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Abstract

This paper describes a Vision-based Adaptive Cruise Con-
trol (ACC) system which uses a single camera as input. In
particular we discuss how to compute range and range-rate
from a single camera and discuss how the imaging geome-
try affects the range and range rate accuracy. We determine
the bound on the accuracy given a particular configuration.
These bounds in turn determine what steps must be made
to achieve good performance. The system has been imple-
mented on a test vehicle and driven on various highways
over thousands of miles.

1 Introduction

The Adaptive Cruise Control (ACC) application is the most
basic system in the evolutionary line of features where sen-
sors in the vehicle assist the driver to increase driving safety
and convenience. The ACC is a longitudinal distance con-
trol designed to find targets (other vehicles), determine their
path position (primary target determination), measure range
and range-rate to the primary target vehicle and perform ap-
propriate brakes and throttle actuation to maintain safe dis-
tance to the primary target and to resume the preset cruising
speed when no such targets are detected by the system. The
basic ACC feature is offered today (as a convenience fea-
ture) in serial production models by an increasing number
of car manufacturers.

The underlying range measurement technology of existing
systems falls into the category we call “direct range” sen-
sors which include millimeter wave radars (77GHZ radars
mostly)[1], Laser Radars (LIDAR) and Stereo Imaging (in-
troduced in Japan on the Subaru Legacy Lancaster[2]).
These sensors provide an explicit range measurement per
feature point in the scene. The range map provides strong
cues for segmenting the target from the background scene
and, more importantly to this paper, explicit range is then
being used for distance control.

In this paper we investigate the possibility of performing
distance control, to an accuracy level sufficient for a se-
rial production ACC product, using a monocular imaging

device (a single video camera) which provides only “indi-
rect range” using the laws of perspective (to be described
below). This investigation is motivated by two sources:
first is biological vision and second is practical. In the
human visual system the stereo base-line is designed for
hand-reaching distances and for very rough approximate
range measurements at farther distances. Distance control
in an ACC application requires range measurements of dis-
tances reaching 100m where a human observer cannot pos-
sibly make accurate absolute range estimations at that range.
Moreover, many people suffer from stereo deficiency with-
out any noticeable effect on the daily visual navigation (and
driving) abilities. On the other hand, based on retinal di-
vergence (scale change of the target) the human visual sys-
tem can make very accurate “time to contact” assessments.
Therefore, the question that arises in this context is what
are thenecessarymeasurement accuracies required for a
distance control? clearly, the accuracies of range provided
by Radar and LIDAR aresufficientfor distance control, but
the example of human vision indicate that perhaps one can
achieve satisfactory actuation control using only the laws of
perspective. The second motivation is practical and is borne
out of the desire to introduce low-cost solutions for the ACC
application. A stereo design not only includes the cost of the
additional camera and processing power for dense disparity
but also the problem of maintaining calibration of the sys-
tem (relative coordinate frames between the two cameras) is
somewhat challenging for a serial production product[3, 4].
A monocular visual processing system would be easier to
mass produce and would cost less as an end product.

The challenges of a monocular visual system are twofold.
On the one hand, the system lacks the depth cues1 used
for target segmentation and instead pattern recognition tech-
niques should be heavily relied on to compensate for the
lack of depth. The question that arises there is whether pat-
tern recognition can be sufficiently robust to meet the strin-
gent detection accuracy requirements for a serial production
product? On the other hand, and this is the focus of this pa-
per, once the target is detected can the laws of perspective
and retinal divergence meet the required accuracies for ac-
tuation control?

1At short distances one can rely on some weak motion parallax mea-
surements but those are not available at ranges beyond 20-30m.



We have built a monocular visual processing system tar-
geted for mass production over a wide range of applications.
Fig. 1 shows the camera mounted near the rear-view mirror.
The prototype processing box used at this stage of devel-
opment is based on the PPC7410 processor.2. The system
runs at 10 frames per second and performs target detection
(vehicles and motorcycles) in the lane and adjacent lanes,
lane mark detection and following, lane departure warning
and cut-in calculation using optic-flow analysis. Finally, to
be used for control, it determines the range and range rate
information about the target vehicles.

Of the many task required by the vision sensor this paper
will focus on the issue of determining the range and range
rate. After discussing the methods for computing range and
range rate we provide an analysis of the accuracy of those
measurements. Finally we show some results taken during
closed loop operation and we compare those results to mea-
surements using Radar.

2 Range

Since we have only a single camera we must estimate the
range using perspective. There are two cues which can be
used: size of the vehicle in the image and position of the bot-
tom of the vehicle in the image. Since the width of a vehi-
cle of unknown type (car, van, truck etc) can vary anywhere
between 1.5m and 3m a range estimate based on width will
only be about 30% accurate. It can be used as a sanity check
and possibly to checkout-of-calibrationbut it is not good
enough for actuation control.

A much better estimate can be achieved using the road ge-
ometry and the point of contact of the vehicle and the road.
We will at first assume a planar road surface and a camera
mounted so that the optical axis is parallel to the road sur-
face. A point on the road at a distanceZ in front of the
camera will project to the image at a heighty, wherey is
given by the equation:

y =
f H
Z

(1)

whereH is the camera height in meters.

Figure 2 shows a diagram of a schematic pinhole camera
comprised of a pinhole (P) and an imaging plane (I) placed
at a focal distance (f) from the pinhole. The camera is
mounted on vehicle (A) at a height (H). The rear of vehi-
cle (B) is at a distance (Z1) from the camera. The point of
contact between the vehicle and the road projects onto the
image plane at a position (y1). The focal distance (f ) and
the image coordinates (y) are typically inmmand are drawn
here not to scale.

2The serial production hardware is based on a system-on-chip called
EyeQ — more details in http://www.mobileye.com

Figure 1: Two pictures of the compact monocular camera
mounted near the rear-view mirror.

Equation 1 can be derived directly from the similarity of
triangles: y

f = H
Z . The point of contact between the and a

more distant vehicle (C) projects onto the image plane at a
position (y2) which is smaller than (y1).

The camera electronics converts the image coordinates from
mmto pixels and inverts the image back to the upright posi-
tion for processing. Figure 3 shows an example sequence of
a truck at various distances. The distance from the horizon
line to the bottom of the truck is smaller when the truck is
more distant (a) than when it is close (b and c).

To determine the distance to a vehicle we must first detect
the point of contact between the vehicle and the road (i.e.
the wheels) and then we can compute the distance to the
vehicle:

Z =
f H
y
. (2)

In practice the camera optical axis is not aligned parallel to
the road surface. Thus thehorizon lineis not in the center
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Figure 2: Schematic diagram of the imaging geometry (see text).

of the image. Both the mounting angle and the change in
pitch angle due to vehicle motion can be determined by the
method described in [5]. The non-planarity can be compen-
sated for to a first order by analyzing the lane markings [6].
After compensating for the camera angle and road slope the
main source of error is in determining the image coordinates
of contact point between the vehicle and the road. In prac-
tice, this point can be found to within 1 pixel.

The error in rangeZerr due to an error ofn pixels in location
of the contact point is:

Zerr = Zn−Z =
f H

y+n
−Z =

f H
f H
Z +n

=
nZ2

f H +nZ
(3)

Typically n≈ 1 and f H >> nZ so we get:

Zerr ≈
nZ2

f H
(4)

We see that the error increases quadratically and as the dis-
tance to the target increases the percentage error in depth
(Zerr

Z ) increases linearly.

Example: In our case a 640x480 image with a horizontal
FOV of 47o gives f = 740pixels. The camera height atH =
1.2m. Thus assuming 1 pixel error, a 5% error in depth is
expected at a distance of:

Z =
Zerr

Z
f H = 0.05∗740∗1.2 = 44m. (5)

The error at 90m will be around 10%. These values are
sufficient for ACC. The headway distance depends on the
vehicle speed and the drivercomfort settingand is typically
less than 45m. A 5% error at 45m is well below the error
of a human driver and is not significant. What is important
is the range rate or relative velocity. In layman’s terms, it
is not important whether the target is at 45m or 42m. It is
important to know whether we are maintaining a constant
distance.

3 Range Rate

With a radar system range rate or relative velocity can be
measured using doppler effect. With a vision system it is
computed from the discrete differencing:

v =
∆Z
∆t
. (6)

Subtracting two noisy values forZ at two different time
points cannot produce accurate measurements. We will first
show (in sec. 3.1) how∆Z can be computed from the scale
change (s), that is the change in image size, and the range
(Z). We will then show (in sec. 3.2) how the discrete dif-
ference introduces an error for non infinitesimal∆t which
limits our accuracy. We also show how to achieve the opti-
mal value for∆t.

3.1 Computing Range Rate from Scale Change
Let W be the width (or height) of the target vehicle in me-
ters, and letw andw′ be the width (or height) in the image
in pixels when the target vehicle is at distancesZ and Z′

respectively. As in equation (1):

w =
fW
Z

(7)

w′ =
fW
Z′
.

Then:

v =
∆Z
∆t

=
Z′−Z

∆t
=

f H
Z′ −

f H
Z

∆t
=

f H w−w′
w′w

∆t
=

Zw−w′
w′

∆t
(8)

Let us define:

s=
w−w′

w′
(9)

and we get:

v =
Zs
∆t

(10)



3.2 Range Rate Error
The scale change can be computed by alignment of the im-
age of the vehicle from images taken at two points in timet,
t ′. Various techniques for alignment of images can be used
([7, 8]) and alignment errors (serr) of 0.1pixelsare possible
if the image patch has a few hundred pixels. This is the case
for example, of a small car at 75m which will be a 15x15
rectangle in the image using a 47o FOV lens.

The effect of an alignment error of 0.1pixels depends on
the size of the target in the image. Let us therefore define
the scale error (sacc) as the alignment error (serr) divided by
vehicle image width:

sacc =
serr

w
(11)

=
serrZ
fW

If we assume the range (Z) is accurate the error in the rela-
tive velocity is:

verr =
Zsacc

∆t
(12)

=
Z2serr

fW∆t
(13)

Notes:

1. The relative velocity error is independent of the rela-
tive velocity.

2. The relative velocity error increases with the distance
squared.

3. The relative velocity error is inversely proportional to
the time window∆t. We can get more accurate rela-
tive velocity if we use images that are further apart in
time.

4. Having a narrow field of view camera (i.e. increas-
ing f ) will reduce the error and increase accuracy lin-
early.

From eq. (10) we see that an error in range will have a cor-
responding error in relative velocity. Substituting eq. (4)
into eq. (10) we can compute the velocity error (vzerr) due
to error in range:

vzerr =
Zerrs

∆t
=

nZ2

f H
s

∆t
=

nZv
f H

(14)

Taking the range error (eq. 4) into account the velocity err
becomes:

verr =
Z2serr

fW∆t
+

nZv
f H

(15)

Example: Following a small car at 30m: Z = 30m, f =
740pixels, W = 1.5, h = 1.2m andv = 0m/s. We will use

∆t = 0.1s.

verr =
302x0.1

740x1.2x0.1
+

30x0
740x1.2

(16)

= 1m/s (17)

It followt from eq. (15) that the accuracy of velocity esti-
mation can be improved significantly (i.e.verr reduced) by
increasing the time window∆t. Tracking the vehicle over a
few seconds is quite feasible and this is a good solution for
follow mode.

However if we increase∆t we no longer have infinitesi-
mal motion and computing velocity using finite differenc-
ing (eq. 8) is not accurate. In case of constant acceleration
the range and velocity are:

Z(∆t) =
1
2

a∆t2 +v∆t +Z0 (18)

v(∆t) = a∆t +v0 (19)

wherea is the relative acceleration. As we know, if we com-
pute the velocity by taking the range difference at two time
points:

∆Z = Z(∆t)−Z0 =
1
2

a∆t2 +v0∆t (20)

and dividing by∆t:

∆Z
∆t

=
1
2

a∆t +v0 (21)

we get a different result from eq. (19) by a term:

vFDerr =
1
2

a∆t. (22)

Thus a longer∆t adds to the inaccuracy or error inv. If we
add this term to eq. (15) we get:

verr =
Z2serr

fW∆t
+

nZv
f H

+
1
2

a∆t. (23)

There are two terms which depend on∆t. The first term
is inversely proportional to∆t and third term proportional.
Therefore we can find an optimal∆t which reduces the value
of verr by differentiating eq. (23) and setting to zero:

− Z2serr

fW∆t2 +
1
2

a = 0. (24)

We can now solve for∆t:

∆t =

√
2Z2serr

fWa
(25)

and substitute this value back into eq. (23):

verr = Z

√
2aserr

fW
+

nZv
f H

. (26)

Notes:



1. The optimal∆t gives a velocity error that is linear
with rangeZ.

2. For zero acceleration the optimal∆t is infinity. In
practice the system has been limited to∆t = 2s.

4 Experiments and Results

The system has been installed in a production vehicle
equipped with radar based ACC. For these experiments the
output from the vision system is sent to the controller in
place of the output from the radar. The radar output is
logged and used forground truth. The Figure 3 shows a
few frames from a typical sequence where the host vehi-
cle approaches a slower vehicle and the vision based ACC
decelerates to match the speed and keep a safe headway dis-
tance.

Figure 4 shows the range and range rate results. From the
figure 4b we can see that the vehicle is decelerating relative
to the target vehicle from a speed of−6m/s to 0m/sduring
60 frames (i.e. 6 secs) at a near constant rate of 1m/s2. This
is a typical deceleration for an ACC system (2m/s2 or 0.2G
is the typical upper limit allowed in acomfort system).

Figure 5 shows the optimal value for∆t using eq. (25) as-
suming the relative acceleration ofa = −1m/s2 and the
range to the vehicle. The values range from 0.65s for the
vehicle at 57m to 0.27s when the vehicle is at 24m. The
truck width was taken to be 2m. Using eq. (26) one can
compute the theoretical error bounds on the relative veloc-
ity error. This is shown in figure 6 together with the actual
velocity error. As one can see, the actual error lies mostly
within the theoretical bounds.

5 Summary

Both range and range rate can be estimated from a single
camera using the laws of perspective. This can be done be-
cause we are dealing with a constrained environment: the
camera is at a known height from a near planar surface and
the objects of interest (the other vehicles) lie on that plane.

We have shown how various parameters affect the accuracy
of the estimates. In particular we have discussed the effect
of the length of time∆t over which we compute the scale
change of the target vehicle. Using the optimum values pro-
duces errors in relative velocity which are small enough to
allow for ACC control. The system has been implemented
in a real-time embedded system and has be driven on high-
ways on both flat and hilly terrains. Being able to perform
ACC using a single camera opens the way to truly Low Cost
ACC.

(a)

(b)

(c)

Figure 3: A typical sequence where the host vehicle decelerates
so as to keep a safe headway distance from the de-
tected vehicle. The detected target vehicle (the truck)
is marked by a white rectangle. As the distance to the
target vehicle decreases the size of the target vehicle in
the image increases.



(a) Range

(b) Range Rate

Figure 4: (a) Range and (b) Range Rate for a typical sequence
where the host vehicle decelerates so as to keep a safe
headway distance of 24m from the detected vehicle.
The lead vehicle was traveling at 80KPH.
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