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Abstract

We derive algorithms for finding a non-
negative n-dimensional tensor factorization
(n-NTF) which includes the non-negative
matrix factorization (NMF) as a particular
case when n = 2. We motivate the use of
n-NTF in three areas of data analysis: (i)
connection to latent class models in statis-
tics, (ii) sparse image coding in computer vi-
sion, and (iii) model selection problems. We
derive a ”direct” positive-preserving gradient
descent algorithm and an alternating scheme
based on repeated multiple rank-1 problems.

1. Introduction

Low rank constraints of high dimensional data obser-
vations are prevalent in data analysis across numerous
scientific disciplines. A factorization of the data into
a lower dimensional space introduces a compact basis
which if set up appropriately can describe the original
data in a concise manner, introduce some immunity to
noise and facilitate generalization. Factorization tech-
niques are abundant including Latent Semantic Anal-
ysis (Deerwester et al., 1990), probabilistic variants of
LSA (Hofmann, 1999), Principal Component Analy-
sis and probabilistic and multinomial versions of PCA
(Buntine & Perttu, 2003; Tipping & Bishop, 1999)
and more recently non-negative matrix factorization
(NMF) (Paatero & Tapper, 1994; Lee & Seung, 1999).

In this paper we address the problem of non-negative
factorizations, but instead of two-dimensional data, we
handle general n-dimensional arrays. In other words,
we address the area of non-negative tensor factoriza-

Appearing in Proceedings of the 22nd International Confer-
ence on Machine Learning, Bonn, Germany, 2005. Copy-
right 2005 by the author(s)/owner(s).

tions (NTF) where the NMF is a particular case when
n = 2. We will motivate the use of n-dim NTF in
three areas of data analysis: (i) connection to latent
class models in statistics, (ii) sparse image coding in
computer vision, and (iii) model selection problems.

We will start with the connection between latent class
models and NTF, followed by a brief review of what
is known about tensor rank factorizations. In Sec-
tion 4 we will derive our first NTF algorithm based
on a direct approach, i.e., a positive preserving (mul-
tiplicative) gradient descent over the vectors uj

i where∑k
j=1 uj

1 ⊗ uj
2 ⊗ ... ⊗ uj

n is a rank-k approximation
to the input n-way array. In Section 5 we derive an
alternative approach based on repeated rank-1 decom-
position problems. In Section 6 we apply the NTF to
sparse image coding and model selection.

2. NTF and Latent Class Models

Consider the joint probability distribution over dis-
crete random variables X1, ..., Xn, where Xi takes val-
ues in the set [di] = {1, ..., di}. We associate with each
entry of the n-way array Gi1,i2,...,in

a non-negative
value P (X1 = i1, ..., Xn = in) which represents the
probability of event X1 = i1, ..., Xn = in.

It is well known that conditional independence con-
straints among the variables correspond to the zero set
of a system of polynomials. For example, a conditional
independence statement A⊥B | C where A,B,C are
pairwise disjoint subsets of {X1, ..., Xn} translates into
a set of quadratic polynomials Each polynomial is the
determinant of a 2 × 2 block of the n-way array gen-
erated by choosing two distinct elements a and a′ in∏

Xi∈A[di], two distinct elements b and b′ in
∏

Xj∈B [dj ]
and an element c in

∏
Xk∈C [dk]. The determinant is

the following expression:
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P (A = a, B = b, C = c)P (A = a′, B = b′, C = c)

− P (A = a′, B = b, C = c)P (A = a, B = b′, C = c) = 0.

The expression on probabilities translates to quadratic
expressions on the entries of G by the fact that each
probability equals the sum of entries in G. For exam-
ple, If A∪B ∪C = {X1, ..., Xn} then each probability
P (A = a,B = b, C = c) corresponds to a single en-
try Gi1i2...in

where the coordinates of a, b, c have a 1-1
correspondence with i1, ..., in.

An algebraically equivalent way of studying the con-
straints induced by conditional independence state-
ments is by identifying rank-1 slices of the tensor G.
A k-way array is said to be of rank-1 if it is de-
scribed by the outer-product of k vectors u1 ⊗ u2 ⊗
...⊗uk. Generally, a statement A1⊥A2⊥...⊥Al | Al+1

where A1, ..., Al+1 are pairwise disjoint subsets of
{X1, ..., Xn} translates to the statement that certain
l-way slices of G are rank-1 tensors. Consider first the
case where A1 ∪ ... ∪ Al+1 = {X1, ..., Xn}. Then, we
construct an (l+1)-way array whose axes are cartesian
products of the n coordinates of G where the first axis
is [di1 ] × ... × [diq

] where Xi1 , ..., Xiq
∈ A1, the sec-

ond axis is
∏

Xij
∈A2

[dij
] and so forth. For every value

along the (l+1)-axis the remaining l-way array (a slice)
is a rank-1 tensor. If A1 ∪ ... ∪ Al+1 ⊂ {X1, ..., Xn},
then G is first ”marginalized” (summed over) the re-
maining variables (those not in the l + 1 subsets) fol-
lowed by the construction above.

For example, consider the case of n = 3, i.e., we
have three random variables X1, X2, X3. The state-
ment X1⊥X2 translates to the constraint that the ma-
trix resulting from summing over the third coordinate,
i.e.,

∑
i3

Gi1,i2,i3 is a rank-1 matrix. The statement
X1⊥X2 | X3 translates to a set of d3 rank-1 con-
straints: for each value a ∈ {1, ..., d3} of the third axis
X3, the resulting slice Gi1,i2,a ranging over i1, i2 is a
rank-1 matrix. In probability language,

P (X1, X2 |X3 = a) = P (X1 |X3 = a)P (X2 |X3 = a),

is an outer-product of the two vectors P (X1 | X3 = a)
and P (X2 | X3 = a).

Finally, the statement X1⊥{X2, X3} translates to sev-
eral rank-1 statements: spread G into a matrix whose
first axis is [d1] and whose second axis is the Carte-
sian product [d2]× [d3] — the resulting matrix Gi1,i2i3

is rank-1. Since Gi1,i2i3 is a concatenation of slices
Gi1,i2a where X3 = a, then each slice must also by
rank-1 from which can deduce that X1⊥X2 | X3 and
likewise since Gi1,ai3 are also slices of Gi1,i2i3 then

X1⊥X3 |X2. Each slice Gi1,i2a is of the form u⊗va for
some fixed vector u and a vector va that changes from
slice to slice. Therefore, the sum of slices (marginal-
ization over X3) is also a rank-1 matrix u⊗ (

∑
i3

vi3),
thus X1⊥X2 and likewise X1⊥X3.

The introduction of a latent (or ”hidden”) variable Y
which takes values in the set {1, ..., k} will translate
into the fact that slices of G are rank-k tensors, i.e.,
are described by a sum of k n’th fold outer-products.
In probability language, the ”observed” joint proba-
bility n-way array P (X1, ..., Xn) is a marginal of the
complete (n + 1)-way array:

P (X1, ..., Xn) =
k∑

j=1

P (X1, ..., Xn, Y = j).

As a result, any conditional independence statement
A1⊥A2⊥...⊥Al | Al+1 over X1, ..., Xn with a k-graded
latent variable Y translates to statements about l-way
arrays having tensor-rank equal to k.

In probability language, one would say that we have
a mixture model. The decomposition of the tensor-
slice in question into a sum of k rank-1 tensors is
equivalent to saying that the probability model is de-
scribed by a sum of k factors. For example, the basic
model of latent class analysis is a particular instance
(super-symmetric tensors) where the density of an ob-
servation xi = (xi

1, ..., x
i
n) is expressed by f(xi) =∑k

j=1 πjf(xi; θj) where the j’th component of the den-

sity is given by f(xi; θj) =
∏n

r=1(θ
j
r)

xi
r (1− θj

r)
1−xi

r .

In probability setting, the method of factorization is
the Expectation-Maximization (EM) (Dempster et al.,
1977). We will see later in Section 5 the situation in
which EM emerges. Generally, recovering the factors
is equivalent to a non-negative tensor factorization and
that can be studied by algebraic methods — the EM
will be shown as a particular instance of the algebraic
approach, and not the best one.

3. What is Known about Tensor
Factorizations?

The concept of matrix rank extends quite naturally to
higher dimensions: An n-valence tensor G of dimen-
sions [d1] × ... × [dn] is indexed by n indices i1, ..., in
with 1 ≤ ij ≤ dj is of rank at most k if can be ex-
pressed as a sum of k rank-1 tensors, i.e. a sum of
n-fold outer-products: G =

∑k
j=1 uj

1 ⊗ uj
2 ⊗ ... ⊗ uj

n,
where uj

i ∈ Rdi . The rank of G is the smallest k for
which such a decomposition exists.

Despite sharing the same definition, there are a num-
ber of striking differences between the cases n = 2
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(matrix) and n > 2 (tensor). While the rank of a ma-
trix can be found in polynomial time using the SVD
algorithm, the rank of a tensor is an NP-hard problem.
Even worse, with matrices there is a fundamental re-
lationship between rank-1 and rank-k approximations
due to the Eckart-Young theorem: the optimal rank-k
approximation to a matrix G can be reduced to k suc-
cessive rank-1 approximation problems to a diminish-
ing residual. This is not true with tensors in general,
i.e., repeatedly subtracting the dominant rank-1 ten-
sor is not a converging process, but only under spe-
cial cases of orthogonally decomposable tensors (see
(Zhang & Golub, 2001)).

Another striking difference, this time in favor of ten-
sor ranks, is that unlike matrix factorization, which is
generally non-unique for any rank greater than one,
a 3-valence tensor decomposition is essentially unique
under mild conditions (Kruksal, 1977) and the situ-
ation actually improves in higher dimensions n > 3
(Sidiropoulos & Bro, 2000). We will address the im-
plications of the uniqueness property in Section 6.

Numerical algorithms for rank-k tensor approxima-
tions are abundant. Generalizations of SVD such as
orthogonal tensor decompositions (High-Order SVD)
have been introduced in (Lathauwer et al., 2000) (and
further references therein). Other more general 3-way
decompositions were introduced by Harshman (1970)
under the name ”parallel factor” (PARAFAC) — for
a review see (Xianqian & Sidiropoulos, 2001). In com-
puter vision, 3-way tensor decompositions, treating
the training images as a 3D cube, have been also pro-
posed (Shashua & Levin, 2001; Vasilescu & Terzopou-
los, 2002) with the idea of preserving certain features
of the SVD. A recent attempt to perform an NTF was
made by (Welling & Weber, 2001) who introduced an
iterative update rule, based on flattening the tensor
into a matrix representation, but which lacked a con-
vergence proof. As derived next, the key for obtaining
a converging update rule is to identify sets of variables
with a diagonal Hessian matrix. This is very difficult
to isolate when working with matrix representations
of tensors and requires working directly with outer-
products.

4. NTF: the Direct Approach

Given an n-way array G we wish to find a non-negative
rank-k tensor

∑k
j=1 uj

1⊗uj
2⊗ ...⊗uj

n described by nk

vectors uj
i . We consider the following least-squares

problem:

min
uj

i

1
2
‖G−

k∑
j=1

⊗n
i=1u

j
i‖

2
F subject to : uj

i ≥ 0, (1)

where ‖A‖2F is the square Frobenious norm, i.e., the
sum of squares of all entries of the tensor elements
Ai1,...,in . The direct approach is to form a positive
preserving gradient descent scheme. To that end we
begin by deriving the gradient function with respect
to us

rl.

Let < A, B > denote the inner-product operation,
i.e.,

∑
i1,..,in

Ai1,...,in
Bi1,...,in

. It is well known that
the differential commutes with inner-products, i.e.,
d < A,A >= 2 < A, dA >, hence:

1
2
d < G−

k∑
j=1

⊗n
i=1u

j
i , G−

k∑
j=1

⊗n
i=1u

j
i >

= < G−
k∑

j=1

⊗n
i=1u

j
i , d

G−
k∑

j=1

⊗n
i=1u

j
i

 >

Taking the differential with respect to us
r and noting

that

d

G−
k∑

j=1

⊗n
i=1u

j
i

 = −⊗r−1
i=1 us

i ⊗ d(us
r)⊗n

i=r+1 us
i ,

the differential becomes:

df(us
r) = <

k∑
j=1

⊗n
i=1u

j
i , ⊗r−1

i=1 us
i ⊗ d(us

r)⊗n
i=r+1 us

i >

− < G , ⊗r−1
i=1 us

i ⊗ d(us
r)⊗n

i=r+1 us
i >

The differential with respect to the l’th coordinate us
rl

is:

df(us
rl) = <

k∑
j=1

⊗n
i=1u

j
i , ⊗r−1

i=1 us
i ⊗ el ⊗n

i=r+1 us
i >

− < G , ⊗r−1
i=1 us

i ⊗ el ⊗n
i=r+1 us

i >

where el is the l’th column of the dr × dr iden-
tity matrix. Let S ∈ [d1] × ... × [dn] represent an
n-tuple index {i1, ..., in}. Let S/ir denote the set
{i1, .., ir−1, ir+1, .., in} and Sir←l deonte the set of in-
dices S where the index ir is replaced by the constant
l. Then, using the identity < x1 ⊗ y1 , x2 ⊗ y2 >=
(x>1 x2)(y>1 y2) we obtain the partial derivative:

∂f

∂us
rl

=
k∑

j=1

uj
rl

∏
i 6=r

(uj
i

>
us

i )−
∑
S/ir

GSir←l

∏
m6=r

us
m,im


Following Lee and Seung (1999) we use a multiplicative
update rule by setting the constant µs

rl of the gradient
descent formula us

rl ← us
rl − µs

rl
∂f

∂us
rl

to be:

µs
rl =

us
rl∑k

j=1 uj
rl

∏
i 6=r(u

j
i

>
us

i )
, (2)
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thereby obtaining the following update rule:

us
rl ←

us
rl

∑
S/ir

GSir←l

∏
m6=r us

m,im∑k
j=1 uj

rl

∏
i 6=r(u

j
i

>
us

i )
(3)

We will now prove that this update rule reduces the
optimization function. The key is that the Hessian
matrix with respect to the variables us

rl is diagonal
(and independent of l):

∂2f

∂us
rl∂us

rl

=
∏
i 6=r

us
i
>us

i .

Moreover, the gradient step µs
rl of eqn. 2 is less than

the inverse ratio of the Hessian diagonal value:

µs
rl =

us
rl∑k

j=1 uj
rl

∏
i 6=r(u

s
i
>us

i )
<

us
rl

us
rl

∏
i 6=r(u

s
i
>us

i )
.

Finally, we show that the gradient step µs
rl = µ reduces

the optimization function.

Proposition 1 Let f(x1, ..., xn) be a real quadratic
function with Hessian of the form H = cI with c > 0.
Given a point x = (xt

1, ..., x
t
n) ∈ Rn and a point xt+1 =

xt−µ(5f(xt)) with 0 < µ < 1
c , then f(xt+1) < f(xt).

Proof: Take the second order Taylor series expansion
of f(x + y):

f(x + y) = f(x) +5f(x)>y +
1
2
y>Hy.

Substitute x = xt and y = −µ5 f(xt):

f(xt)− f(xt+1) = µ‖ 5 f(xt)‖2 − 1
2
µ2c‖ 5 f(xt)‖2

= µ‖ 5 f(xt)‖2(1− 1
2
cµ)

The result follows since µ < 1
c .

A similar derivation using the relative entropy error
model is possible but is omitted due to lack of space.

5. Reduction to Repeated Rank-1
Approximations: L2–EM and EM

We saw in Section 2 that the problem of recovering
the k component densities of a latent class model is a
special case of finding a rank-k NTF from the joint
distribution n-way array. In statistics, the compo-
nent densities are recovered using the EM algorithm.
Therefore, an EM-like approach can be considered as

an NTF algorithm as well. Formally, we wish to solve
the following problem:

min
W j ,Gj :1≤j≤k

k∑
j=1

‖W j ◦G−Gj‖2F

s.t. Gj ≥ 0, rank(Gj) = 1,
∑

j

W j = 1,

where A ◦ B stands for the element-wise (Hadamard)
product of the arrays, 1 is the n-array of 1s, and

∑
j Gj

is the sought-after rank-k decomposition. Note that
for every choice of W j which sum-up to the unit ten-
sor 1 we have:

∑
j W j ◦G = G, thus the requirement

G =
∑

j Gj is implied by the conditions above. We will
be alternating between optimizing one set of variables
while holding the other set constant, thus breaking
down the problem into alteration between two (con-
vex) optimization problems: (i) given current estimate
of W j , solve for Gj by finding the closest rank-1 fit to
W j ◦ G, and (ii) given current estimates of Gj , solve
for W j .

The advantage of this approach is that it reduces
the rank-k approximation problem to multiple and
repeated rank-1 approximations. The advantage is
twofold: on one hand a rank-1 approximation can be
achieved by a straightforward extension of the power
method for finding the leading eigenvector of a matrix,
but moreover, the rank-1 approximation carries with
it properties that are difficult to guarantee when seek-
ing a rank-k approximation directly. For example, if G
is super-symmetric (i.e., the rank-1 factors are n-fold
symmetric) then the rank-k approximation described
in the previous section will not necessarily find a super-
symmetric decomposition, i.e., where uj

1 = ... = uj
n,

but a rank-1 fit to a super-symmetric tensor is guar-
anteed to have a symmetric form (cf. Catral et al.
(2004),Kofidis and Regalia (2002)).

Given W j ≥ 0, the optimal Gj can be found by fit-
ting a rank-1 tensor to W j ◦G. A least-squares fit of
u1 ⊗ ... ⊗ un to a given tensor H can be achieved by
employing the following ”power method” scheme (see
(Zhang & Golub, 2001)) summarized in Fig. 1. The
update process preserves positivity, so if W j ≥ 0 and
G ≥ 0 then the resulting rank-1 fit is also non-negative.

We next consider the problem of finding the opti-
mal W 1, ...,W k satisfying the admissibility constraints∑

j W j = 1 and W j ≥ 0 given that we know the
values of G1, ..., Gk. Let S as before stand for the
index i1, .., in into the n-way arrays. Let bS =
(1/GS)(G1

S , ..., Gk
S) and qS = (W 1

S , ...,W k
S ), then our

problem is to find the k-dimensional vectors qS for all
S ranging in [d1] × ...[dn] which satisfy the following
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Input: The n-way array G and the current estimate of W j .

Output: The closest least-squares rank=1 approximation Gj to

W j ◦G.

1. Let H = W j ◦G.

2. Initialize the vectors u
(0)
1 , ..., u

(0)
n , where u

(0)
r ∈ Rdr , to

random non-negative values.

3. for t = 0, 1, 2, .., T

(a) u
(t+1)
r,ir

=
∑

S/ir
HS/ir

∏r−1

m=1
u
(t+1)
m,im

∏n

m=r+1
u
(t)
m,im

,

where r = 1, ..., n and ir = 1, ..., dr .

(b) replace u
(t+1)
r ← u

(t+1)
r /‖u(t+1)

r ‖.

4. Gj = δu
(T )
1 ⊗ ....⊗ u

(T )
n , where δ =< H,⊗n

i=1u
(T )
i

>.

Figure 1. L2 Alternating Scheme: the power method for
finding the closest rank=1 tensor Gj to the given tensor
W j ◦G. The symbol S represents an in index i1, ..., in and
S/ir the index i1, ..., ir−1, ir+1, ..., in.

optimization criteria:

min
qS

∑
S∈[d1]×...×[dn]

‖qS − bS‖22 s.t. qS ≥ 0, q>S 1 = 1.

Since this problem is solved for each index S separately
(there is no coupling between qS and qS′), we can omit
the reference to the index S and focus on solving the
following problem:

q∗ = argminq‖q− b‖22 s.t. q ≥ 0, q>1 = 1 (4)

The optimal solution q∗ can be found by employing
an iterative scheme alternating between the following
two partial optimizations: Let q(0)

+ = b, then for t =
0, 1, 2, .... we define:

q(t+1) = argminx‖x− q(t)
+ ‖2 s.t. x>1 = 1, (5)

q(t+1)
+ = argminx‖x− q(t+1)‖2 s.t. x ≥ 0. (6)

See Fig. 3 for a sketch of the alternating steps. Follow-
ing some algebra, the optimal solution q∗ for eqn. 4 is
obtained by the iterative scheme described in Fig. 2.
We omit the convergence and global optimality proofs
due to lack of space.

To summarize, the alternating scheme, referred to as
L2–EM, for updating the estimates G1, ..., Gk is as fol-
lows:

1. Let W 1(0)
, ..., W k(0)

be assigned random values in the

range [0, 1] and normalized such that
∑

j
W j(0) = 1.

2. Let t = 0, 1, 2, ...

3. Assign Gr(t)
← rank1(W r(t)

◦ G), r = 1, ..., k, using
the power method presented in Fig. 1.

Input: The n-way array G and the current rank1 factors

G1, ..., Gk.

Output: The updated estimate of the n-way arrays W1, ..., W k.

1. for S = i1, ..., in ∈ [d1]× ....× [dn].

(a) Let q
(0)
+ = (1/GS)(G1

S , ..., Gk
S).

(b) for t = 0, 1, 2, 3, ...

i. q
(t+1)
j

= q
(t)
+j

+ 1
k

(1−
∑k

l=1
q
(t)
+l

), j = 1, ..., k.

ii. q
(t+1)
+ = th≥0(q(t+1)).

iii. repeat until q(t+1) = q
(t+1)
+ .

(c) Let W
j
S

= q
(t+1)
j

, j = 1, ..., k.

Figure 2. The iterative scheme for updating W 1, ..., W k

given the current estimate of the factors G1, ..., Gk and
the input tensor G.

Figure 3. A sketch of the convergence pattern of the L2

update of the auxiliary tensors W 1, ..., W k. The pat-
tern proceeds by successive projections onto the hyperplane
x>1− 1 = 0 followed by projection to the non-negative or-
thant x ≥ 0. The relative entropy update resulting in qre

is simply a scaling of bS thus non-vanishing entries of bS

cannot map to vanishing entries of qre. On the other hand,
non-vanishing entries of bS can map to vanishing entries
of qL2.

4. Assign values to W 1(t+1)
, ..., W k(t+1)

using the itera-
tive scheme presented in Fig. 2 with the estimates of

Gr(t)
, r = 1, ..., k.

5. Repeat until convergence.

It is worthwhile noting that if we replace the L2 er-
ror model with the relative entropy D(A || B) =∑

S

[
AS log AS

BS
−AS + BS

]
and go through the alge-

bra we obtain the EM algorithm. Specifically, given
the current estimates G1, .., Gk the problem of finding
the optimal (under relative entropy) W r is convex and
after some algebra can be shown to be equal to:

W r =
Gr∑k

j=1 Gj
. (7)
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This is a non-iterative update rule which involves only
scaling — see Fig. 3 for a sketch comparing this with
the L2 result. The entries of W r represent P (yi =
r | xi, θ) indicating the probability of the co-occurence
value to arise from the r’th factor. The update formula
of eqn. (7) is the Bayes rule:

P (yi = r | xi, θ
′) =

P (xi | yi = r, θ′)P (yi = r | θ′)
P (xi | θ′)

,

where θ′ are the parameters (the uj
i making up the Gj ,

j = 1, ..., k) of the previous iteration.

Given the current estimates of W 1, ...,W k the optimal
Gr is the rank-1 fit to W r ◦G. The rank-1 fit of u1 ⊗
... ⊗ un to a tensor H under relative entropy can be
shown to be equal to:

ur,ir
=

∑
i1,...,ir−1,ir+1,...,in

Hi1,...,in
, (8)

normalized by the sum of all entries of H (the L1 norm
of ur is 1). The maximization step of EM is over the
following function:

max
θ

l∑
i=1

k∑
j=1

P (yi = j | xi, θ
(t)) log P (xi, yi = j | θ),

where xi are the i.i.d. samples. Given that each sam-
ple appears multiple times in order to create a co-
occurence array G, the problem is equivalent to:

max
uj

i
≥0

∑
S

k∑
j=1

wj
SGS log uj

1,i1
· · · uj

n,in
,

subject to ‖uj
i‖1 = 1 and where S runs over the in-

dices {i1, ..., in}. Taking the derivatives with respect
to the vectors uj

i and setting them to zero will provide
the update rule of eqn. (8) — thereby establishing the
equivalence of the two update formulas eqns. 7 and 8
with EM.

In the remainder of this section we wish to analyze the
difference between the solutions the two schemes, the
L2–EM and EM, can provide. Consider the rank-1 fit
step: a rank-1 uv> fit to a matrix A would be u = A1
and v = A>1, i.e., the ”closest” rank-1 matrix to A
is A11>A. In contrast, an L2 fit would generate u
as the leading eigenvector of A and v as the leading
eigenvector of A>. Clearly, if A is a random matrix
then both approximations will coincide since the vec-
tor 1 is the leading eigenvector of a random matrix.
For non-random matrices, the L2 rank-1 fit tends to
be more sparse then its relative entropy counterpart
— as stated in the following claim:

Proposition 2 Consider a non-negative matrix A
and let uL2v>L2 be the L2 rank-1 fit to A and uREv>RE

be the relative entropy rank-1 fit to A. Then,

‖uL2‖00 ≤ ‖uRE‖00, and ‖vL2‖00 ≤ ‖vRE‖00,

where ‖u‖00 = #{i : ui 6= 0} the zero-norm of u.

We omit the proof due to lack of space. The proposi-
tion holds (under mild conditions) for higher order ten-
sors as well. A similar situation holds for the update of
the W j tensors as can be seen from the sketch of Fig. 3.
The implication of this result is that we should expect
a higher sensitivity to noise with the relative entropy
scheme compared to the L2 norm counterpart — this
would be explored empirically in the next section.

6. Experiments

We will begin with exploring the differences between
NMF and NTF. Any n-dimensional problem can be
represented in two dimensional form by concatenating
dimensions. Thus for example, the problem of find-
ing a non-negative low rank decomposition of a set of
images is a 3-NTF (the images forming the slices of
a 3D cube) but can also be represented as an NMF
problem by vectorizing the images (images forming
columns of a matrix). There are two reasons why a
matrix representation of a collection of images would
not be appropriate: (i) spatial redundancy (pixels, not
necessarily neighboring, having similar values) is lost
in the vectorization thus we would expect a less effi-
cient factorization (a point made and demonstrated in
Shashua and Levin (2001)), and (ii) an NMF decom-
position is not unique therefore even if there exists a
generative model (of local parts) the NMF would not
necessarily move in that direction — a point made by
(Donoho & Stodden, 2003) and verified empirically by
others (Chu et al., 2004). For example, invariant parts
on the image set would tend to form ghosts in all the
factors and contaminate the sparsity effect. As men-
tioned in Section 3, an NTF is almost always unique
thus we would expect the NTF scheme to move to-
wards the generative model, and specifically not be
influenced by invariant parts.

Following (Donoho & Stodden, 2003) we built the
Swimmer image set of 256 images of dimensions 32×
32. Each image contains a ”torso” (the invariant part)
of 12 pixels in the center and four ”limbs” of 6 pixels
that can be in one of 4 positions. Fig. 4, second row,
shows 6 (out of 17) factors using an NMF represen-
tation (running the Lee-Seung algorithm). The torso
being an invariant part, as it appears in the same posi-
tion through the entire set, appears as a ”ghost” in all
the factors. On the other hand, the NTF factors (third
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row) resolve correctly all the 17 parts. The number of
rank-1 factors is 50 (since the diagonal limbs are not
rank-1 parts). The rank-1 matrices corresponding to
the limbs are superimposed in the display in Fig. 4 for
purposes of clarity.

The 4th row of Fig. 4 shows some of the NMF factors
generated from a set of 2429, 19×19, images faces from
the MIT CBCL database. One can clearly see ghost
structures and the part decomposition is complicated
(an observation supported by empirical studies done
by other groups such as on Iris image sets in (Chu
et al., 2004)). The NTF factors (rank-1 matrices),
shown in the 5th row, have a sharper decomposition
into sparse components. The 6th row shows an over-
lay of rank-1 factors whose energy are localized in the
same image region — we have done that for display
purposes. One can clearly see the parts (which now
correspond to higher rank matrices) corresponding to
eyes, cheeks, shoulders, etc.

Since NTF preserves the image spatial dimension one
would expect a higher efficiency rate (in terms of com-
pression) compared to an NMF coding. Indeed, the
reconstruction quality of the original images from the
factors roughly agree when the compression ratio be-
tween NMF to NTF is 1 to 10, i.e., a reconstruction
with 50 NTF factors (each factor is represented by 38
numbers) is comparable to the performance with 50
NMF factors (each factor is represented by 192 = 362
numbers). This reflects on efficiency as the number
of rank-1 components required to represent a set of
images would be significantly smaller with an NTF
decomposition.

To test the implication of Proposition 2 to noise sensi-
tivity we have taken one of the Swimmer pictures and
created a 3D tensor by taking 20 copies of the picture
as slices of a 3D cube where to each copy a random
pattern (noise) was superimposed. We then looked for
a rank-2 decomposition (in fact there are 7 factors but
we looked for the dominant two factors). The factors
found by the L2–EM scheme were indeed sparser and
with a much closer fit to the original factors than those
generated by the EM scheme.

We next show some preliminary results of using NTF
for model selection. A super-symmetric n-way ar-
ray corresponds to a model selection problem where
a model is determined by q < n points. We con-
sider two examples. In Fig. 6 we have two views
of a 3D scene with two moving bodies: the back-
ground motion generated by the motion of the camera
and the motion of the vehicles. Assuming an ortho-
graphic projection model, a matching pair with co-
ordinates (x, y) and (x′, y′) satisfy a linear constraint

Figure 4. Comparing the factors generated by NMF (sec-
ond row) and NTF (third row) from a set of 256 images
of the Swimmer library (sample in top row). The NMF
factors contains ghosts of invariant parts (the torso) which
contaminate the sparse representation. 4th row: leading
NMF factors of CBCL face dataset, compared to leading
NTF factors in the 5th row. 6th row: summed factors of
NTF located in the same region (resulting in higher rank
factors) — see text for explanation.

Figure 5. Sensitivity of the alternating schemes to noise.
Left-to-right: original image, image superimposed with a
random pattern, the leading pair of rank-1 factors generated
by the EM scheme, and the leading pair generated by the
L2–EM scheme.

α1x+α2y+α3x
′+α4y

′+α5 = 0 with fixed coefficients
(Ullman & Basri, 1991) — therefore, a minimum of 5
matching points are necessary for verifying whether
they come from the same body. The probability of
a n-tuple (n > 4) of matching points to arise from
the same body is represented by exp−λ where λ is the
least significant eigenvalue (the residual) of the 5 × 5
measurement matrix A>A where the rows of A are the
vectors (xi, yi, x

′
i, y
′
i, 1), i = 1, ..., n. We have chosen

n = 7 and generated a 7-NTF with 100 non-vanishing
entries (i.e., we sampled 100 7-tuples) sampled over
30 matching points across the two views. We per-
formed a super-symmetric weighted NTF (where the
zero weights correspond to the vanishing entries of the
tensor). Due to the super-symmetry, each factor (a
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Figure 6. Performing model selection NTF. First row illus-
trates affine multi-body segmentation and rows 2− 5 illus-
trate recognition under varying illumination. See text for
details.

7-way array) is represented by a single vector of 30
entries. Each entry corresponds to the probability of
the corresponding point to belong to the object rep-
resented by the factor — this comes directly from the
latent class model connection with NTF. The segmen-
tation result is shown in Fig. 6 — we obtain a perfect
segmentation with a relatively small number of sam-
ples.

Rows 2−4 of Fig. 6 shows three persons under varying
illumination conditions. Using the result that matte
surfaces under changing illumination live in a 3D sub-
space (Shashua, 1997) we create a super-symmetric 4-
NTF where each entry corresponds to the probability
that 4 pictures (sampled from the 21 pictures) belong
to the same person. The first three factors of the NTF
correspond to the probability that a picture belongs
to the person represented by the factor. The factors
are shown in the 5th row where one can see an accu-
rate clustering of the pictures according to the three
different persons.

The details of performing a super-symmetric NTF and
how to incorporate the weights are relatively straight-
forward but are left to future publication due to lack
of space.

References
Buntine, W., & Perttu, S. (2003). Is multinomial pca multi-faceted clus-

tering or dimensionality reduction. Proc. 9th Int. Workshop on Artificial
Intelligence and Statistics (pp. 30–307).

Catral, M., Han, L., Neumann, M., & Plemmons, R. (2004). On reduced
rank for symmetric nonnegative matrices. Linear Algebra and its Ap-
plicatoins, 393, 107–126.

Chu, M., Diele, F., Plemmons, R., & Ragni, S. (2004). Optimality, compu-
tation and interpretation of nonnegative matrix factorizations. SIAM
Journal on Matrix Analysis.

Deerwester, A., Dumanis, S., Furnas, G., T.K., L., & Harshman, R.
(1990). Indexing by latent semantic analysis. Journal of the Ameri-
can Society for Information Science, 41.

Dempster, A., Laird, N., & Rubin, D. (1977). Maximum likelihood from
incomplete data via the em algorithm. Journal of the Royal Stat. Soc.,
series B, 39, 1–38.

Donoho, D., & Stodden, V. (2003). When does non-negative matrix fac-
torization give a correct decomposition into parts. Proceedings of the
conference on Neural Information Processing Systems (NIPS).

Harshman, R. (1970). Foundations of the parafac procedure: Models and
conditions for an ”explanatory” multi-modal factor analysis. UCLA
Working Papers in Phonetics, 16.

Hofmann, T. (1999). Probabilistic latent semantic analysis. Proc. of Un-
certainty in Artificial Intelligence, UAI’99. Stockholm.

Kofidis, E., & Regalia, P. (2002). On the best rank-1 approxiamtion of
higher order supersymmetric tensors. Matrix Analysis and Applications,
23, 863–884.

Kruksal, J. (1977). Three way arrays: rank and uniqueness of trilinear de-
composition, with application to arithmetic complexity and statistics.
Linear Algebra and its Applications, 18, 95–138.

Lathauwer, L. D., Moor, B. D., & Vandewalle, J. (2000). A multilin-
ear singular value decomposition. Matrix Analysis and Application, 21,
1253–1278.

Lee, D., & Seung, H. (1999). Learning the parts of objects by non-negative
matrix factorization. Nature, 401, 788–791.

Paatero, P., & Tapper, U. (1994). Positive matrix factorization: a non-
negative factor model with optimal utilization of error estimates of
data values. Envirometrics, 5, 111–126.

Shashua, A. (1997). On photometric issues in 3D visual recognition from a
single 2D image. International Journal of Computer Vision, 21, 99–122.

Shashua, A., & Levin, A. (2001). Linear image coding for regression and
classification using the tensor-rank principle. Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. Hawaii.

Sidiropoulos, N., & Bro, R. (2000). On the uniqueness of multilinear
decomposition of n-way arrays. Journal of Chemometrics, 14, 229–239.

Tipping, M., & Bishop, C. (1999). Probabilistic principal component
analysis. Journal of the Royal Statistical Society, Series B,21(3):611-
622.

Ullman, S., & Basri, R. (1991). Recognition by linear combination of mod-
els. IEEE Transactions on Pattern Analysis and Machine Intelligence,
13, 992–1006.

Vasilescu, M., & Terzopoulos, D. (2002). Multilinear analysis of image en-
sembles: Tensorfaces. Proceedings of the European Conference on Com-
puter Vision (pp. 447–460).

Welling, M., & Weber, M. (2001). Positive tensor factorization. Pattern
Recognition Letters, 22, 1255–1261.

Xianqian, L., & Sidiropoulos, N. (2001). Cramer-rao lower boubds for low-
rank decomposition of multidimensional arrays. IEEE Transactions on
Signal Processing, 49.

Zhang, T., & Golub, G. (2001). Rank-one approximation to high order
tensors. Matrix Analysis and Applications, 23, 534–550.


