the
well known \Singular Value Decomposition" (SVD) method of Linear Algebra
and the orthogonality constraints can be employed as well in order to obtain an
Euclidean reconstruction. Ullman & Basri focused on the fact that the row space
of the measurement matrix is spanned by four rows, thus a view (each view is
represented by two rows) can be represented as a linear combination of other
views | hence the \linear combination of views" result.



To understand the importance of the rank 4 result further, consider the fol-
lowing. Each column of the measurement matrix is a point in a 2N dimensional
space, we call \Joint Image Space" (JIS). Each point P in the 3D world maps
into a point in JIS. The rank 4 result shows that the entire 3D space lives in
a 4-dimensional linear subspace of JIS. Each point in this subspace is linearly
spanned by 4 points, and the coe�cients of the linear combination are a function
(possibly non-linear) of 3D coordinates alone. Therefore, the JIS represents a di-
rect connection between 2D and 3D where the camera parameters are eliminated
altogether. These functions are called \indexing" functions because they allow
us to index into a library of 3D objects directly from the image information.

Similarly, each row of the measurement matrix is a point in a n dimensional
space, we call \Joint Point Space" (JPS). Each \half" view, i.e., the collection of
x or y coordinates, of a set of n points maps to a point in JPS. The rank 4 result
shows that all the half views occupy a 4-dimensional linear subspace of JPS1.
Each point in this subspace is linearly spanned by 4 points, and the coe�cients of
the linear combination are a function (possibly non-linear) of camera parameters
alone. Therefore, the JPS represents a direct connection between 2D and camera
parameters where the 3D coordinates are eliminated altogether. These functions
are called \matching constraints" because they describe constraints (in this case
linear) across image coordinates of a number of views that must hold uniformly
for all points. Finally, JPS and JIS are dual spaces. Fig. 1 illustrates these
concepts.

The a�ne camera case provides the insight of where the goals are in the
general case. With perspective views (projective camera) there is an additional
coupling between image coordinates and space coordinates, which implies that
the subspaces of JIS and JPS are non-linear, they live in a manifold instead. In
order to capture these manifolds we must think in terms of elimination because
this is what actually has been achieved in the example above. The most impor-
tant distinction between the a�ne and the general cases is that in the general
case we focus on those coe�cients that describe the manifolds (the matching
constraints or the indexing functions). These coe�cients form a tensor, the \tri-
linear tensor", and the rank 4 result holds again, but not in the JIS or JPS but
in the new space of tensors. The linearity thus appears in the general case by
focusing on yet another higher level space. The remainder of this paper is about
that space, its de�nition and its relevance to the reconstruction and other image
manipulation tasks.

3 Matching Constraints With a General Pin-hole Camera

We wish to transfer the concepts discussed above to the general pin-hole camera.
In the Parallel Projection model it was easy to capture both the matching and
shape constraints in a single derivation, and which applied (because they were

1 Jacobs [14] elegantly shows that this subspace is decomposed into two skewed lines,
i.e., a 3D model is mapped to two lines in Rn.
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Fig. 1. Illustration of the \rank 4" result in the case of an a�ne camera. See text for
explanation.

linear constraints) to generally N views and n points. The Pin-hole model gives
rise to a slightly more complex decomposition, as described below.

A perspective view is obtained when the projecting rays emanating from a 3D
object are concurrent and meet at a point known as the \center of projection".
The intersection of the projecting rays with an image plane forms the \image"
of the object. In general, we are also allowed to take pictures of pictures as well.
Let the 3D world consist of n points P1; :::; Pn, whose homogeneous coordinates
are (Xi; Yi; Zi; 1), i = 1; :::; n. Consider N distinct views  1; :::;  N. If we ignore
problems of occlusion, then each view consists of n points pj

1
; :::; pjn, j = 1; :::; N ,

with homogeneous coordinates (xji ; y
j
i ; 1), i = 1; :::; n.

The relationship between the 3D and 2D spaces is represented by a 3 � 4
matrix per view:

pji
�= TjPi

where Tj is the \camera matrix" and �= de�nes equality up to scale. In case
the world undergoes rigid transformations only, then the left 3 � 3 principle
minor of Tj is orthonormal (rotation matrix), otherwise the world may undergo
general projective transformations. Without loss of generality, one of the camera
matrices, say T1, may be chosen as [I; 0] where I is the 3�3 identity matrix and
the fourth column is null.

Note that the major di�erence between the parallel projection and perspec-
tive projection models is the additional scale factor hidden in �=. In case of



parallel projection, the 3D-to-2D equation is bilinear in the unknowns (space
and viewing parameters), thus a single factorization (via SVD) is su�cient for
obtaining linear relations between image and viewing variables or image and
space variables. However, the perspective 3D-to-2D equation is trilinear in the
unknowns (space, viewing parameters and the scale factor), thus two steps of
factorizations are needed: the �rst factorization will produce a bilinear structure,
and the second factorization will produce a linear structure but not in the image
space but in a higher level space. This will become clear in the sequel.

Consider a single point P in space projected onto 4 views with camera ma-
trices [I; 0]; T;G;H. To simplify the indexing notation, the image points of P
will be denoted as p; p0; p00; p000 in views 1 to 4, respectively. We can eliminate the
scale factors as follows. Consider p0 �= TP , thus

x0 =
t>
1
P

t>
3
P

(1)

y0 =
t>
2
P

t>
3
P
; (2)

where ti is the i'th row of T . Note that the third relation x0=y0 is linearly spanned
by the two above, thus does not add any new information. In matrix form we
obtain: �

x0t>
3
� t>

1
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3
� t>

2

�
P = 0; (3)

orMP = 0. Therefore, every view adds two rows toM whose dimensions become
2N � 4. For N � 2 the vanishing determinant of M (j M j= 0 because P 6= 0
is in the null space of M ) provides a constraint (Matching Constraint) between
the image variables and the viewing parameters | thus the space variables have
been eliminated. For N = 2 we have exactly 1 such constraint which is bilinear
in the image coordinates, for N = 3 we have,

M =
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where ij is the j'th row of [I; 0] and every 4�4minor has a vanishing determinant.
Thus, there are 12 matching constraints that include all three views, which
are arranged in three groups of 4: each group is obtained by �xing two rows
corresponding to one of the three views. For example, the �rst group consists
of M1235;M1236;M1245;M1246 where Mijkl is the matrix formed by taking rows
i; j; k; l fromM . Each constraint has a trilinear form in image coordinates, hence
they denoted as \trilinearities".

For N = 4 we obtain 16 constraints that include all four views (choose one
row from M per view) and which have a quadlinear form in image coordinates.



Clearly, the case of N > 4 does not add anything new (because we choose at
most subsets of 4 rows at a time).

The bilinear constraint was introduced by Longuett-Higgins [15] in the con-
text of rigid motions and later by Faugeras [6] (see, [7], with references therein)
for the general projective model. The trilinearities were originally introduced by
Shashua [18] and the derivation adopted here is due to Faugeras & Mourrain [8]
(similar derivations also concurrently appeared in [12,29]).

We will focus on the trilinearities because (i) we will show later that the
bilinear constraint arises from and is a particular case of the trilinearities, and (ii)
the quadlinearities do not add any new information since they can be expressed
as a linear combination of the trilinearities and the bilinear constraint [8]. The
following questions are noteworthy:

1. How are the coe�cients of the trilinearities (per group) arranged? We will
show they are arranged as a trivalent tensor with 27 entries.

2. What are the properties of the tensor? The term \properties" contain a
number of issues including (i) the geometric objects that the tensor applies
onto, (ii) what do contractions (subsets of coe�cients) of the tensor repre-
sent? (iii) what distinguishes this tensor from a general trivalent tensor? (iv)
the connection to the bilinear constraint and other 2-view geometric con-
structs, and (iv) applications of the Matching Constraints and methods for
3D reconstruction from the tensor.

3. Uniqueness of the solution of the tensor from the correspondence set (image
measurements) | the issue of critical con�gurations.

4. The relationship among tensors | factorization in Tensor space, where the
rank 4 constraint we saw in the a�ne model resurfaces again. This issue in-
cludes the notion of \tensorial operators" and their application for rendering
tasks.

The �rst two issues (1,2) will be addressed in the remainder of this paper
| the remaining issues can be found in isolation in [21,2,22] or integrated in
the full version of this manuscript [19]. We will start with a brief description of
notations that will assist the reader with the technical derivations.

4 Primer on Tensorial Notations

We assume that the physical 3D world is represented by the 3D projective space
P3 (object space) and its projections onto the 2D projective space P2 de�nes
the image space. We use the covariant-contravariant summation convention: a
point is an object whose coordinates are speci�ed with superscripts, i.e., pi =
(p1; p2; :::). These are called contravariant vectors. An element in the dual space
(representing hyperplanes | lines in P2), is called a covariant vector and is
represented by subscripts, i.e., sj = (s1; s2; ::::). Indices repeated in covariant and
contravariant forms are summed over, i.e., pisi = p1s1+p

2s2+ :::+p
nsn. This is

known as a contraction. For example, if p is a point incident to a line s in P2, then
pisi = 0. Vectors are also called 1-valence tensors. 2-valence tensors (matrices)



have two indices and the transformation they represent depends on the covariant-
contravariant positioning of the indices. For example, aji is a mapping from points

to points, and hyperplanes to hyperplanes, because ajip
i = qj and ajisj = ri (in

matrix form:Ap = q and A>s = r); aij maps points to hyperplanes; and aij maps
hyperplanes to points. When viewed as a matrix the row and column positions
are determined accordingly: in aji and aji the index i runs over the columns and j

runs over the rows, thus bkja
j
i = cki is BA = C in matrix form. An outer-product

of two 1-valence tensors (vectors), aibj, is a 2-valence tensor c
j
i whose i; j entries

are aibj | note that in matrix form C = ba>. An n-valence tensor described
as an outer-product of n vectors is a rank-1 tensor. The de�nition of the rank
of a tensor is an obvious extension of the de�nition of the rank of a matrix: A
rank-1 n-valence tensor is described as the outer product of n vectors; the rank
of an n-valence tensor is the smallest number of rank-1 n-valence tensors with
sum equal to the tensor. For example, a rank-1 trivalent tensor is aibjck where
ai,bj and ck are three vectors. The rank of a trivalent tensor �ijk is the smallest
r such that,

�ijk =
rX

s=1

aisbjscks (5)

5 The Trilinear Tensor

Consider a single point P in space projected onto 3 views with camera matrices
[I; 0]; T;G with image points p; p0; p00 respectively. Note that P = (x; y; 1; �) for
some scalar �. Consider T = [A;v0] where A is the 3�3 principle minor of T and
v0 is the fourth column of T . Consider p0 �= TP and eliminate the scale factor
as was done previously:

x0 =
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1
P

t>
3
P
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a>
1
p+ �v0
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3
p+ �v0

3

(6)
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P

t>
3
P

=
a>
2
p+ �v0

2

a>
3
p+ �v0

3

; (7)

where ai is the i'th row of A. These two equations can be written more compactly
as follows:

�s0>v0 + s0>Ap = 0 (8)

�s00>v0 + s00>Ap = 0 (9)

where s0 = (�1; 0; x) and s00 = (0;�1; y). Yet in a more compact form consider
s0; s00 as row vectors of the matrix

s�j =

�
�1 0 x0

0 �1 y0

�

where j = 1; 2; 3 and � = 1; 2. Therefore, the compact formwe obtain is described
below:

�s�j v
0j + pis�j a

j
i = 0; (10)



where � is a free index (i.e., we obtain one equation per range of �).
Similarly, let G = [B;v00] for the third view p00 �= GP and let r�k be the

matrix,

r�k =

�
�1 0 x00

0 �1 y00

�

And likewise,

�r�kv
00k + pir�kb

k
i = 0; (11)

where � = 1; 2 is a free index. We can eliminate � from equations 10 and 11 and
obtain a new equation:

(s�j v
0j)(pir�kb

k
i )� (r�kv

00k)(pis�j a
j
i ) = 0;

and after grouping the common terms:

pis�j r
�
k(v

0jbki � v00
k
aji ) = 0;

and the term in parenthesis is a trivalent tensor we call the trilinear tensor:

T jk
i = v0

j
bki � v00

k
aji : i; j; k = 1; 2; 3 (12)

And the tensorial equations (the 4 trilinearities) are:

pis�j r
�

kT
jk
i = 0 ; (13)

Hence, we have four trilinear equations (note that �; � = 1; 2). In more explicit
form, these trilinearities look like:

x00T 13

i pi � x00x0T 33

i pi + x0T 31

i pi � T 11

i pi = 0;

y00T 13

i pi � y00x0T 33

i pi + x0T 32

i pi � T 12

i pi = 0;

x00T 23

i pi � x00y0T 33

i pi + y0T 31

i pi � T 21

i pi = 0;

y00T 23

i pi � y00y0T 33

i pi + y0T 32

i pi � T 22

i pi = 0:

Since every corresponding triplet p; p0; p00 contributes four linearly indepen-
dent equations, then seven corresponding points across the three views uniquely
determine (up to scale) the tensor T jk

i . Equation 12 was �rst introduced in [18]
and the tensorial derivation leading to Equation 13 was �rst introduced in [20].

The trilinear tensor has been well known in disguise in the context of Eu-
clidean line correspondences and was not identi�ed at the time as a tensor but
as a collection of three matrices (a particular contraction of the tensor as we
shall see later) [25,26,32]. The link between the two and the generalization to
projective space was identi�ed later by Hartley [10,11].

Before we delve further on the properties of the trilinear tensor, we can readily
identify the �rst application | called image transfer in Photogrammetric circles
or a.k.a image reprojection. Image transfer is the task of predicting the location



of p00 from the corresponding pair p; p0 given a small number of basis matching
triplets pi; p0i; p

00

i . This task can be readily achieved using the geometry of two
views, simply by intersecting epipolar lines (we will later discuss these concepts)
| as long as the three camera centers are not on a line, however. With the
trilinearities one can achieve a general result:

Proposition 1. A triplet of points p; p0; p00 is in correspondence i� the four
trilinear constraints are satis�ed.

The implication is simple: take 7 triplets pi; p0i; p
00

i , i = 1; :::; 7 and recover linearly
the coe�cients of the tensor (for each i we have 4 linearly independent equations
for the tensor). For any new pair p; p0 extract the coordinates of p00 directly from
the trilinearities. This will always work without singularities. In practice, due to
errors in image measurements and outliers, one uses more advanced techniques
for recovering the tensor (cf. [3,16,5]) and exploits further algebraic constraints
among its coe�cients [9].

6 Properties of the Tensor

The �rst striking property of the tensor is that it is an object that operates
on both point and line correspondences. This becomes readily apparent from
Equation 13 that simply tells us that the tensor operates on a point p, on a
line passing through p0, and on a line passing through p00. To see why this is so,
consider s�j p

0j = 0 which means that s1j and s2j are two lines coincident with p0

(lines and points in projective plane are duals of one another, thus their scalar
product vanishes when they are coincident). Since any line sj passing through
p0 can be described as a linear combination of the lines s1j and s

2

j , and any linear
combination of two trilinearities is also a trilinearity (i.e. vanishes on p; p0; p00),
and since the same argument holds for r1k and r2k, we have that:

pisjrkT
jk
i = 0 (14)

where sj is some line through p0 and rk is some line through p00. In other words,

Proposition 2. A trilinearity represents a correspondence set of a point in the
reference image and two lines (not necessarily corresponding) passing through the
matching points in the remaining two images, i.e., is a point-line-line con�gura-
tion. Analogously, in 3D space the con�guration consists of a line-plane-plane,
where the line is the optical ray of the reference image and the planes are de�ned
by the optical centers and the image lines mentioned above.

Figure 2 provides a pictorial description of the geometry represented by a tri-
linearity. The lines in the four trilinearities in Equation 13 are simply the horizon-
tal and vertical scan lines of the image planes | we will call this representation
of the trilinearities the canonical representation because with it each trilinearity
is represented by the minimal number of non-vanishing coe�cients (12 instead of
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Fig. 2. Each of the four trilinear equations describes a matching between a point p in
the �rst view, some line s�j passing through the matching point p0 in the second view
and some line r�

k
passing through the matching point p00 in the third view. In space,

this constraint is a meeting between a ray and two planes (Figure adopted from [2]).

27). The line-plane-plane description was �rst introduced by Faugeras & Mour-
rain [8] using Grassmann-Cayley algebra, and the analogous point-line-line de-
scription was introduced earlier in the context of Euclidean motion by Spetsakis
& Aloimonos [26]. The derivation above, however, is the most straightforward
one because it simply comes for free by observing how Equation 13 is organized.
Finally, by similar observation one can see that a triplet of matching lines pro-
vides 2 trilinearities2, thus 13 triplets of matching lines are su�cient for solving
(linearly) for the tensor.

Before we continue further consider the applications of the point-line-line
property. The �rst application is straightforward, whereas the second requires
some elaboration. Consider a polyhedral object, like a rooftop of a house. Say the
corner of the roof is visible in the �rst image, but is occluded in the remaining
images (second and third). Thus the image measurements consist of a point-
line-line arrangement, and is su�cient for providing a constraint for camera
motion (the tensor). In other words, using the remarkable property of the tensor
operating on both points and lines one can enrich the available feature space
signi�cantly (see for example, [3] for an application of this nature).

The second application, naturally related, is the issue of estimating Structure
andMotion directly from image spatio-temporal derivatives, rather than through
explicit correspondence set (points or lines). For example, the trilinear constraint
(Equation 14) can be replaced by a \model-based brightness constraint" by

2 two contractions with covariant vectors leaves us with a covariant vector, thus three
matching lines provide two linear equations for the tensor elements.



having the lines sj and rk become:

sj =

0
@ �Ix

�Iy
I0t + xIx + yIy

1
A rk =

0
@ �Ix

�Iy
I00t + xIx + yIy

1
A (15)

where Ix; Iy are the spatial derivatives at location (x; y) and I0t; I
00
t are the tem-

poral derivatives (the image di�erence) between the reference image and image
two and three, respectively. Hence, every pixel with a non-vanishing gradient
contributes one linear constraint for camera motion. Stein & Shashua [27] pro-
vide the details and an elaborate experimental setup and also show that there
are a few subtleties (and open problems) that make a successful implementation
of \direct estimation" quite challenging.

6.1 Tensor Contractions

We have discussed so far the manner by which the tensor operates on geometrical
entities of points and lines and the applications arising from it. We now turn our
attention to similar properties of subsets of the tensor arising from contractions
of the tensor to bivalent tensors (matrices). There are two kinds of contractions,
the �rst yielding the well known three matrices of line geometry, and the second
provides something new in the form of homography matrices. We will start with
the latter contraction.

Consider the matrix arising from the contraction,

�kT
jk
i (16)

which is a 3 � 3 matrix, we denote by E, obtained by the linear combination
E = �1T

j1
i + �2T

j2
i + �3T

j3
i (which is what is meant by a contraction), and �k is

an arbitrary covariant vector. Clearly, if �k = rk then E maps p onto p0 because
pirkT

jk
i

�= p0j (or Ep �= p0). The question of interest, therefore, is whether E
has any general meaning? The answer is a�rmative with the details described
below.

Recall that the projection of the space point P onto the second image sat-
is�es p0 �= TP where T = [A;v0]. Let the three camera centers be denoted by
C;C0; C00 of the �rst, second and third views respectively, i.e., TC0 = 0. The
tensor operates on the ray CP and two planes one for each image. For the sec-
ond image, choose the plane CC0P , known as the epipolar plane, which is the
plane passing through the two camera centers and the space point P . This plane
intersects the second image at a point, known as the epipole, which is exactly
v0. Clearly, the line sj is simply the epipolar line p0 � v0 de�ned by the vector
product of p0 and v0 (see Figure 3). In the third image, since �k is arbitrary,
we have a plane that does not contain p00. Let the plane de�ned by the point
C00 and the line �k in the third image plane be denoted by �. Since � does not
necessarily contain p00, then the intersection of � with the epipolar plane CC0P
is some point ~P on the ray CP . Clearly, the projection of ~P onto the second
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Fig. 3. The contraction �kT
jk
i is a homography matrix due to the plane � determined

by the center C 00 and the line �k. See text for details.

image is a point ~p0 on the epipolar line (the epipolar line is the projection of the
ray CP onto the second image). Hence,

pi�kT
jk
i

�= ~p0j (17)

or Ep �= ~p0. In other words, the matrix E is a 2D projective transformation (a
homography) from the �rst to the second image planes via the plane �, i.e., the
concatenation of the mappings (i) from �rst image onto �, and (ii) the mapping
from � onto the second image. Stated formally,

Proposition 3. The contraction �kT
jk
i for some arbitrary �k is a homography

matrix from image one onto image two determined by the plane containing the
third camera center C00 and the line �k in the third image plane. Generally, the
rank of E is 3. Likewise, the contraction �jT

jk
i is a homography matrix between

the reference image and the third image.

Clearly, one can generate up to three distinct homography matrices because �k is
spanned by three covariant vectors. Let the standard contractions be identi�ed
by selecting �k be (1; 0; 0) or (0; 1; 0) or (0; 0; 1), thus the three homography
matrices are T j1

i ; T j2
i and T j3

i , and we denote them by E1; E2; E3 respectively.
Thus, E1; E2 are associated with the planes passing through the horizontal and
vertical scan-lines around the origin (0; 0) of the third image (and of course
containing the center C00), and E3 is associated with the plane parallel to the
third image plane. The matrices E1; E2; E3 were �rst introduced by Shashua &
Werman [24] where further details can be found therein.

The applications of the standard homography contractions include 3D re-
construction of structure and camera motion. The camera motion is simply



T = [E;v0] where E is one of the standard contractions or a linear combination
of them (we will discuss the recovery of v0 later). Similarly, any two homography
matrices, say E1; E2 de�ne a projective invariant � de�ned by,

p0 �= E1p+ �E2p:

More details on 3D reconstruction from homography matrices can be found
in [17,23]. We will encounter further applications of the standard homography
contractions later in the paper.

Finally, the contractions T jk
1
; T jk

2
and T jk

3
are the three matrices used by

[25,32] to study the structure from motion problem from line correspondences
(see [11], for more details).

6.2 The Bilinear Constraint

We wish to reduce the discussion back to the context of two views. We saw
in Section 3 that the bilinear and trilinear constraints all arise from the same
principle of vanishing determinants of 4�4 minors ofM . The question of interest
is what form do the coe�cients of the bilinear constraint take, and how is that
related to the trilinear tensor?

Starting from Equation 12, repeated for convenience below,

T jk
i = v0

j
bki � v00

k
aji

we will consider the case of two views as a degenerate instance of T jk
i in the

following way. Instead of three distinct images, we have two distinct images and
the third image is a replica of the second image. Thus, the two camera matrices
are [A;v0] and again [A;v0]. Substituting A instead of B and v0 instead of v00 in
Equation 12, we obtain a new trivalent tensor of the form:

Fjk
i = v0

j
aki � v0

k
aji : (18)

The tensor Fjk
i follows the same contraction properties as T jk

i . For example, the
point-line-line property is the same with the exception that the two lines are in
the same image:

pis0js
00

kF
jk
i = 0;

where s0j and s00k are any two lines (say the horizontal and vertical scan lines)

that intersect at p0. The standard contractions apply here as well: �kF
jk
i is a

homography matrix from image one onto image two due to the plane � that
passes through the camera center C0 and the line �k in the second image | but
now, since � contains C0, it is a rank 2 homography matrix instead of rank 3.

In closer inspection one can note that 9 of the 27 elements of Fjk
i vanish and

the remaining 18 are divided into two sets which di�er only in sign, i.e., 9 of
those elements can be arranged in a matrix F and the other 9 in �F , where F
satis�es p0>Fp = 0 and F = [v0]xA where [v0]x is the skew-symmetric matrix of

vector products ([v0]xu = v0�u); and the contraction �kF
jk
i is the matrix [�]xF .



The matrix F is known as the \Fundamental" matrix [15,6], and the constraint

p0>Fp = 0 is the (and only) bilinear constraint. Further details on Fjk
i and its

properties can be found in [1].
Finally, given the three standard homography matrices, E1; E2; E3, one can

readily obtain F from the following constraint:

Ej
>F + F>Ej = 0

which yields 18 linear equations of rank 8 for F . Similarly, cross products between
columns of two homographies provide epipolar lines which can be used to recover
the epipole v0 | or simply recover F and then F>v0 = 0 will provide a solution
for v0.

7 Discussion

We have presented the foundations for a coherent and integrated treatment of
Multiple View Geometry whose main analysis vehicle is the \trilinear tensor"
which captures in a very simple and straightforward manner the basic structures
associated with this problem of research.

We have left several issues out of the scope of this paper, and some issues
are still an open problem. The issues we left out include (i) uniqueness of so-
lution | the issue of critical con�gurations [22], (ii) properties of the tensor
manifold | relation among tensors across many views, tensorial operators and
applications for rendering [21,2], and (iii) Shape Constraints which are the dual
of the multilinear matching constraints [31,4,13]. Issues that are still open in-
clude the tensorial structure behind the quadlinear matching constraints, the
tensor governing the shape constraints and its properties.
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