
Sparse Image Coding using a 3D Non-negative Tensor Factorization

Tamir Hazan Simon Polak Amnon Shashua

School of Engineering and Computer Science,
The Hebrew University,
Jerusalem 91904, Israel

Abstract

We introduce an algorithm for a non-negative 3D tensor
factorization for the purpose of establishing a local parts
feature decomposition from an object class of images. In
the past such a decomposition was obtained using non-
negative matrix factorization (NMF) where images were
vectorized before being factored by NMF. A tensor factor-
ization (NTF) on the other hand preserves the 2D repre-
sentations of images and provides a unique factorization
(unlike NMF which is not unique). The resulting ”factors”
from the NTF factorization are both sparse (like with NMF)
but also separable allowing efficient convolution with the
test image. Results show a superior decomposition to what
an NMF can provide on all fronts — degree of sparsity, lack
of ghost residue due to invariant parts and efficiency of cod-
ing of around an order of magnitude better. Experiments on
using the local parts decomposition for face detection us-
ing SVM and Adaboost classifiers demonstrate that the re-
covered features are discriminatory and highly effective for
classification.

1. Introduction
Finding the optimal collection of filters that capture the
”essence” of an object class of images in the most concise
and efficiently computable form is a crucial task in visual
representation and visual recognition. The literature can be
roughly divided into two families of approaches: the first
is about efficient filter design which on one hand is rich in
their span of variability and on the other hand can be ef-
ficiently convolved with an image. Efficiency is typically
measured by the number of operations per output pixel in a
convolution task. For a filter of a sizer × s the worst effi-
ciency would be the product of dimensionsr ·s, a separable
filter will have an efficiency ofr + s and there are filter de-
signs with an efficiency ofO(1) operations per output pixel
([24, 8, 11], and references therein). It is then a matter of
choosing a subset of those filters that are the most ”relevant”
for the object class, i.e., provide the most accurate classifi-
cation scores for a given number of filter responses. For
example, [24] use a family of horizontal and vertical bar-

type filter family and choose the most relevant ones in an
incremental (greedy) fashion using Adaboost [?].

The second approach does not have a pre-defined filter
set and instead treats the desired filters as a problem of find-
ing a low-dimensional basis representation to the training
images of the desired object class. The basis vectors are
the output filters, whereas the success of the approach lies
on applying the right factorization (high dimensional to low
dimensional mapping). Probably the most well known ex-
ample of this approach is Principal Component Analysis
(PCA), in which the goal is to find a set of mutually orthog-
onal basis vectors that capture the directions of maximum
variance in the data. In computer vision PCA has been used
for the representation and recognition of faces [21, 22, 2],
recognition of 3D objects under varying pose [15], track-
ing of deformable objects [4] and for representations of 3D
range data of heads [1].

Higher-order (tensor) decompositions, treating the train-
ing images as a 3D cube, have been also proposed where the
idea that preserving the 2D form of images is necessary for
preserving the spatial coherency of the individual images
(something that is lost when images are vectorized in a PCA
approach). Those techniques are based on preserving some
features of Singular Value Decomposition (SVD) such as to
guarantee a reduction to SVD when the image cube is re-
duced at the limit to copies of a single image [19] or to en-
force certain orthogonality constraints (also known as High-
Order-SVD) among the basis vectors [13, 23, 26, 10].

The PCA and HOSVD techniques tend to generate fil-
ters (basis elements) which have a ”holistic” form, i.e., the
energy is spread throughout the filter. Techniques which
encourage a sparse structure, i.e., the basis images (filters)
come out sparse and any image of the class is represented
in terms of a small number of basis images out of a large set
have been proposed [16] and closely related to that is the
work on Independent Component Analysis (ICA) by [7, 3].

A sparse representation has also been achieved using a
non-negative factorization (NMF) of the matrixV whose
columns are the vectorized training images. The factor-
ization process seeks a decompositionV = WH, W ≥
0,H ≥ 0 where the number of columnsk of W are much

1

smaller than the number of images. The columns ofW
form the new basis vectors and due to the non-negativity
constraint both the basis vectors and the mixing coefficients
(columns ofH) tend to come out sparse [17, 14]. In particu-
lar, [14] introduce a simple and effective iterative technique
for performing the decomposition.

A sparse decomposition is appealing for a number of rea-
sons. First, the filters represent local parts of the image set
which is consistent with certain theories in visual recog-
nition and with psychological and physiological evidence
that support part-based representations in the brain. From
a computational standpoint, the convolution with a sparse
filter can be done much more efficiently than with a non-
sparse filter of the same size.

In this paper we propose an alternative sparse decom-
position based on multilinear algebra which we claimis
the natural way to perform a sparse image codingand
which has a significantly higher efficiency and representa-
tion power than NMF.

1.1. NTF versus NMF
In the context of achieving a part-based factorization of an
image set, the question that naturally arises is what factor-
ization principle would support a decomposition of a col-
lection of training images of a class of objects into a basis
of local parts?

There are three drawbacks to the NMF approach — and
these are remedied by taking a3-valence tensor factoriza-
tion approach instead. The first drawback is that images
are not vectors, i.e., vectorizing an image will undoubtedly
lead to information loss as the local image structure (i.e.,
spatial redundancy) would be lost [19]. The second draw-
back has to do with the generalnon-uniquenessof the NMF
strategy. Even if there is an underlying generative model
of local parts, there is no guarantee that (even in a perfect
fit) the NMF solution would recover it. In other words, It is
clear that as agenerative modelthe NMF approach makes
sense, namely one can imagine simple image settings where
the scene is composed out of canonical parts in a variety of
positions where these are represented by the columns ofW
and each image is generated by superposing some of those
parts (each part is present or not present in the generated
image). What is less clear is whether the NMF process will
yield the underlying generative parts (even when there is a
perfect fitV = WH)? in general this is not true. This
point was addressed by [9] where they came up with a set
of ”rules” that would guarantee a unique decomposition, but
the set of rules does not include the common situation of in-
variant parts which in fact create ”ghosts” in the factors and
contaminate the sparsity of the basis vectors (see also [6]).

A non-negative tensor factorization (NTF) strategy will
represent the input image collection as a3-way array. A
rank-k factorization would correspond to a collection ofk

rank-1 matrices (the basis images) and mixture coefficients
required for generating the original image collection as non-
negative super-positions of the basis matrices. The same
generative logic applies here as well where the difference
lies in the fact that a tensor factorizationis unique(even
without the non-negative constraint) — see next section —
and that images are not vectorized in the preparation pro-
cess, i.e., spatial image structure remains intact. We will
return to these points in the experimental section.

A third item isefficiency. The factors generated by NTF
are not only sparse but alsoseparable(rank-1 matrices). It
was demonstrated in the past by [19] that the compression
ratio of a tensor representation of the image set is an order
of a magnitude better compared to a matrix factorization
where the vectorized images form the columns of the input
matrix. In other words, the number of factors generated by
NMF would be comparable to the number of factors gen-
erated by NTF for achieving the same reconstruction error
(we will demonstrate this in Section 3) yet the NTF factors
are separable and are significantly more compressed than
the NMF factors.

1.2. What is Known about Tensor Factoriza-
tions?

The concept of matrix rank extends quite naturally to higher
dimensions: Ann-valence tensorG of dimensions[d1] ×
... × [dn] is indexed byn indicesi1, ..., in with 1 ≤ ij ≤
dj is of rankat mostk if can be expressed as a sum ofk
rank-1 tensors, i.e. a sum ofn-fold outer-products:G =∑k

j=1 uj
1 ⊗ uj

2 ⊗ ... ⊗ uj
n, whereuj

i ∈ Rdi . The rank of
G is the smallestk for which such a decomposition exists.
By settingn = 2 we obtain the familiar definition of matrix
rank which is the smallest number of rank-1 matricesujv>j
whose sum

∑
j ujv>j is equal toG.

Despite sharing the same definition, there are a number
of striking differences between the casesn = 2 (matrix) and
n > 2 (tensor). While the rank of a matrix can be found in
polynomial time using the SVD algorithm, the rank of a ten-
sor is an NP-hard problem. Even worse, with matrices there
is a fundamental relationship between rank-1 and rank-k ap-
proximations due to the Eckart-Young theorem where it is
sufficient to iterate the process of finding the closest rank-
1 matrix toG, subtract it fromG and then fit the residue
with another rank-1 matrix. This process is repeated until
k rank-1 matrices are found — therefore, for matrices the
rank-k approximation can be reduced to rank-1 approxima-
tion problems. This is not true with tensors in general, i.e.,
repeatedly subtracting the dominant rank-1 tensor is not a
converging process, but only under special cases of orthog-
onally decomposable tensors (see [27]).

Another striking difference, this time in favor of tensor
ranks, is that unlike matrix factorization, which is gener-

2

Figure 1:Representation of the image set as a 3-way array and
its rank-k factorization as a sum ofk rank-1 tensorsuj ⊗ vj ⊗
wj . Thej’th rank-1 tensor is made up of slices along thet axis

where thei’th slice is a multiple ofujvj> with the scale equal
to wj

i . The slices of the input tensorG along thet axis are the
imagesA1, ..., Ad3 . Therefore, each imageAi is expressed as a

superposition of the rank-1 matricesujvj> .

ally non-unique for any rank greater than one, a3-valence
tensor decomposition is essentially unique under mild con-
ditions [12] and the situation actually improves in higher
dimensionsn > 3 [20]. The uniqueness property (and this
before we introduce non-negativity constraints) is crucial
for the sparse coding application mentioned in the previ-
ous section as an NMF is not generally unique. An NTF
on the other hand would have a direct association between
the goodness of fit of the approximate rank-k decomposi-
tion and the closeness of obtaining the underlying genera-
tive model of the data — and invariant parts are less likely
to create ghost patterns in the decomposition.

The body of literature on low-rank decomposition of
high-dimensional arrays is mostly focused on special cases
where the decomposition is orthogonal, whereas in this pa-
per we are interested in the general multi-linear factoriza-
tion with non-negativeentries. A recent attempt to perform
an NTF was made by [25] who introduced a heuristic itera-
tive update rule which lacked a convergence proof. Their
scheme was based on flattening the tensor into a matrix
representation rather than working directly with the outer-
products.

2. Algorithms for Low Rank NTF
Let At, t = 1, ..., d3 be images of dimensionsd1 × d2

stacked together as slices of ad1× d2× d3 tensorG whose
entries areGr,s,t, wherer = 1, ..., d1; s = 1, ..., d2 and
t = 1, ..., d3. We wish to factorG into a sum ofk rank-
1 tensorsG =

∑k
m=1 um ⊗ vm ⊗ wm, i.e., Gr,s,t =∑k

m=1 um
r vm

s wm
t — see Fig. 1. We will begin by describ-

ing a positive-preserving gradient decent scheme on the
vectors{um, vm, wm}km=1, such that the sum of squares
difference between the elements of the tensorG and the
rank-k tensor

∑k
m=1 um ⊗ vm ⊗ wm is minimized. The

positive preserving steps are an extension of the update rule
introduced by [14]. In Section 2.2 we will relate the recov-
ered vectors to the way the individual imagesAt are repre-

sented as a superposition of factors (rank-1 matrices). We
consider the following least-squares problem:

min
um,vm,wm

1
2
‖G−

k∑
m=1

um ⊗ vm ⊗ wm‖2F

subject to : um, vm, wm ≥ 0,

where‖A‖2F is the square Frobenious norm, i.e., the sum
of squares of all entries of the tensor elementsAr,s,t and
um ⊗ vm ⊗ wm stands for the three fold outer-product.
We will be using a gradient decent scheme with a mixture
of Jacobi and Gauss-Seidel update scheme and a positive-
preserving update rule. Let< A, B > denote the inner-
product operation, i.e.,

∑
r,s,t Ar,s,tBr,s,t. It is well known

that the differential commutes with inner products, i.e.,
d < A,A >= 2 < A, dA >, hence:

1

2
d < G−

k∑
m=1

um ⊗ vm ⊗ wm, G−
k∑

m=1

um ⊗ vm ⊗ wm >

=< G−
k∑

m=1

um ⊗ vm ⊗wm, d

[
G−

k∑
m=1

um ⊗ vm ⊗ wm

]
>

Taking the differential with respect touj and noting that

d

[
G−

k∑
m=1

um ⊗ vm ⊗ wm

]
= −d(uj)⊗ vj ⊗ wj ,

the differential becomes:

df(uj) = <

k∑
m=1

um ⊗ vm ⊗ wm , d(uj)⊗ vj ⊗ wj >

− < G , d(uj)⊗ vj ⊗ wj >

The differential with respect to thei’th coordinateuj
i is:

df(uj
i) = <

k∑
m=1

um ⊗ vm ⊗ wm , ei ⊗ vj ⊗ wj >

− < G , ei ⊗ vj ⊗ wj >

whereei is thei’th column of thed1×d1 identity matrix.
Using the identity< x1 ⊗ y1 , x2 ⊗ y2 >=< x1, x2 ><
y1, y2 > we obtain the partial derivative:

∂f

∂uj
i

=
k∑

m=1

um
i < vm, vj >< wm, wj > −

∑
s,t

Gi,s,tv
j
sw

j
t

We will be using a multiplicative update rule by setting the
constantµ(uj

i) of the gradient descent formulauj
i ← uj

i −
µ(uj

i)
∂f

∂uj
i

to be:

µ(uj
i) =

uj
i∑k

m=1 um
i < vm, vj >< wm, wj >

(1)

3

thereby obtaining the following update rule:

uj
i ←

uj
i

∑
s,t Gi,s,tv

j
sw

j
t∑k

m=1 um
i < vm, vj >< wm, wj >

(2)

Likewise, the update rules forvj
i andwj

i are as follows:

vj
i ←

vj
i

∑
r,t Gr,i,tu

j
rw

j
t∑k

m=1 vm
i < um, uj >< wm, wj >

(3)

wj
i ←

wj
i

∑
r,s Gr,s,iu

j
rv

j
s∑k

m=1 wm
i < um, uj >< vm, vj >

(4)

Note that the update rule preserves non-negativity pro-
vided that the initial guess for the vectorsum, vm, wm are
non-negative. In iteration(t) of the update process, the val-
ues ofuj are updated Jacobi style with respect to the entries
uj

i for i = 1, ..., d1, and are updated Gauss-Seidel style with
respect to the entries of other vectors{um}m6=j and the vec-
tors{vm, wm}km=1.

In general the convergence proof of the multiplicative
rule was introduced by [14] for the bilinear case. The main
difference is that our update rule is performed in Gauss-
Seidel fashion for the vectorsu1, ..., uk while their update
rule is performed Jacobi style. Since we use Jacobi-type up-
date rule only for a single vectoruj the optimization func-
tion with respect to the variablesuj

i has a diagonal Hessian
matrix — the proof of this is below.

Proposition 1 For every1 ≤ j ≤ k thed1-variate function
f(uj) = 1

2‖G −
∑k

m=1 um ⊗ vm ⊗ wm‖2F is quadratic,
convex and its Hessian iscjI whereI is thed1×d1 identity
matrix andcj =< vj , vj >< wj , wj >= ‖vj‖2‖wj‖2.

Proof: The first derivatives are:

∂f

∂uj
i

=
k∑

m=1

um
i < vm, vj >< wm, wj > −

∑
s,t

Gi,s,tv
j
sw

j
t

Therefore we conclude that

∂2f

∂uj
i∂uj

i

=< vj , vj >< wj , wj >

and
∂2f

∂uj
i∂uj

k

= 0 for i 6= k

Since the Hessian is positive definite and constant, it follows
that the function is convex and quadratic.

We show below that the multiplicative update rule with
respect to the variablesuj

i reduces the optimization func-
tion. First we will show that the gradient step size is less
than the inverse ratio of the Hessian diagonal value. Then
we will prove that this step size is suitable for our optimiza-
tion.

Proposition 2

µ(uj
i) < 1/

∂2f

∂uj
i∂uj

i

=
1

< vj , vj >< wj , wj >

Proof:

µ(uj
i) =

uj
i∑k

m=1 um
i < vm, vj >< wm, wj >

<
uj

i

uj
i < vj , vj >< wj , wj >

where the inequality holds since all the elements are posi-
tive and by reducing positive elements in the denominator
we increase the fraction value.

To complete the convergence proof we need to show that
the step sizeµ(uj

i) = µ along the gradient reduces the op-
timization function. The general statement and its proof is
below:

Proposition 3 Let f(x1, ..., xn) be a quadratic function to
the real numbers with Hessian of the formH = cI where
c > 0. Given a pointx = (xt

1, ..., x
t
n) ∈ Rn and a point

xt+1 = xt−µ(5f(xt)), and a decent step0 < µ < 1
c then

f(xt+1) < f(xt)

Proof: By Fourier expansion off(x + y) we get

f(x + y) = f(x) +5f(x)>y +
1
2
y>Hy

Choosingx = xt andy = −µ5 f(xt) we get

f(xt − µ5 f(xt)) = f(xt)− µ(5f(xt)> 5 f(xt))

+
1
2
µ2c(5f(xt)> 5 f(xt))

We need to show thatf(xt)− f(xt+1) > 0:

f(xt)− f(xt+1) = µ‖ 5 f(xt)‖2 − 1
2
µ2c‖ 5 f(xt)‖2

= µ‖ 5 f(xt)‖2(1− 1
2
cµ)

The result follows sinceµ < 1
c .

Following the same mathematical reasoning we can
prove the convergence of the computational updates for the
vectors{vm, wm}km=1. The derivation of the generaln-way
array non-negative decomposition can be found in [18].

2.1. NTF under Relative Entropy
Following [14] we also describe positive-preserving update
rule for the relative entropy cost function. Given a tensorG
we consider the best positive rank-k approximation for

D(G||
k∑

m=1

um ⊗ vm ⊗ wm)

4

whereD(A||B) =
∑

r,s,t(Ar,s,tlog
Ar,s,t

Br,s,t
−Ar,s,t+Br,s,t).

Let < A, B > denote the inner product operation and let
log(A)r,s,t = log(Ar,s,t) thenD(A||B) =< A, log(A) >
− < A, log(B) > − < 1, A > + < 1, B >:

d D(G||
k∑

m=1

um ⊗ vm ⊗ wm) =

< 1, d

k∑
m=1

um⊗vm⊗wm > − < G, d log(

k∑
m=1

um⊗vm⊗wm) >

Taking the differential with respect touj we obtain:

df(uj
i) =< 1, d(uj)⊗vj⊗wj > − < G,

d(uj)⊗ vj ⊗ wj)∑k

m=1
um ⊗ vm ⊗ wm

>

where division is coordinate-wise. The partial derivatives
are:

∂f

∂uj
i

=
∑
s,t

vj
sw

j
t −

∑
s,t

Gi,s,t
vj

sw
j
t∑k

m=1 um
i vm

s wm
t

Choosing a gradient decent step of sizeµ(uj
i) = uj

i∑
s,t

vj
swj

t

results in the positive preserving update rule:

uj
i ← uj

i

∑
s,t Gi,s,t

vj
swj

t∑k

m=1
um

i
vm

s wm
t∑

s,t vj
sw

j
t

The convergence proof is omitted due to lack of space.

2.2. Extracting the Factors from the Factoriza-
tion

The update rules eqn. 2,3,4 will converge to a local minima
of the energy function‖G−

∑k
m=1 um⊗ vm⊗wm‖2 with

non-negative entries. The original imagesA1, ..., Ad3 make
up the slices ofG along thet coordinate. The relationship
between the 2D images and the rank-1 tensor factorization
is captured by the set of rank-1 matricesτj = ujvj> such
that eachAt is represented by a superposition ofτ1, ..., τk

with the mixture coefficients taken fromw1, ..., wk — this
is derived below using the Khatri-Rao product notation.

Let U = [u1, ..., uk] be ad1 × k matrix,V = [v1, ..., vk]
of dimensiond2 × k, andW = [w1, ..., wk] of dimension
d3 × k. The Khatri-Rao product of two matricesU � V
is defined as thed1d2 × k matrix [u1 ⊗ v1, ..., uk ⊗ vk].
Let (U � V)W> = [X1, ..., Xd3], then each columnXt

is vec(At) the vector representation (column-wise concate-
nation) of the imageAt. In other words, each vectorized
imagevec(At) is a linear combination of theuj ⊗ vj =
vec(ujvj>) with coefficients taken from thet’th row of
W . In matrix form we have thatAt = UΛtV

> where
Λt = diag(w1

t , ..., wk
t).

Figure 2:Comparing the factors generated by NMF (middle row)
and NTF (bottom row) from a set of 256 images of the Swimmer
library (sample in top row). The NMF factors contains ghosts of
invariant parts (the torso) which contaminate the sparse represen-
tation.

To conclude, the result of the NTF procedure are the
rank-1 factorsτj = ujvj> which form a basis (filters)
for representing the object class of images. The vectors
w1, ..., wk can be discarded.

3. Experiments
We start with empirical verification to the effect of decom-
position uniqueness of NTF compared to NMF and its ef-
fect on the success of recreating the underlying generative
model. Following [9] we built the Swimmer image set of
256 images of dimensions32 × 32. Each image contains
a ”torso” (the invariant part) of12 pixels in the center and
four ”limbs” of 6 pixels that can be in one of4 positions —
see Fig. 2 for examples. The NMF scheme of [14] for find-
ing 17 factors running over the image set correctly resolves
the local parts but fails on the torso. The torso being an
invariant part as it appears in the same position through the
entire set appears as a ”ghost” in all the factors. The NTF on
the other hand, contains a unique factorization and correctly
resolves all the 17 parts. The number of rank-1 factors is 50
(since the diagonal limbs are not rank-1 parts). The rank-
1 matrices corresponding to the limbs are superimposed in
the display in Fig. 2 for purposes of clarity.

For another illustration of the power of NTF, consider the
problem of resolving local parts from asingleimage. In an
NMF framework this cannot be achieved as a single image,
even if copied multiple times, would still be decomposed
into itself. With NTF on the other hand, we copied the sin-
gle image 20 times and run the NTF on the image cube. The
experiment was conducted on one of the swimmer images
Fig 3a and on a real face image Fig 3d. With respect to
Fig 3a an NTF algorithm recovered the 2 factors which re-
construct the image. With respect to Fig 3d the factors were
grouped together and shown in Fig 3(e-h) demonstrating lo-
cal part decomposition.

For another illustration of the power of NTF compared

5

(a) (b) (c)

(d) (e) (f) (g) (h)

Figure 3: Running NTF on a single image copied 20 times to
form a 3D cube. Upper row: (a) the original image, (b),(c) the
two recovered factors. Lower row: (d) the original image, (e)-(h)
the recovered factors in 4 groups.

to NMF, we have applied NMF and NTF to the set of2429,
19× 19, face images from the MIT CBCL database. Fig. 4
shows the leading factors generated by NMF - one can
clearly see ghost structures and the part decomposition is
complicated (an observation supported by empirical stud-
ies done by other groups such as on Iris image sets in [6]).
The NTF factors (rank-1 matrices) have a sharper decom-
position into sparse components. We also grouped together
factors whose energy are localized in the same image region
and took their sum. The sum of factors represent a higher
rank part decomposition which is useful for purposes of get-
ting a better idea what face structures are deemed as ”parts”
in the decomposition. One can clearly see the parts corre-
sponding to eyes, cheeks, shoulders, etc.

Another consequence of representing the image set as a
3D tensor is that the spatial redundancy is factored in the de-
composition (which is not the case when the images are vec-
torized as in the NMF framework) — therefore one should
expect a more efficient representation (higher compression
rate). We computed50 factors with NTF and used them
to reconstruct the original images. Each NMF factor is a
full rank image and is thus comparable to19 NTF factors
in terms of space requirements. We compared the fidelity
of the NTF reconstruction with 50 factors to the NMF re-
construction with4 factors. One can clearly see a striking
difference in the quality of reconstruction which validates
the increased coding efficiency of the tensor representation
of the image set compared to a 2D representation. We then
used 50 NMF factors and obtained a similar quality recon-
struction to the NTF with the same number of factors (a
20-fold reduction in space).

The next experiment, shown in Fig. 5, used the filter
responses as measurements for a Support Vector Machine
(SVM) classifier [5]. We used the MIT CBCL face set to re-

linear poly d = 5 RBF
NTF (50) 91.9% 95.3% 95.9%
NMF (50) 91.6% 94% 95%
NMF (20) 87.5% 90.1% 89%
NMF (6) 83.2% 84.3% 86%

PCA 90.8% 94% 91.7%

Figure 5:Using the filter responses of NMF, NTF, PCA as mea-
surements for an SVM classifier, with linear, polynomial of degree
five and RBF kernels, trained over the MIT CBCL face dataset. 50
NTF factors were used compared to 50, 20 and 6 NMF facotrs in
three separate experiments. The percentages correct over the test
set are displayed in the table. The NTF outperformed the NMF
even when 50 NMF factors were used (20-fold higher space than
NTF).

cover the factors. The measurement vector representing an
image was the inner-product between the factors and the in-
put image. Those measurement vectors over positive (faces)
and negative (non-faces) examples were fed into the SVM
classifier. We varied the kernel of the SVM from linear to
polynomial of degree five to RBF and recorded the percent-
age correct over a test set. The training and testing was
conducted on a ”leave one out” paradigm where4/5 of the
set was used for training and the remaining1/5 of the set
was used for testing. Each trial a different training and test-
ing subsets were used and the results were averaged over
the trials. We used 50 NTF factors and 50, 20 and 6 NMF
factors in three separate trials and also used PCA factors for
comparison. The measurements induced from the NTF fac-
tors generated the highest classification accuracy compared
to 50 NMF factors which contain a 20-fold space increase,
i.e., despite the much higher compression rate of the NTF
compared to NMF and PCA the resulting local features ap-
parently better captured the face set.

For Another illustration of the power of NTF, we con-
structed from the filters weak learners for Adaboost. The
factors were recovered from the MIT CBCL face database
in the following way: We used 200 NTF rank-1 factors
grouped to 90 local parts, to form a low rank part based
representation. We created 100 NMF factors (those contain
a 10-fold space increase compared to the NTF factors). We
also computed 100 PCA factors for comparison. The main
idea of the Adaboost is to assign to each example of the
training set a weight. At the beginning all the weights are
equal, but in every round the weak learner returns a hypoth-
esis, and the weights of all examples classified wrong by
that hypothesis are increased. That way the weak learner
is enforced to focus on the difficult examples of the train-
ing set. The final hypothesis is a combination of the hy-
pothesis of all rounds, namely a weighted majority vote,
where the hypothesis with lower classification error have

6

Figure 4: NMF versus NTF on face images. Top to Bottom: leading factors of NMF, leading factors of NTF, summed factors of NTF
located in the same region (resulting in higher rank factors), reconstruction using 50 NTF factors, reconstruction using 4 NMF factors,
reconstruction using 50 NMF facotrs, and original images for comparison.

7

Adaboost
NTF (200) 90.9%
NMF (100) 84.1%
PCA (100) 82.8%

Figure 6:Using the filters as weak learners for an Adaboost clas-
sifier, trained over the MIT CBCL face database. 200 NTF factors
were used, grouped to 90 low rank weak learners and compared
to 100 NMF factors. The percentage correct over the test set is
shown in the table. The NTF is superior to the NMF although it
used 10-fold less space than the NMF

higher weight. The results shown in fig. 6 demonstrate sig-
nificantly higher accuracy rate when the NTF-based weak
learners were used.

References

[1] J.J. Atick, P.A. Griffin, and N.A. Redlich. Statistical ap-
proach to shape-from-shading: deriving 3d face surfaces
from single 2d images.Neural Computation, 1997.

[2] P.N Belhumeur, J.P. Hespanha, and D.J. Kriegman. Eigen-
faces vs. Fisherfaces: Recognition using class specific linear
projection. InProceedings of the European Conference on
Computer Vision, 1996.

[3] A.J. Bell and T.J. Sejnowski. An information maximization
approach to blind separation and blind deconvolution.Neu-
ral Computation 7(6), pages 1129–1159, 1995.

[4] Michael J. Black and D. Jepson. Eigen-tracking: Robust
matching and tracking of articulated objects using a view-
based representation. Ineccv, pages 329–342, Cambridge,
England, 1996.

[5] B.E. Boser, I.M. Guyon, and V.N. Vapnik. A training algo-
rithm for optimal margin classifers. InProc. of the 5th ACM
Workshop on Computational Learning Theory, pages 144–
152. ACM Press, 1992.

[6] M. Chu, F. Diele, R. Plemmons, and S. Ragni. Optimality,
computation and interpretation of nonnegative matrix factor-
izations.SIAM Journal on Matrix Analysis, 2004.

[7] P. Comon. Independent component analysis, a new concept?
Signal processing 36(3), pages 11–20, 1994.

[8] F.C. Crow. Summed-area tables for texture mapping. In
Conf. on Comp. Graphics and Interactive Techniques, pages
207–212, 1984.

[9] D. Donoho and V. Stodden. When does non-negative matrix
factorization give a correct decomposition into parts. InPro-
ceedings of the conference on Neural Information Processing
Systems (NIPS), 2003.

[10] R.A. Harshman. Foundations of the parafac procedure: Mod-
els and conditions for an ”explanatory” multi-modal factor
analysis.UCLA Working Papers in Phonetics, 16(84), 1970.

[11] Y. Hel-Or and H. Hel-Or. Real time pattern matching us-
ing projection kernels. InProceedings of the International
Conference on Computer Vision, pages 1486–1493, Nice,
France, 2003.

[12] J.B. Kruksal. Three way arrays: rank and uniqueness of
trilinear decomposition, with application to arithmetic com-
plexity and statistics.Linear Algebra and its Applications,
18:95–138, 1977.

[13] L De Lathauwer, B. De Moor, and J. Vandewalle. A mul-
tilinear singular value decomposition.Matrix Analysis and
Application, 21:1253–1278, 2000.

[14] D. Lee and H. Seung. Learning the parts of objects by non-
negative matrix factorization.Nature, 401:788–791, 1999.

[15] H. Murase and S.K. Nayar. Learning and recognition of 3D
objects from appearance. InIEEE 2nd Qualitative Vision
Workshop, pages 39–50, New York, NY, June 1993.

[16] B.A. Olshausen and D.J. Field. Emergence of simple-cell re-
ceptive field properties by learning a sparse code for natural
images.Nature, 381(13), 1996.

[17] P. Paatero and U. Tapper. Positive matrix factorization: a
non-negative factor model with optimal utilization of error
estimates of data values.Envirometrics, 5:111–126, 1994.

[18] A. Shashua and T. Hazan. Non-negative tensor factorization
with applications to statistics and computer vision. InPro-
ceedings of the International Conference on Machine Learn-
ing (ICML), 2005.

[19] A. Shashua and A. Levin. Linear image coding for regression
and classification using the tensor-rank principle. InPro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Hawaii, Dec. 2001.

[20] N.D. Sidiropoulos and R. Bro. On the uniqueness of mul-
tilinear decomposition of n-way arrays.Journal of Chemo-
metrics, 14:229–239, 2000.

[21] L. Sirovich and M. Kirby. Low dimensional procedure for
the characterization of human faces.Journal of the Optical
Society of America, 4(3):519–524, 1987.

[22] M.Turk and A.Pentland. Eigen faces for recognition.J. of
Cognitive Neuroscience, 3(1), 1991.

[23] M.A.O. Vasilescu and D. Terzopoulos. Multilinear analy-
sis of image ensembles: Tensorfaces. InProceedings of the
European Conference on Computer Vision, pages 447–460,
2002.

[24] P. Viola and M. Jones. Rapid object detection using a boosted
cascade of simple features. InProceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
511–518, Dec. 2001.

[25] M. Welling and M. Weber. Positive tensor factorization.Pat-
tern Recognition Letters, 22(12):1255–1261, 2001.

[26] L. Xianqian and N.D. Sidiropoulos. Cramer-rao lower
boubds for low-rank decomposition of multidimensional ar-
rays. IEEE Transactions on Signal Processing, 49(9), 2001.

[27] T. Zhang and G.H Golub. Rank-one approximation to high
order tensors.Matrix Analysis and Applications, 23:534–
550, 2001.

8

