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Factorizations of Multi-Dimensional Arrays

Normally: factorize the data into a lower dimensional space in order to
describe the original data in a concise manner.

G E Rd-xd.-_a U E Rtf-'}:.'.ic 'L..r E Rﬂ.‘-xdn

Focus of Lecture:

Factorization of empirical joint distribution =~ <€—>» [atent Class Model

Factorization of symmetric forms <€——>» Probabilistic clustering.

Factorization of partially-symmetric forms <€ Latent clustering

ICMLO7 Tutorial




N-way array decompositions

A rank=1 matrix G is represented by an outer-product of two vectors:

G € R u€E R vy E R

A rank=1 tensor (n-way array) G & RY*%x->4, is represented by an outer-product
of n vectors U,...,u

n

G = Uy, Uy, M,

.0

G=uQ®u,®..0u,

I sy seeesly "
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N-way array decompositions

A matrix G is of (at most) rank=k if it can be represented by a sum of k rank-1 matrices:

dyxd, d,xk

k
G=Euj®vj _
j=1 —

A tensor G is (at most) rank=k if it can be represented by a sum of k rank-1 tensors:

k
G = Eulj ®..Qu’

Example: :
k J=1

G=Euj®vj®wj
" w! (i, ®v) w) (u, ®v) w,i(uk®vk)

W (ul ®v, ICML072'1<1t02r1a 2) Wk (uk ® Vk)




N-way array Symmetric Decompositions

A symmetric rank=1 matrix G: Gij= ui“j

A symmetric rank=k matrix G: G= E Uj@u; =
j=

A super-symmetric rank=1 tensor (n-way array) G e p? D= [m] x - -
is represented by an outer-product of n copies of a single vector ; & R™

C=u®- - Qu=u""

A super-symmetric tensor described as sum of k super-symmetric rank=1 tensors:

G= E“JE’“J@ Buj= Z“ER

=

s (at most) rank=k.
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General Tensors

Latent Class Models
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Reduced Rank in Statistics

Let X, and X, be two random variables taking values in the sets [d;| = {1.....
The statement X is independent of X,, denotedby X,1X, means:
P(X1.X5) = P(X1)P(X>)

P(X,.X,) isa2Darray (amatrix) G, = P(X, =i, X, = j)

P(X)) is a 1D array (a vector) u; = P(X| = i)

P(X,) is a 1D array (a vector) v; = P(X, = j)

X;1X> meansthat G;;=u;v; isarank=1matrix G =uwv
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Reduced Rank in Statistics

Let X;,..., X, berandom variables taking values in the sets [d;] = {1,..

The statement XpL....1X, means:

P(X,,....X,) isan-wayarray (atensor) G ;. . =P(X|=1i,...X,=1i,)

—

p{Xj} is a 1D array (a vector) i

; whose entries  u;; = P(X; = i)

X,L....1X, meansthat Gi, i, = Ui;l2i " -Uni, isarank=1tensor
G =1 @u: ... 53U,

Hebrew University
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Reduced Rank in Statistics

Let X,,X».X; be three random variables taking values in the sets [d;] = {1,...

The conditional independence statement X, L X, | X3  means:

PX,. X5 | Xs=i)=P(X, | Xs=0)P(Xz | X5 =1)

Slice X; =1 is arank=1 matrix // / / //
\_// / / [/ //
///// //
/
X_;\ / X,

_H -
X

Hebrew University

-.de'}




Reduced Rank in Statistics: Latent Class Model

be random variables taking values in the sets [d]

The “observed” joint probability n-way array is:

K k
P(X1,.. Xp) = Y P(X1,. XY = j) = ) P(Xi,... X | Y = j)P(y = j)

=1

A statement of the form X, 1 X5 1...1X, |[Y translates to the algebraic statement

About the n-way array  P(X,...,X,) having tensor-rank equalto £
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Reduced Rank in Statistics: Latent Class Model

P(Xi,.....X,) is a n-way array G>0 |G|l;=1

PX;|Y = j) is a 1D array (a vector)  ,J ||uf||] —1

I

P(X,...X,| Y =j) Iisarank-1n-wayarray (gn ol

i

P(Y) isa 1D array (a vector) © lo|li =1

";: = . N
min |G — Y oo,®L ull” st ul>0,6>0 ui=1, o], =1
Y j—]
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Reduced Rank in Statistics: Latent Class Model

j: H s s
min||G— Y o; @ u/|* st ul>0,6>0, [ul]i=1, ||o]; =1

;G j=1

for n=2;

min |G -UDV'|%

U.D,V

U = [, .., us]

U'l=1,V1l=1 1"D1=1
U=z0,D= dﬁﬂg(ﬂ'],...,ﬂ'k) =0,,V=0

k
UDV' = Z Ujﬂjﬂ;—
=1
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Reduced Rank in Statistics: Latent Class Model

min |[G-UDV'|; st UT1=1,Vi=11"Dl=1

U=z0,D= diﬂfg(ﬂ'la*“agk) =0,,V=0

Gt'j; = P(Xl = ﬂri,Xg = j:]
U=P(X1|Y=u1),...PX1|Y =yz)]

- P(X, | }'f: y1) ' " P(Y =)

P(Y =yi) |

CP(X2 | Y =w) -
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Reduced Rank in Statistics: Latent Class Model

min loss(G,UDV'") st U'1=1,V1=11"D1=1

U.D.V
U=z0,D= diﬂfg(ﬂ_lr-“agk) =0,,V=0

when loss() is the relative-entropy:

loss(z,y) = RE(z,y) =

then the factorization above is called pLSA (Hofmann 1999)

Typical Algorithm: Expectation Maximization (EM)
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Reduced Rank in Statistics: Latent Class Model

The Expectation-Maximization algorithm introduces auxmarv tensors W,
and alternates among the three sets of variables: W;, o, u!

min ZRE(WJ oG || oj ®iul) st W >0,6>0, ulli=1, o], =1

_t,r:rW
>0, ) Wi=1
J

(AoB);=A;B; Hadamard product.

reduces to repeated application of “projection onto probability simplex”

(0,

min RE(z || b) st. z >0, Zmizl
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Reduced Rank in Statistics: Latent Class Model

An L2 version can be realized by replacing RE in the projection operation:

: a .
min RE(z | ) st z 20, Z‘m:] 1‘11:{3:11”5::—iEJ||2 st. x>0, Z‘:::i__]
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Reduced Rank in Statistics: Latent Class Model
Let G'=G — Zﬂ'jujv‘,;r and we wish to find u; > 0, ||u,||1 =1
j#
which minimizes:  ||G! — oyu,w," || %
argmin,,, ||GTi — Aiﬂiﬂ;_"%r
argming, A2||ul|?||v.]|? — 200u,; Gly,

(0,1

= argmin,, | Jt"’ﬂtnz —U£||2
b

S

{1,{})\

. 7 .
min |z —bllz st x=0, Z:::i =1
1
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Reduced Rank in Statistics: Latent Class Model

To find @1,..,0k given u;, v ¢ =1,...,k, we need to solve a convex program:

min |Ac — b||* st >0, ||o||: =1

A= [Ay, ..., Ag]

b - ‘[_:IE;{:(G) Ai = ﬂﬁﬂ(ui_ﬂf—r)
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Reduced Rank in Statistics: Latent Class Model

An equivalent representation:

@UF) st. U220, V>0)U'1=V'1=1
A

Non-negative Matrix Factorization

Gt'j; = P(Xl = a; | Xy = bj) GTl — ]  (normalize columns of G)

P(X: | X3)=) P(X1,Y =y; | X2) =) P(X1|Y =y;, X3)P(Y = y;|X0)
3 i

=Y P(X1 | Y = y))P(Y = 3] X,)

)

P(X, |Y=uy),..P(X1 | Y =uyyi)]

:P(Y|Xﬂ — blja '“:'P(Y|X2 — bfiz)]
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(non-negative) Low Rank Decompositions

IIHIIHG ZD‘ &7 I|| t uw>0,06>0,|ui=1, o] =1

Measurements (non-negative) Low Rank Decompositions

The rank-1 blocks tend to represent local parts of the image class

: . Hierarchical build-
i up of “important”
' parts

4 factors 8 factors 12 factors 16 factors 20 factors
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(non-negative) Low Rank Decompositions
"I;'- M
min |G-} o; ® u/|’
;O j=1

Example: The swimmer

Sample set (256)

Non-negative
Tensor Factorization
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Super-symmetric Decompositions
Clustering over Hypergraphs

Matrices
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Clustering data into k groups:

Pairwise Affinity
X1, o0Xm € Rd input points aa

@@

K. — €_|'Ir._ il|2/ 02 input (pairwise) affinity value

iy — '
interpret K.. as “the probability that x. and X;are @0
if l J

clustered together” (ON6)

Vi Ym € {1,...,k}  unknown class labels

ICMLO7 Tutorial 73




Clustering data into k groups:

Pairwise Affinity
k=3 clusters, this point does not belong to
any cluster in a “hard” sense.
d : :
X=2X],..Xn € R input points oo
@ e
K= €_|:xr._ il|2/ 02 input (pairwise) affinity value ° ®
J CXC)
@
@
interpret K;; as “the probability that x; and X are LX)
clustered together” N

Vi Ym € {1,...,k}  unknown class labels

A probabilistic view:

ij — P(}’:’ = | X) probability that x; belongs to the j'th cluster

note: G>0, Gl=1
What is the (algebraic) relationship between the input matrix K and the desired G?

ICMLO7 Tutorial 24




Clustering data into k groups:

Pairwise Affinity

Assume the following conditional independence statements:

yLo.Lly |x,..x
K

K:j ZP{}'i_rﬂ J?J—F|X)

r=1

k
= EP{}JEZHXJF{}",-:JF | X)

r=1

k
— Z GirGjr
r=1

s
|

GG, G>0, Gl=

ICMLO7 Tutorial
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Probabilistic Min-Cut

G>0, Gl=1

A “hard” assignment requires that: G'G=D =diag(ni,...,nx)

where ny,...,n; are the cardinalities of the clusters

Proposition: the feasible set of matrices G thatsatisfy >0 G1=1. G'G=D

are of the form:

G — 1 X; & '|.|J'j
Y10 otherwise

mg.xrr(GTKG) st G>0,G1=1,G'G=D

equivalent to: max Y ki+ Y Kk =» min Z Kij

Wi.Y2

EF ']
N (i, /)€y Mk

Min-cut formulation

ICMLO7 Tutorial 26



Relation to Spectral Clustering

K=GG', G>0, Gl=1
Add a “balancing” constraint: G'1 = (n/k)1
puttogether Gl=1, G 1=1 meansthat GG'l= (n/k)l
also, GG'l1=(n/k)land G'G=D meansthat D= (n/k)I

r

k

maxtr(GTKG) st G20, GGT1= 21, G7G =

k

n/k can be dropped.
mg.xrr(GTKG) st G>0,GG'1=1,G' G=1I

Relax the balancing constraint by replacing K with the “closest” doubly
stochastic matrix K’ and ignore the non-negativity constraint:

m&xrr(GTK’Gj st G'G=1
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Relation to Spectral Clustering

mgxrr(GTK’G) st G'G=1I

Let D =diag(K1)
Then: K'=K—D+I is the closest D.S. in L1 error norm. == Ratio-cuts

K' =D '?kp~1/? Normalized-Cuts

Proposition: iterating g{t+1) _ p-12gtip-1/2  with p = d:‘ag{ﬂmlj
converges to the closest D.S. in KL-div error measure.
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New Normalization for Spectral Clustering

mgxrr(GTK’G) st G'G=1I

where

K' =argming|K—F|% st. F>0,Fl=1,F=F'

we are looking for the closest doubly-stochastic matrix in least-squares sense.
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New Normalization for Spectral Clustering

K' =argming|K—F| st. F>0,Fl=1, F=F'

to find K’ as above, we break this into two subproblems:

P\(X) = argming|X —F||5 st. F1=1,F=F'

Py(X) = argming|X —F||% s.t. F>0

1 17X1 1 I
PI{X):XJF(EH - I—EX)IIT—EM X

PE{X) = fhg[j(X:]

use the Von-Neumann successive projection lemma:

K'=PP,PP;.. .P(K)
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seconds

New Normalization for Spectral Clustering

4000 4

—S-Projection —— L1

000 (= Matlab QP 3" |-©-Frobenius
—— Relative Entropy

: "

30 500 1000 1500 2000
# of data—points # of data—points

successive-projection vs. QP solver running time for the three normalizations
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New Normalization for Spectral Clustering

Dataset | Kernel | Clusters | Size Dim. | _ Lowest Error Rate |
_ _ ' L1 | Frobenius | RE | NCuts | None |
SPECTF heart RBF 2 349 44 | 275 19.2 275 | 275 20.5
Pima Indians Diabetes | RBF 2 768 8 36.2 352 349 | 352 35.4
Wine RBF 3 178 13 18,8 27.0 343 | 292 27.5
SpamBase RBF 2 4601 57 36.1 3.3 37.7 | 318 30.4
BUPA liver disorders | Poly 2 345 4] 374 374 41.7 | 41.7 174
WDBC Poly | 2 56G 30 18.8 11.1 374 | 374 18.8
UCI Data-sets
Dataset Kernel | Clusters | Size | Dim. Lowest Error Rate
[L1 | Frobemus | RE | NCuts | None
AMIJALL Leukemia | Poly 2 T2 5 27.8 16.7 36.1 38.9 30.6
Lung Poly 2 181 5 15.5 9.9 16.6 15.5 15.5
Prostate RBF 2 136 5 40.4 19.9 434 @ 404 40.4
Prostate Qutcome RBF 2 21 5 28.6 | 4.8 238 28.6 28.6
Cancer Data-sets
ICMLO7 Tutorial
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Super-symmetric Decompositions
Clustering over Hypergraphs

Tensors
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Clustering data into k groups:
Beyond Pairwise Affinity

A model selection problem that is determined by n-1 points can
be described by a factorization problem of n-way array (tensor).

Example: clustering m points into k lines

D ={x1y...;Xm}

Input: Ki i —the probability that Xy s Xy 5 X belong to the
same model (line).

Output: g =Pr(ys;=r| ﬂ}the probability that the point X
belongs to the r'th model (line)

Under the independence assumption:  y; L... Ly, | x1,...,xn

F{_}’;JZT,_}J;EZF,}JEFZF|H}ZF{]JE-I=."|EJP{]J52=F|IJ}P(_}’,-3=F|IJ}

4 4
Kiiiniv= 3 P0i,=r|D)P(y,=r|D)P(y, =r|D) =Y 8,88
r=1

r=1

.9 K = ng Rg g, is a 3-dimensional super-symmetric tensor of rank=4
r=1
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Clustering data into k groups:
Beyond Pairwise Affinity

General setting: clusters are defined by n-1 dim subspaces, then for each n-
tuple of points  x; ,...,x;, we define an affinity value g, . =¢ 2 where Als
the volume defined by the n-tuple. -

Input: K . the probability that  x;,...,x; belong to the same cluster

1"

Output: g =P(y;=r|D) the probability that the point X belongs to the r’th cluster

Assume the conditional independence: Vil dym | X140y Xim

k k
K .= EP{}’ﬂ =T | ﬂ} ' "P{}’e:,_. =T | ﬂ:] — Egmi-_ “r By
r=1 r=1

is a n-dimensional super-symmetric tensor of rank=k
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Clustering data into k groups:
Beyond Pairwise Affinity

Hyper-stochastic constraint: under balancing requirement

K is (scaled) hyper-stochastic:

oy n—1 .
Z Kipin = (E) 1, j=1,.4n

iyl iy

_,I—|'-i_.'—'.“'

Theorem: for any non-negative super-symmetric tensor k(0 iterating

(r)
. K. .
Kl'-!-l_]':l — I|._.....|'.-|._. ﬂ — K : N I: l .'.*m
L] quuasd ].l'l I Lol ganagly ¥ ] .
RREE LY {a“ - EI.”J FaL inq

converges to a hyper-stochastic tensor.
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Model Selection

Example: multi-body segmentation

T L

9-way array, each entry contains
The probability that a choice of 9-tuple
of points arise from the same model.

p" Fp=0

Probability: o~ (P T Fp)?
Djaj : 07t /\/\/d\
j\/\”/\ ' L\J ». A

; 1]
a0 G0 70 g0 L07 0 10 20 30 40 a0 60 70 g0




Model Selection

Example: visual recognition under changing illumination

4-way array, each entry contains
The probability that a choice of 4 images
Live in a 3D subspace.

1r 1r
nar R=R 0at
0sF 08 0sF
a7z r 07 r 0z r
06 r 06 06
0ar 0sf 0sr
04t 04t 04t
0sF 03f 0sr
0z2r 0z2rp 0zr
01r 0a1r 01

a 10 20 i} 10 20 10 20
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Partially-symmetric Decompositions
Latent Clustering
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Latent Clustering Model

collection of data points

Y ={v1, ., us} context states

P(z, x5 | y5) probability that », s are clustered together given that ¥ =y,

k
P(:-E'F':'TS} — ZP{ENES | yjjp{yj‘j

j=1

high

l.e., the vector u; = P(:m., Ts, y:,-} has a low entropy meaning that the contribution
of the context variable to the pairwise affinity is far from uniform.

—>»  pairwise affinities do not convey sufficient information.

K, s; = P(z,,xsy;) input triple-wise affinities




Latent Clustering Model

Hypergraph representation G(V,E,w) typeredge (T, Ty, Yj)

V = {:.511, cavy Ly Y1 ---:yk}

E defined over triplets {v;,, v;,, v, } representing @
two data points and one context state (any order)

T K-jh-jzﬂ'ﬂ 'Ef {U-EI,U-EE,U-ES} EE 1{1'1,3‘2,3‘3{:-‘11—1—}:
t1:22,%3 undertermined otherwise a -

“undetermined” means we have no information, i.e, we do not have access to the
probability that three data points are clustered together...




Latent Clustering Model

P(If S ':[.flr:"j:] Cluster 1 Cluster K ) Fyper-edge P(:E'T".I :'-"FS‘.I yj)
N\ . Y l

1 \ s °
E‘u
1N
‘xs
Im
y]. .......... ‘ ‘
3 /’
Py; € ¥;) - O
Probability that the X,
context state is Associated .
with the cluster Lk - L ® ®

Super-symmetric NTF

\ .

Hypergraph clustering would provide
Multiple copies of this block l’

means to C|USter together pOIntS Whose All the remaining entries are undefined

pairwise affinities P(z,,z;) are low, but
there exists a subset of context states for \

which Pz, s, ;) is high.

In that case, a cluster would be formed containing X
the data points and the subset of context states.




Latent Clustering Model

Multiple copies of this block
All the remaining entries are undefined




Latent Clustering Model

Multiple copies of this block
All the remaining entries are undefined

—> K=) u®heh
T

/ /

P(FE?&I‘] P(:I:Ew?‘]




Latent Clustering Model: Application

collection of image fragments from a large collection of images
unlabeled images holding k object classes, one object per image

Available info: # of obj classes k, each image contains only one instance
from one (unknown) object class.

Clustering Task: associate (probabilistically) fragments to object classes.

Challenges:

» Clusters and obj classes are not the same thing. Generally, # of clusters

is larger than # of obj classes. Also, the same cluster may be shared among
a number of different classes.

* The probability P(x ,x ) that two fragments should belong to the same cluster
may be low only because they appear together in a small subset of images

P(XF,XS) = ip(xraxs /IJ)P(]])

H_/ J H_/

high




Images Examples

e 3 Classes of images:
e Cows




Fragments Examples
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Examples of Representative Fragments




Leading Fragments Of Clusters

1 0.90908 0.80654 0.79628 0.74022 0.63117 0.62859 0.57026 0.52575

Cluster 1

1 0.9667 075792 0.72379 0.67703 0.57898 0.54619 0.54064 053622

Cluster 2 ﬂ ! .
T thm -
1 0.91773 0.8381 0.82993 0.80349 0.79533 0.76774 0.76586 0.74505
.- y S
0.9557 _ 0. 943‘89 0.89252 ; 0.80794
e -.

1 0.88623

0.84359 0.81824 : 0.81578 0.72061 0.67597

-

Cluster 5

0.981 0. 89208

Cluster 6 ’:l. = ,

0.95796 0.94875 0.84785 0.83452 0.8201—6 0.75419




Examples Of The Resulting Matrix G Rows

L P EET L.

0.0129 | 0.0012 | 0.0102 | 0.0965 | 1 0 0 0 0
0.0008 | 0.0854 | 0.0056 | 0.0002 |O 0.5049 | 0.9667 | O 0.0233
0 0.0008 | 0.0001 | 0.0026 |0 0 0 0.9177 |0
0 0.0001 | O 0 0 0 0 0.9439 | 0.6982
0.0049 | 0.0025 | 0.0061 | 0.7395 | 0.1594 | O 0 0 0
0.0052 | 0.0108 | O 0 0.1524 | 0O 0 0 0.0007




Examples Of The Resulting Matrix G Rows

0.8776 0.0819 | 0.0041 0.0011
0.0092 |0.0192 | 0.0128 | 1.0000 |0.2775 |0.9007 | 0.0061 |0.0046 | 0.0152
0.0064 | 0.0085 | 0.0016 | 0.0108 | 0.0102 | 0.0014 | 0.0726 | 0.9770 | 1.0000
0.0094 |0.0014 | 0.0041 |O 0.0141 | 0.0033 | 1.0000 | 0.1056 | 0.0304
0.4252 |0.9024 |0.4162 |0.0442 | 0.0201 | 0.0082 | 0.0507 | 0.0254 | 0.0020
0 0.2835 | 0.0258 |0.0329 |0.0136 | 0.0091 |0.0015 | 0.0023 | 0.0031




Handling Multiple Object
Classes

« Unlabeled set of segmented images, each containing an
instance of some unknown object class from a collection
of 10 classes:

— (1) Bottle, (2) can, (3) “do not enter” sign,(4) “stop” sign, (5) “one way”
sign,(6) frontal view car,(7) side view car,(8) face,(9) computer mouse,
(10) pedestrian

dataset adapted from Torralba,Murphey and Freeman, CVPR04




Clustering Fragments

Cluster 1

Cluster 2
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From Clusters to Classes

5 10 15 20 25
Class b

0
5 10 15 20 25 10 15 20 25 15 20
Class 8 Class 9 Class 10

5 10 15 A0 5 10 15

Class 6

a
5 10 15 20 I 110 15 20 25 10 15 20 25

Cluster 9

0.8 2 '

- ]

2 3

456?891

Jl

Cluster 13

< 5 5 ? 8 9
Cluster 22

2

3

456?8910



Results

« Alocation which is associated with fragments voting
consistently for the same object class will have high
value in the corresponding voting map.

« Strongest hot-spots (local maximums) in the voting maps
show the most probable locations of objects.




Results




Applications of NTF

local features for object class recognition

ICMLO7 Tutorial
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Object Class Recognition using Filters

Goal Find a good and efficient collection of filters that captures

the essence of an object class of images.
Two main approaches:

Viola-
1) Use a large pre-defined bank of filters which: |

@® Rich in variability.

@ Efficiently convolved with an image.

ma) 2) Use filters as basis vectors spanning a low-dimensional vector space
which best fits the training images.

® PCA HOSVD - 'holistic’ [l & *‘; @ ﬁ
o N s 1 ! A 6

The classification algorithm selects a subset of filters which is most discriminatory.
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Object Class Recognition using NTF-Filters

The optimization scheme:

1) Construct a bank of filters based on Non-negative
Tensor Factorization.

2) Consider the filters as weak learners and use AdaBoost.

Bank of Filters:
@® \We perform an NTF of k factors to approximate the set of original images.

@® \We perform an NTF of k factors to approximate the set of inverse images.

There are [? filters —p Every filter is a pair of original/inverse factor.

We take the difference between the two convolutions (original - inverse).

H N
Original/inverse pair for face recognition —p
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Object Class Recognition using NTF-Filters

The optimization scheme:

1) Construct a bank of filters based on Non-negative Tensor Factorization.

2) Consider the filters as weak learners and use AdaBoost.

There are [ original/inverse pairs of weak learners:

@ \We ran AdaBoost to construct a classifier of 50 original/inverse NTF pairs.
For comparison we ran AdaBoost on other sets of weak learners:

@ AdaBoost classifier constructed from 50 NMF-weak learners.

@ AdaBoost classifier constructed from 50 PCA-weak learners.

@ AdaBoost classifier constructed from 200 VJ-weak learners.

—p An NTF-Filter contains 40 multiplications. An NMF / PCA filter contains about
400 multiplications, yet we have comparable results using the same number
of filters.

—p A Viola-Jones weak learner is simpler therefore we used more weak-
learners in the AdaBoost classifier.
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Face Detection using NTF-Filters

We recovered 100 original factors and 100 inverse factors by preforming NTF on
500 faces of size 24x24.

leading filters:
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Face Detection using NTF-Filters

ROC curve: For face recognition all the methods achieve comparable

performance.
1) Training:
The AdaBoost was trained on
2500 faces and 4000 non-faces

2) Test:
The AdaBoost was tested on the
MIT Test Set, containing 23
images with 149 faces.

| | 1 | | |
a 1 2 3 4 5 A 7
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Results

Face Detection using NTF-Filters
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Pedestrian Detection using NTF-Filters

Sample of the database:
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Pedestrian Detection using NTF-Filters

We recovered 100 original factors and 100 inverse factors by preforming NTF on

500 pedestrians of size 10x30.

leading filters:
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Pedestrian Detection using NTF-Filters

ROC curve:
than the rest.

1) Training:
The AdaBoost was trained on

4000 pedestrians and 4000 non-

pedestrains.
2) Test:

The AdaBoost was tested on 20

images with 103 pedestrians.

For pedestrian detection NTF achieves far better performance
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Summary

Factorization of empirical joint distribution =~ <€——>» [atent Class Model

Factorization of symmetric forms <€—>» Probabilistic clustering.

Factorization of partially-symmetric forms <> Latent clustering

Further details in http://www.cs.huji.ac.il/~shashua
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http://www.cs.huji.ac.il/~shashua
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