
A Parallel Decomposition Solver for SVM: Distributed Dual Ascend using
Fenchel Duality

Tamir Hazan Amit Man Amnon Shashua
School of Eng. & Computer Science
The Hebrew University of Jerusalem

Israel

Abstract

We introduce a distributed algorithm for solving large
scale Support Vector Machines (SVM) problems. The algo-
rithm divides the training set into a number of processing
nodes each running independently an SVM sub-problem as-
sociated with its subset of training data. The algorithm is
a parallel (Jacobi) block-update scheme derived from the
convex conjugate (Fenchel Duality) form of the original
SVM problem. Each update step consists of a modified SVM
solver running in parallel over the sub-problems followed
by a simple global update. We derive bounds on the number
of updates showing that the number of iterations (indepen-
dent SVM applications on sub-problems) required to obtain
a solution of accuracy ε is O(log(1/ε)). We demonstrate
the efficiency and applicability of our algorithms by running
on large scale experiments on standardized datasets while
comparing the results to the state-of-the-art SVM solvers.

1. Introduction

Statistical learning has become a cornerstone theme in
visual recognition paradigms and the Support Vector Ma-
chine (SVM) [2, 15] in particular has become a valuable
tool in this regard. As typical visual recognition tasks re-
quire very large training sets in order to cope with the large
variability in the appearance of challenging object classes,
there is a need to derive an efficient scalable SVM solver
which can be distributed over a cluster of computers. How-
ever, SVMs require to solve a constrained quadratic opti-
mization problem which needs resources that are at least
quadratic in the number of training examples, thus render-
ing the tool unwieldy, even for the highest end workstations,
for problem sizes in the hundreds of thousands to millions
of examples.

We describe and analyze in this paper a simple dis-
tributed algorithm, called Parallel Decomposition Solver
(PDS), that decomposes the training set of examples into

separate subsets each handled independently and in paral-
lel by a computing node. Each computing node solves an
SVM problem on a fixed subset of training examples. The
separate SVMs are computed iteratively on the same fixed
subsets of training examples with a global ”correction” vec-
tor passed on to all the nodes after each iteration. The ma-
chinery behind the algorithm is derived from the principle
of Fenchel Duality with a block update dual ascend and is
guaranteed to converge to the optimal solution. We show
that the number of iterations required in order to achieve an
ε-accurate solution is O(log(1/ε)).

The benefits of our algorithm are: (i) the local SVMs
are generic and can make use of the state-of-the-art SVM
solvers, (ii) the scheme applies to both the linear and non-
linear kernel cases, (iii) the convergence rate is logarithmic
— which is very close to the best convergence rates for se-
quential Interior Point methods which are doubly logarith-
mic O(log log(1/ε)), but which are known to be impracti-
cal for large scale SVMs, (iv) unlike previous attempts to
parallelize SVMs the algorithm does not make assumptions
on the density of the support vectors, i.e., the efficiency of
the algorithm holds also for the ”difficult” cases where the
number of support vectors is very high, and (v) the algo-
rithm behaves well even under small parallelism, i.e., when
the number of computing nodes is small.

The latter advantage is especially important as we envi-
sion the application of a large scale SVM to run on a small
cluster of workstations, rather than on a massively parallel
network of computers which are less accessible in conven-
tional environments.

1.1. Previous Work

Due to the central position of SVM in the classifica-
tion literature, much attention on efficient implementation
of SVM was spent, and a variety of methods were intro-
duced and analyzed — including parallel implementations.
The different serial approaches can be roughly divided into
(i) Interior Point methods, (ii) decomposition methods, and

1

(iii) gradient-based primal updates. With regard to parallel
implementations, the literature is somewhat sketchier but
can be divided into two main approaches: (i) cascade SVM,
and (ii) parallel implementation of matrix-vector products
and ways to distribute matrix blocks to a number of pro-
cessors. We will briefly highlight below the main points in
each category.

Interior Point (IP) methods: IP methods (see for in-
stance [3] and the references therein) replace the constraints
with a barrier function. The result is a sequence of uncon-
strained problems which can be optimized very efciently us-
ing Newton or Quasi-Newton methods with a doubly loga-
rithm convergence rate O(log log(1/ε)). However, the gen-
eral purpose IP methods have a run time which is cubic,
and memory requirements which are quadratic, in the num-
ber of examples. Attempts to exploit the special structure
of the SVM constraints in IP methods, in order to gain fur-
ther efficiency, have surfaced but are either focused solely
on linear kernels [5] or require specialized assumption like
low-rank kernel matrices [6].

Decomposition methods: the most popular approach
whereby the solution is sought after in the dual domain and
employ an active set of constraints thus working on a subset
of dual variables at a time [13, 8, 12]. The various tech-
niques differ in the strategy employed for choosing the dual
variables to update and in the size (number of dual vari-
ables) to update in each iteration.

Gradient based primal updates: these are methods op-
timized for linear SVM. The two fastest algorithms are the
Pegasus [14] and SVM-perf [10]. Pegasus samples a sub-
set of examples and from the subset selects the margin error
points. Those selected points define a sub-gradient for up-
dating the separating hyper-plane. The number of iterations
is governed by O(1/ε). SVM-perf is based on a similar
principle whereby SVM is applied only to margin errors in
a successive manner. Although both algorithms can in prin-
ciple handle non-linear kernels, the convergence rate results
do no longer apply and each iteration becomes considerably
more costly thereby compromising their efficiency.

Parallel SVMs: compared to serial SVM solvers, the
literature on parallel SVM solvers is relatively small. The
most popular line of work falls under the category of ”Cas-
cade SVM” (cf. [7, 17]). The general idea is to create a hi-
erarchy (an inverted binary tree) of computing nodes where
the top layer perform SVM on their associated subset of ex-
amples and the layers below are fed with the support vectors
of the layers above — with the bottom layer consisting of
a single node. This then proceeds iteratively until conver-
gence (from top to bottom). There are two issues with this
approach: first is the tacit assumption that the number of
support vectors is relatively small, i.e., the learning prob-
lem is ”easy”, and the second issue with the framework is
that the convergence rate is not well defined, i.e., it is not

clear how many passes through the tree are necessary per
desired accuracy error. Other parallel approaches focus on
parallelizing the matrix vector operations of SVM [16] or
creating a weighted mixture of SVM solutions [4] — the
latter solves a different problem rather than parallelizing the
SVM procedure on the original dataset.

2. PDS: the Distributed Dual Ascend Method
for SVM

Given a set {(xi, yi)}mi=1 of training examples where
xi ∈ Rn and yi ∈ {−1, 1}, the linear SVM problem seeks
the minimizer of:

minw
C

2
‖w‖22 +

1
m

m∑
i=1

loss(w; (xi, yi)), (1)

where C tradeoffs the weight given to the margin between
the hyperplane w to the closest examples (the support vec-
tors) to it and the weight given to margin errors (example
points which do not lie respectively farther from the sup-
port vectors), and

loss(w; (xi, yi)) = max(0, 1− yiw>xi).

The original SVM problem also includes a bias term b and
accommodates high dimensional mappings of the measure-
ment vectors xi onto ”feature” spaces via the use of Mercer
kernels in the dual form (a.k.a nonlinear SVM) — both of
which will be discussed later on in Sec. 2.1 and 2.2.

Let S1, ..., Sk be subsets (not necessarily disjoint) of the
training set indices: Sj ⊂ {1, ...,m} such that Sj 6= ∅ and
∪jSj = {1, ...,m} where k is a fixed number represent-
ing the number of available processors. Let Pj(d) be the
solution to:

Pj(d) = argmin
w

C

2k
‖w‖22+w>d+

1
m

∑
i∈Sj

loss(w; (xi, yi))

(2)
which for d = 0 is the SVM separating hyperplane wj of
the training data represented by Sj . The role of the vector
d is to tie together the local results w1, ..., wk as we shall
see later. The scheme below iterates over the local solutions
Pj(·) and returns the global SVM optimal hyper-plane:

Algorithm 1 (PDS) Set λ
(0)
j = 0 and µ

(0)
j = 0.

1. For t = 1, 2, ..., T

(a) Parallel update j ∈ {1, ..., k}:

λ
(t)
j ← −µ

(t−1)
j − C

k
Pj(µ

(t−1)
j) (3)

(b) message passing j = 1, ..., k:

µ
(t)
j ← −λ

(t)
j +

1
k

k∑
l=1

λ
(t)
l (4)

Output: w∗ = − 1
C

∑k
j=1 λ

(T)
j .

The derivation of the algorithm is based on the principle
of Fenchel Duality and is described briefly in Appendix A.
Note that λj holds a separating hyperplane calculated by
the training examples of Sj and a weighted sum of all previ-
ous separating hyperplanes. When t = 1, λ

(1)
j equal to the

SVM solution over Sj , i.e., the classifier wj of the training
set Sj . Then µ

(1)
j contain a weighted sum of all those classi-

fiers. The result of the weighted sum is passed onto the next
iteration as the vector d in the operator Pj(d). This com-
pletes the description of the algorithm with linear kernels
(i.e., w is represented explicitly) and with zero bias (i.e.,
b = 0). We will address below the details for handling ker-
nels and the extension for non-zero bias.

2.1. Using Mercer Kernels

One of the most appealing benefits of SVM, and most
likely the key for its success, is the ability to construct non-
linear classifiers using kernels which satisfy Mercer’s con-
ditions. The key for making this possible is that w is rep-
resented as a linear combination of the input training data
and that the dual form involves only inner-products between
the training data points. The common approach for solving
SVM when kernels are employed is to switch to the dual
problem and find the optimal set of dual variables.

Kernels are incorporated into our algorithm in the same
way. The dual form of the operator Pj(d) is:

P ∗
j (d) = argmax

0≤α≤(1/m)1

∑
i∈Sj

αi−
k

2C
α>Q>

j Qjα+
k

C
d>Qjα

(5)
where Qj is the matrix whose columns consists of yixi,
i ∈ Sj and α∗

j = P ∗
j (d) is the dual variables vector of

the subproblem represented by Sj . The connection between
P ∗

j (d) and the primal vector Pj(d) is described by

Pj(d) =
k

C
(QjP

∗
j (d)− d). (6)

The entries of the matrix Q>
j Qj are of the form

yrysk(xr, xs) where k(·) is the Mercer kernel. As men-
tioned above, the vector d is a linear superposition of the
training set of points, i.e., d =

∑
r βryrxr where the

coefficients βr represent the integration of results from
all the other sub-problems over all previous iterations.
Each entry of the vector d>Qjα is therefore of the form
αrβsyrysk(xr, xs). Taken together, the dual form of each
sub-problem is fully represented in terms of kernels. The
dual form is solved using state-of-the-art SVM dual solvers
(we used SVM-light [8] following a simple modification for
incorporating the extra term (k/C)d>Qjα). Substituting

eqn. 6 into the update rules of eqn. 3 and eqn. 4 we obtain:

α
(t)
j ← P ∗

j (µ(t−1)
j)

µ
(t)
j ← Qjα

(t)
j −

1
k

k∑
l=1

Qlα
(t)
l

Note that µj is a superposition of the training set of points
and then is fed back into the dual of the sub-problems. After
T iterations, the separating hyperplane is obtained by:

w = − 1
C

k∑
j=1

Qjα
(T)
j .

2.2. Incorporating a Bias Term

It is often desirable to augment the weight vector w with
a scalar bias term, typically denoted as b. The classifier
becomes w>x + b and the loss is defined accordingly:

loss((w, b); (xi, yi)) = max(0, 1− yi(w>xi + b)).

The introduction of b into the derivation process described
in Appendix A introduces a fatal problem by tying together
the (n+1)’th coordinate of the λj through a new constraint∑k

j=1 λj,n+1 = 0 (we omit the underlying reasons as it will
require a deeper detour into conjugate duality which we feel
is not instrumental to this paper). The global constraint on
the conjugate dual variables does not allow for a block up-
date approach — which is the key for making our algorithm
work. Therefore, we need to find a plausible work-around
which would be as close as possible to the original problem.

We add the term (C/2)εb2 to the SVM primal criterion
function where ε > 0 is arbitrarily small:

min
w,b

C

2
‖w‖22 +

Cε

2
b2 +

1
m

m∑
i=1

loss((w, b); (xi, yi)) (7)

We accordingly redefine the sub-problem operator Pj(d):

Pj(d) = argmin
w,b

C

2k
‖w‖22 +

Cε

2k
b2

+ (w, b)>d +
1
m

∑
i∈Sj

loss((w, b); (xi, yi))

The sub-problem dual operator P ∗
j (d) becomes:

P ∗
j (d) = argmax

0≤α≤1/m

∑
i∈Sj

αi −
k

2C
α>Q>

j Qjα

+
k

C
d>Qjα−

k

2Cε

∑
i∈Sj

αiyi − dn+1

2

Note that for sufficiently small value of ε the last term
will drive the solution such that

∑
i∈Sj

αiyi ≈ dn+1.

The operator Pj(d) outputs w through the equation
(k/C)(QjP

∗
j (d) − d) and the scalar b (given w and a sup-

port vector x one can obtain b from the equation |w>x−b| =
1). We denote the process of recovering b by an operator
P b

j (d). The conjugate dual vectors uj contain n + 1 coord-
nates and are broken into two parts µj = (µ̄j ;µj) where
µ̄j ∈ Rn and µj is a scalar. The update rules are as follows
(we omit the derivation but note that it follows the deriva-
tion found in Appendix A):

α
(t)
j ← P ∗

j (µ(t−1)
j)

b
(t)
j ← P b

j (µ(t−1)
j)

µ̄
(t)
j ← Qjα

(t)
j −

1
k

k∑
l=1

Qlα
(t)
l

µ
(t)
j ← µ

(t−1)
j − 1

k

k∑
l=1

µ
(t−1)
l +

Cε

k
b
(t)
j −

Cε

k2

k∑
l=1

b
(t)
l

3. Convergence Rate Analysis
The convergence rate analysis is based on a reduction

of the conjugate dual of the optimization (described in Ap-
pendix A) to a general form described by:

max
β, 0≤α≤ 1

m 1
− k

2C
‖Aα + Bβ‖2 + 1>α (8)

With this reduction we could rely on previous work by [11]
showing that a block coordinate ascent achieves a linear
convergence rate, i.e. it takes O(log(1/ε)) to get ε-close to
the optimal solution. The details are found in Appendix B.

4. Experiments
The experiments in this section are focused solely on

Kernel-SVM as representing the ultimate computational
(run-time) challenge compared to linear-SVM where very
efficient algorithms are emerging who can handle data-sets
of an order of 106 data points [14, 10]. For the local SVM
solver we used the SVM-light algorithm [8].

A key feature of the PDS architecture is that each pro-
cessing node uses independent memory and CPU resources
with limited communication bandwidth. This is ideal for
running SVM on a cluster of workstations with no spe-
cial infrastructure designed for optimizing parallelism like
memory sharing or multi-core CPUs. For example, [16]
produce impressive parallel speedup of roughly k but at the
price of using a specialized high-performance cluster ar-
chitecture where the nodes are interconnected by a high-
performance switch and where each node consists of a
multi-core of 8 processors sharing 16GB of RAM.

The cluster we used for our experiments consists of sep-
arate nodes, interconnected via TCP/IP protocol, each with

a 2.8GHZ Intel Xeon CPU with Cache size of 512KB and
2GB of RAM. We report results when using k = 2, 4, 10
nodes of the cluster.

The expected parallel speedup of PDS using k process-
ing nodes is roughly k/2. Each node needs to cope only
with part of the design matrix with m2/k entries (in the
worst case when the number of support vectors is very high)
— therefore the parallel speed-up just on computing the ker-
nels is k. The communication bandwidth needs to support
an order of m (worst case) — the j’th node transmits its αj

vector consisting of m/k entries (worst case), and receives
all other αl, l 6= j, vectors consisting of m(1−1/k) entries.
Assuming that the parallel speed-up on each local problem
is k2 − k2.5 depending on the complexity of the problem,
then with the number of iterations of O(log(1/ε)) ≈ k
(since k is a small fixed number of order 10 in our experi-
ments) we obtain a total speed-up of k/2.

We begin with synthetic data experiments designed to
test the parallel speedup under two extreme conditions: one
being challenging dataset with a high percentage of support
vectors and small margin and the other being a simple prob-
lem with the opposite criteria. The stopping conditions for
the synthetic problems were the energy level reached by the
single processor (k = 1) SVM-light energy-based stopping
rule.

The ”challenging” dataset consisted of m = 20, 000 2D
points arranged in a ”spiral” configuration with coordinates
x = t cos(t), y = t sin(t) and t = 80π · rand([10000 1]).
With an RBF kernel k(x, y) = e−‖x−y‖2/2σ2

with σ = 1,
and C = 1/m, the percentage of support vectors stands on
80%.

Table 1 highlights some key results on PDS running on
the Spiral dataset for k = 2, 4, 10 processing nodes. For
k = 10 processing nodes, for example, PDS underwent
1400 iterations where most of the work per local proces-
sor was done during the first iteration (2040 msec) with 10-
20 msec per each subsequent iteration totaling 14630 msec
spent on the local SVMs. The integration time spent after
the first iteration is 19560 msec where most of the work
goes into computing the kernels between points assigned to
the node and other remaining points. Integration time on
subsequent iterations take 10-20 msec due to retrieval from
RAM of pre-computed kernel computations and extensive
re-use of previous samples made by SVM-light. The total
time spent on integration is 36590 msec making the overall
parallel speedup stand on 4.7 which is slightly less than the
expected k/2 speedup.

The PDS profile of behavior is dramatically different for
an ”easy” problem. Table 2 shows the same performance
entries but on a 2D training set generated by two Gaussians
where the distance between the means is ten times their vari-
ance. The dataset contains m = 20, 000 points; the kernel
used is an RBF with σ = 1; C = 1/m and the percentage

of support vectors stands on 4%. Considering the case of
k = 10, we see that the number of iterations is small (14
compared to 1400 for the Spiral) and the overall parallel
speedup stands on 3.54. The speedup is smaller than for the
difficult scenario of the Spiral dataset mainly because the
SVM-light on a single processor samples much less than m
points in order to converge making the integration cycles of
PDS somewhat non-efficient.

We next move to two real datasets (i) class 1(out of 8)
in the Forest Cover Type data set1 with m = 300, 000
(sampled out of 581012), RBF kernel with σ = 1.7 and
C = 1/10m, and (ii) class 8 in the MNIST database
of handwritten digits2 contains 784-dimensional nonbinary
sparse vectors; the data set size is m = 60000 and we used
the RBF kernel with σ = 1800 and C = 1/10m.

The PDS uses one of two stopping criteria one being
energy-based and the other is generalization based on leave-
one-out procedure. The energy-based stopping rule has
each node monitor the value of its respective dual energy
and raise a flag when the energy flattens out over a num-
ber of iterations. The leave-one-out stopping rule estimates
the generalization error of (by each node separately) by the
leave-one-out procedure [9] at predetermined intervals and
stopping when the accuracy flattens out. PDS stops when
the earlier of the two stopping conditions have been met.

Tables 3, 4 show the PDS results (using the same for-
mat as the previous tables) of the two datasets. The MNIST
stopped when generalization error flattened on 0.44% and
Cover-Type stopped when the dual energy flattened. Cover-
Type had significantly a higher percentage of support vec-
tors (45%) than MNIST (5.7%) and thus achieved a higher
parallel speedup for k = 10 nodes (6.36 compared to 3.45).

5. Summary

We have introduced a simple and efficient parallel de-
composition algorithm for SVM where each computing
node is responsible for a fixed and pre-determined subset of
the training data. The results of the sub-problem solutions
are sum-weighted and sent back to the computing nodes
in an iterative fashion. We derived the algorithm from the
principles of convex conjugate duality as a parallel block-
update coordinate ascent. The convergence rate of the al-
gorithm has been analyzed and shown to scale gracefully
with the required accuracy ε by O(log(1/ε)). The algorithm
is mostly appropriate for computing clusters of indepen-
dent nodes with independent memory and limited commu-
nication bandwidth. Experimental results on Kernel-SVM
on synthetic and real data show an approximate parallel
speedup of k/2 when using k processing nodes. Further
study is required for evaluating the effects of RAM size on

1Available at http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
2Available in http://yann.lecun.com/exdb/mnist

the performance of PDS. Generally, the smaller the RAM
size compared to the size of the dataset less caching can be
done on pre-computed kernel computations which invari-
ably will have a detrimental effect on the performance of
PDS.

References
[1] D. P. Bertsekas, A. Nedić, and A. E. Ozdaglar. Convex Anal-

ysis and Optimization. Athena Scientific, 2003. 6
[2] B. Boser, I. Guyon, and V. Vapnik. A training algorithm for

optimal margin classifier. In Proc. 5th Workshop on Compu-
tational Learning Theory, pages 144–152, 1992. 1

[3] S. Boyd and L. Vandenberghe. Convex Optimization. Cam-
bridge University Press, 2004. 2

[4] R. Collobert, S. Bengio, and Y. Bengio. A Parallel Mixture
of SVMs for Very Large Scale Problems, 2002. 2

[5] M. C. Ferris and T. S. Munson. Interior-point methods for
massive support vector machines. SIAM J. on Optimization,
13(3):783–804, 2002. 2

[6] S. Fine and K. Scheinberg. Efficient SVM training using
low-rank kernel representations. Journal of Machine Learn-
ing Research, 2(243264):20, 2001. 2

[7] H. Graf, E. Cosatto, L. Bottou, I. Dourdanovic, and V. Vap-
nik. Parallel Support Vector Machines: The Cascade
SVM. Advances in Neural Information Processing Systems,
17:521–528, 2005. 2

[8] T. Joachims. Making large-Scale SVM Learning Practical.
Advances in Kernel Methods-Support Vector Learning. B.
Scoelkopf, C. Burges, A. Smola, 1999. 2, 3, 4

[9] T. Joachims. Estimating the Generalization Performance of
a SVM Efficiently. international conference on Machine
Learning (ICML), pages 431-438, San Francisco 2000. 5

[10] T. Joachims. Training linear SVMs in linear time. Pro-
ceedings of the 12th ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 217–226,
2006. 2, 4

[11] Z. Luo and P. Tseng. On the convergence of a matrix splitting
algorithm for the symmetric linear complementarity prob-
lem. SIAM J. on Control and Opt., 29(5):1037–1060, 1991.
4, 8

[12] E. Osuna, R. Freund, F. Girosi, et al. Training support vec-
tor machines: an application to face detection. Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, 24, 1997. 2

[13] J. Platt. Sequential minimal optimization: A fast algorithm
for training support vector machines. Advances in Kernel
Methods-Support Vector Learning, pages 185–208, 1999. 2

[14] S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Pri-
mal Estimated sub-GrAdient SOlver for SVM. Proceedings
of the 24th international conference on Machine learning,
pages 807–814, 2007. 2, 4

[15] V. Vapnik. The nature of statistical learning. Springer, 1995.
1

[16] L. Zanni, T. Serafini and G. Zanghirati. Parallel Software
for Training Large Scale Support Vector Machines on Multi-
processor Systems. Journal of Machine Learning Research
7:14671492, 2006. 2, 4

Processors Iterations SVM-light SVM-light Total SVM Integration Integration Total Integration Parallel
t = 1 t = 2 t = 1 t = 2 Speed-up

k = 2 900 60000 1200 107440 50000 20 71630 1.34
k = 4 1120 14410 30 40760 45390 20 64220 2.29
k = 10 1400 2040 10 14630 19560 10 36590 4.7

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Table 1. Performance analysis of PDS on the ”Spiral” set of 20, 000 points (80% of the points are support vectors). (a) number of
processors, (b) number of iterations T ; (c),(d) time in msec spent on the local SVM-light during the first two iterations, (e) total time spent
spent on local SVM-light over T iterations; (f),(g) time spent on the integration phase (communication and Kernel evaluations) during the
first two iterations, (h) total time spent spent on integration over T iterations, and (i) the parallel speed achieved (should be compared to
k/2).

Processors Iterations SVM-light SVM-light Total SVM Integration Integration Total Integration Parallel
t = 1 t = 2 t = 1 t = 2 Speed-up

k = 2 6 380 5 403 303 2 314 1.49
k = 4 10 135 2 150 317 2 335 2.2
k = 10 14 32 1 43 233 2 259 3.54

Table 2. Performance analysis of PDS on the ”Gaussians” set of 20, 000 points (4% of the points are support vectors). The column
description follow the same format as Table 1.

[17] J. Zhang, Z. Li, and J. Yang. A Parallel SVM Training Al-
gorithm on Large-Scale Classification Problems. Machine
Learning and Cybernetics, 2005. Proceedings of 2005 Inter-
national Conference on, 3, 2005. 2

A. Derivation of the Distributed Block Update
Dual Ascend Algorithm

We derive a parallel block update algorithm for the SVM
problem eqn. 1, which is equivalent to:

minw1=...=wk

C

2k

k∑
j=1

‖wj‖22 +
1
m

k∑
j=1

∑
i∈Sj

loss(wj ; (xi, yi))

(9)
where w1, ..., wk live in Rn as well. LetH be the set defined
by:

H =
{

w̄ = (w1, ..., wk) ∈ Rnk : w1 = ... = wk

}
.

Let δH(w̄) be the indicator function δH(w̄) = 0 if w̄ ∈
H and δH(w̄) = ∞ if w̄ 6∈ H, and let hj(wj) =∑

i∈Sj
loss(wj ; (xi, yi)). Eqn. 9 is equivalent to:

min
w̄=(w1,...,wk)

1

m

kX
j=1

hj(wj) + δH(w̄)

!
−

− C

2k

kX
j=1

‖wj‖22

!
(10)

which is of the form minw̄ f1(Qw̄) − f2(w̄) where Q =
[I; I], i.e., Qw̄ = (w̄, w̄). From Fenchel Duality (cf. [1],
pp. 421-446), we have:

min
w̄

f1(Qw̄)− f2(w̄) = max
λ̄,µ̄

g2(λ̄ + µ̄)− g1(λ̄, µ̄)

where g1, g2 are convex conjugates of f1, f2, respectively,
and λ̄ = (λ1, ...,λk) and µ̄ = (µ1, ...,µk). Specifically,

max
λ̄,µ̄

g2(λ̄ + µ̄)− g1(λ̄, µ̄) = (11)

max
λ̄,µ̄
− k

2C

k∑
j=1

‖λj + µj‖22 −
k∑

j=1

h∗j (λj)− σH(µ̄)

Where σH(µ̄) is the support function of H (convex con-
jugate of δH(w̄)). We employ a Jacobi-style block-update
approach, with a time counter (t), for maximizing the dual
vectors λj ,µj , j = 1, ..., k, where at each step we maxi-
mize g2(λ̄ + µ̄)− g1(λ̄, µ̄) with respect to λj while keep-
ing the other dual vectors fixed. The value of the dual vector
λ

(t)
j becomes:

λ
(t)
j = argmax

λ
− k

2C
‖λ + µ

(t−1)
j ‖22 − h∗j (λ) (12)

which is of the form (employing FD again) maxλ g2(λ) −
g1(λ) which is equal to minw f1(w)− f2(w) where

f2(w) = − C

2k
‖w‖22 − w>µ

(t−1)
j

f1(w) = hj(w)

from which we obtain the solution for w for the j’th sub-
problem (eqn. 2):

w(t)
j ≡ Pj(µ

(t−1)
j) = argmin

w
C

2k
‖w‖22 + w>µ

(t−1)
j

+
1
m

∑
i∈Sj

loss(w; (xi, yi))

Processors Iterations SVM-light SVM-light Total SVM Integration Integration Total Integration Parallel
t = 1 t = 2 t = 1 t = 2 Speed-up

k = 2 23 192360 8460 209122 162666 4980 176342 1.29
k = 4 70 62216 2376 75933 160014 3792 186420 1.9
k = 10 106 13169 522 18534 99730 224 126918 3.45

Table 3. Performance analysis of PDS on the MNIST set of 60, 000 points (5.7% of the points are support vectors). The column description
follow the same format as Table 1.

Processors Iterations SVM-light SVM-light Total SVM Integration Integration Total Integration Parallel
t = 1 t = 2 t = 1 t = 2 Speed-up

k = 2 1000 62321803 813354 71202282 11125508 125476 13065440 1.58
k = 4 2000 32693808 535729 42807721 5429803 126784 8333806 2.6
k = 10 3000 9622014 307999 16742959 1605412 92042 4196778 6.36

Table 4. Performance analysis of PDS on the CoverType set of 300, 000 points (45% of the points are support vectors). The column
description follow the same format as Table 1.

The connection between λ
(t)
j and w(t)

j follows from La-
grangian optimality:

w(t)
j = argmin

w
w>λ

(t)
j +

C

2k
‖w‖22 + w>µ

(t−1)
j

from which we obtain the update equation for λj (eqn. 3):

λ
(t)
j = −µ

(t−1)
j − C

k
Pj(µ

(t−1)
i)

Next we consider the block update for µ̄. The value of the
dual vector µ̄(t) is equal to:

µ̄(t) = argmax
µ̄

− k

2C

k∑
j=1

‖λ(t)
j + µj‖22 − σH(µ̄) (13)

which is of the the form max g2(µ̄) − g1(µ̄) which from
Fenchel Deuality is equal to min δH(w̄)− f2(w̄) where

f2(w̄) = − C

2k

k∑
j=1

‖wj‖22 −
k∑

j=1

w>j λ
(t)
j .

The solution for w̄ = (w1, ..., wk) is:

w̄(t) = argmin
w1=...=wk

C

2k

k∑
j=1

‖wj‖22 +
k∑

j=1

w>j λ
(t)
j ,

from which we obtain:

w(t) = argmin
w

C

k
‖w‖22 + w>(

k∑
j=1

λ
(t)
j),

from which it follows that:

Cw(t) +
k∑

j=1

λ
(t)
j = 0. (14)

The connection between µ̄(t) = (µ(t)
1 , ...,µ

(t)
k) and w̄(t) =

(w(t), ..., w(t)) follows from Lagrange optimality:

w̄(t) = argmin
w̄

w̄>µ̄(t) +
C

2k

k∑
j=1

‖wj‖22 +
k∑

j=1

w>j λ
(t)
j ,

from which it follows:

µ
(t)
j = −λ

(t)
j −

C

k
w(t).

Substituting w(t) from eqn. 14 we obtain the update formula
(eqn. 4):

µ
(t)
j ← −λ

(t)
j +

1
k

k∑
l=1

λ
(t)
l .

B. Derivation of the conjugate functions
We analyze the convergence properties of our dual opti-

mization scheme, which is described in Eqn. 11. Through-
out this section we denote the objective function in Eqn. 11
by g(λ̄, µ̄) and

g(λ̄∗, µ̄∗) = max
λ̄,µ̄

g(λ̄, µ̄).

An optimization method finds a ε-accurate solution (λ̄′, µ̄′)
if g(λ̄′, µ̄′) ≥ g(λ̄∗, µ̄∗)− ε. We prove that the number of
iterations required by PDS in order to obtain an ε-accurate
solution is O(log(1/ε)). Specifically,

|g(λ̄t
, µ̄t)− g(λ̄∗, µ̄∗)| ≤ ε, for t = O(log(1/ε))

In this case we say that the algorithm converges linearly
to the solution since for every t larger than some con-
stant N the ratio of |g(λ̄t+1

, µ̄t+1) − g(λ̄∗, µ̄∗)| and
|g(λ̄t

, µ̄t) − g(λ̄∗, µ̄∗)| is at most linear (in this case

constant).

The analysis of the algorithm’s convergence rate is based
on reducing the dual problem in Eqn. 11 to eqn. 8 and re-
lating our update schemes in Eqn. 3 and Eqn. 4 to block
coordinate ascent of the α and β variables. With this re-
duction we could rely on previous work by [11] showing
that a block coordinate ascent achieves a linear convergence
rate, i.e. it takes O(log(1/ε)) to get ε-close to the optimal
solution.

Our main effort is to derive the relations:

µ̄ = −Bβ, λ̄ = −Aα for 0 ≤ α ≤ 1
m

.

We also show that whenever these equalities hold the
conjugate dual function in Eqn. 11 takes the values∑k

j=1 h∗j (λj) = 1>α and σH(µ) = 0. The proof of the
above assertions fully describes the equivalence of the opti-
mization schemes in Eqn. 11 and Eqn. 8. The key to this
proof is the realization of the conjugate functions h∗j (·) and
σH(·). These functions enforce the Lagrange multipliers
to posses a specific form: µ̄ = −Bβ and λj = −Qjαj

where Qj is a matrix whose columns are the vectors yixi in
the measurements subset i ∈ Sj .

Proposition 1

h∗j (λj) =
{
−

∑
i∈Sj

αj,i if λj = −Qjαj , 0 ≤ αj ≤ 1
m

∞ otherwise

There exists a matrix B of dimensions nk × (nk − k) such
that

σH(µ) =
{

0 if µ = −Bβ
∞ otherwise

Proof: first we describe the hinge-loss function
loss(w; (xi, yi)) = max(0, 1− yiw>xi) as an optimization
function, a view which simplifies the derivations below and
can be verified by inspecting the cases yiw>xi ≥ 1 and
yiw>xi < 1:

max(0, 1− yiw>xi) = min
εi∈Ci

εi,

where Ci = {εi ≥ 0 | yiw>xi ≥ 1− εi}.

The above relation yields a simple derivation of the conju-
gate dual of the hinge-loss function:

h∗j (λ) =

−
P

i∈Sj
αi if λ = −

P
i∈Sj

αiyixi, 0 ≤ αi ≤ 1/m

∞ otherwise

To verify its correctness we use the fact maxw f(w) =
−minw(−f(w)) to deduce from the optimization formu-
lation of the hinge-loss the equality

h∗j (λ) = − minw,εi∈Ci

(−λ>w +
1
m

∑
i∈Sj

εi).

To realize the explicit expression of h∗j (λ) we define the
Largrangian, for δi ≥ 0,

L(w, εi, αi) = −λ>w+
X
i∈Sj

„
1

m
εi − αi(yiw>xi − 1 + εi)− δiεi

«

and its stationary points

∂L

∂w
= −λ−

∑
i∈Sj

αiyixi = 0,
∂L

∂εi
=

1
m
− αi − δi = 0

Substituting these results/constraints back into the La-
grangian L() we obtain the function h∗j (λ) in Prop 1.
To complete the proof of Prop. 1 we describe explicitly
the support function σH() which is the conjugate dual
of the indicator function δH(w̄). The set H contains the
vectors w̄ with nk entries which have k copies of a vector
with n entries, therefore it is a linear space since for every
w̄, ū ∈ H holds c1w̄ + c2ū ∈ H for every real constants
c1, c2. The support function of the linear subspace H
is the indicator function of its orthogonal subspace, i.e.
σH(µ̄) = δH⊥(µ̄). Assume B is the matrix whose columns
are the basis of H⊥ then δH⊥(µ̄) = 0 if µ̄ = −Bβ for
some vector β and δH⊥(µ̄) =∞ otherwise.

Finally, we bundle the vectors λj = −Qjαj to obtain
λ̄ = −Aα where we relate the matrices Qj to A in the
following manner:

A =

Q1 0 0 0 0

0
. . . 0 0 0

0 0 Qj 0 0

0 0 0
. . . 0

0 0 0 0 Qk

The results in [11] state that a block coordinate ascent

for the optimization scheme in Eqn. 8 with respect to α
and β converges linearly to its optimal solution. In order
to prove that PDS sketched in Algo. 1 converges linearly
to its solution we need to show that the optimization of λ̄ is
equivalent to the optimization of the α, and the optimization
of the µ̄ is equivalent to the optimization of β. These two
assertions are proved in Appendix. A in Eqn. 12 for λ̄ and
Eqn. 13 for µ̄.

