What else can we do with more data?

Shai Shalev-Shwartz

School of Computer Science and Engineering The Hebrew University of Jerusalem

TTI,

February 2011

Based on joint papers with:
Ohad Shamir and Karthik Sridharan (COLT 2010) Nicolò Cesa-Bianchi and Ohad Shamir (ICML 2010)
Shai Ben-David and Ruth Urner (Submitted)
and, of course, Nati Srebro

What else can we do with more data?

What else can we do with more data?

Outline

How can more data speedup training runtime?

- Learning using Stochastic Optimization (S. \& Srebro 2008) Will not talk about this today
- Injecting Structure (S., Shamir, Sirdharan 2010)

How can more data speedup prediction runtime?

- Proper Semi-Supervised Learning (S., Ben-David, Urner 2011)

How can more data compensate for missing information?

- Attribute Efficient Learning (Cesa-Bianchi, S., Shamir 2010) Technique: Rely on Stochastic Optimization

Injecting Structure - Main Idea

- Replace original hypothesis class with a larger hypothesis class
- On one hand: Larger class has more structure \Rightarrow easier to optimize
- On the other hand: Larger class \Rightarrow larger estimation error \Rightarrow need more examples

Example — Learning 3-DNF

- Goal: learn a 3-DNF Boolean function $h:\{0,1\}^{d} \rightarrow\{0,1\}$
- DNF is a simple way to describe a concept (e.g. "computer nerd")
- Variables are attributes. E.g.
- $x_{1}=$ can read binary code
- $x_{2}=$ runs Unix as the operating system on his home computer
- $x_{3}=$ has a girlfriend
- $x_{4}=$ blush whenever tells someone how big his hard drive is
- $h(x)=\left(x_{1} \wedge \neg x_{3}\right) \vee\left(x_{2} \wedge \neg x_{3}\right) \vee\left(x_{4} \wedge \neg x_{3}\right)$

Example — Learning 3-DNF

- Kearns \& Vazirani: If RP $\neq N P$, it is not possible to efficiently learn an ϵ-accurate 3-DNF formula

Example — Learning 3-DNF

- Kearns \& Vazirani: If RP $\neq N P$, it is not possible to efficiently learn an ϵ-accurate 3-DNF formula
- Claim: if $m \geq d^{3} / \epsilon$ it is possible to find a predictor with error $\leq \epsilon$ in polynomial time

Proof

- Observation: 3-DNF formula can be rewritten as $\wedge_{u \in T_{1}, v \in T_{2}, w \in T_{3}}(u \vee v \vee w)$ for three sets of literals T_{1}, T_{2}, T_{3}
- Define: $\psi:\{0,1\}^{d} \rightarrow\{0,1\}^{2(2 d)^{3}}$ s.t. for each triplet of literals u, v, w there are two variables indicating if $u \vee v \vee w$ is true or false
- Observation: Each 3-DNF can be represented as a single conjunction over $\psi(\mathbf{x})$
- Easy to learn single conjunction (greedy or LP)

Trading samples for runtime

Algorithm	samples	runtime
3-DNF over \mathbf{x}	$\frac{d}{\epsilon}$	2^{d}
Conjunction over $\psi(\mathbf{x})$	$\frac{d^{3}}{\epsilon}$	$\operatorname{poly}(d)$

Disclaimer

- Analysis is based on upper bounds
- Open problem: establish gaps by deriving lower bounds
- Studied by:
"Computational Sample Complexity" (Decatur, Goldreich, Ron 1998)
- Very few (if any) results on "real-world" problems, e.g. Rocco Servedio showed gaps for 1-decision lists

Agnostic learning of Halfspaces with $0-1$ loss

Agnostic PAC:

- \mathcal{D} - arbitrary distribution over $\mathcal{X} \times \mathcal{Y}$
- Training set: $S=\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{m}, y_{m}\right)$
- Goal: use S to find h_{S} s.t. w.p. $1-\delta$,

$$
\operatorname{err}\left(h_{S}\right) \leq \min _{h \in \mathcal{H}} \operatorname{err}(h)+\epsilon
$$

Hypothesis class

$$
\mathcal{H}=\left\{\mathbf{x} \mapsto \phi(\langle\mathbf{w}, \mathbf{x}\rangle):\|\mathbf{w}\|_{2} \leq 1\right\}, \quad \phi(z)=\frac{1}{1+\exp (-z / \mu)}
$$

- Probabilistic classifier: $\operatorname{Pr}\left[h_{\mathbf{w}}(\mathbf{x})=1\right]=\phi(\langle\mathbf{w}, \mathbf{x}\rangle)$
- Loss function: $\operatorname{err}(\mathbf{w} ;(\mathbf{x}, y))=\operatorname{Pr}\left[h_{\mathbf{w}}(\mathbf{x}) \neq y\right]=\left|\phi(\langle\mathbf{w}, \mathbf{x}\rangle)-\frac{y+1}{2}\right|$
- Remark: Dimension can be infinite (kernel methods)

First approach — sub-sample covering

- Claim: exists $1 /\left(\epsilon \mu^{2}\right)$ examples from which we can efficiently learn \mathbf{w}^{\star} up to error of ϵ
- Proof idea:
- $S^{\prime}=\left\{\left(\mathbf{x}_{i}, y_{i}^{\prime}\right): y_{i}^{\prime}=y_{i}\right.$ if $y_{i}\left\langle\mathbf{w}^{\star}, \mathbf{x}_{i}\right\rangle<-\mu$ and else $\left.y_{i}^{\prime}=-y_{i}\right\}$
- Use surrogate convex loss $\frac{1}{2} \max \{0,1-y\langle\mathbf{w}, x\rangle / \gamma\}$
- Minimizing surrogate loss on $S^{\prime} \Rightarrow$ minimizing original loss on S
- Sample complexity w.r.t. surrogate loss is $1 /\left(\epsilon \mu^{2}\right)$

Analysis

- Sample complexity: $1 /(\epsilon \mu)^{2}$
- Time complexity: $m^{1 /\left(\epsilon \mu^{2}\right)}=\left(\frac{1}{\epsilon \mu}\right)^{1 /\left(\epsilon \mu^{2}\right)}$

Second Approach - IDPK (S, Shamir, Sridharan)

Learning fuzzy halfspaces using Infinite-Dimensional-Polynomial-Kernel

- Original class: $\mathcal{H}=\{\mathbf{x} \mapsto \phi(\langle\mathbf{w}, \mathbf{x}\rangle)\}$

Second Approach - IDPK (S, Shamir, Sridharan)

Learning fuzzy halfspaces using Infinite-Dimensional-Polynomial-Kernel

- Original class: $\mathcal{H}=\{\mathbf{x} \mapsto \phi(\langle\mathbf{w}, \mathbf{x}\rangle)\}$
- Problem: Loss is non-convex w.r.t. w

Second Approach - IDPK (S, Shamir, Sridharan)

Learning fuzzy halfspaces using Infinite-Dimensional-Polynomial-Kernel

- Original class: $\mathcal{H}=\{\mathbf{x} \mapsto \phi(\langle\mathbf{w}, \mathbf{x}\rangle)\}$
- Problem: Loss is non-convex w.r.t. w
- Main idea: Work with a larger hypothesis class for which the loss becomes convex

Step 2 - Learning fuzzy halfspaces with IDPK

- Original class: $\mathcal{H}=\{\mathbf{x} \mapsto \phi(\langle\mathbf{w}, \mathbf{x}\rangle):\|\mathbf{w}\| \leq 1\}$
- New class: $\mathcal{H}^{\prime}=\{\mathbf{x} \mapsto\langle\mathbf{v}, \psi(\mathbf{x})\rangle:\|\mathbf{v}\| \leq B\}$ where $\psi: \mathcal{X} \rightarrow \mathbb{R}^{\mathbb{N}}$ s.t. $\forall j, \forall\left(i_{1}, \ldots, i_{j}\right), \psi(\mathbf{x})_{\left(i_{1}, \ldots, i_{j}\right)}=2^{j / 2} x_{i_{1}} \cdots x_{i_{j}}$

Step 2 - Learning fuzzy halfspaces with IDPK

- Original class: $\mathcal{H}=\{\mathbf{x} \mapsto \phi(\langle\mathbf{w}, \mathbf{x}\rangle):\|\mathbf{w}\| \leq 1\}$
- New class: $\mathcal{H}^{\prime}=\{\mathbf{x} \mapsto\langle\mathbf{v}, \psi(\mathbf{x})\rangle:\|\mathbf{v}\| \leq B\}$ where $\psi: \mathcal{X} \rightarrow \mathbb{R}^{\mathbb{N}}$ s.t. $\forall j, \forall\left(i_{1}, \ldots, i_{j}\right), \psi(\mathbf{x})_{\left(i_{1}, \ldots, i_{j}\right)}=2^{j / 2} x_{i_{1}} \cdots x_{i_{j}}$

Lemma (S, Shamir, Sridharan 2009)

If $B=\exp (\tilde{O}(1 / \mu))$ then for all $h \in \mathcal{H}$ exists $h^{\prime} \in \mathcal{H}^{\prime}$ s.t. for all \mathbf{x}, $h(\mathbf{x}) \approx h^{\prime}(\mathbf{x})$.

Step 2 - Learning fuzzy halfspaces with IDPK

- Original class: $\mathcal{H}=\{\mathbf{x} \mapsto \phi(\langle\mathbf{w}, \mathbf{x}\rangle):\|\mathbf{w}\| \leq 1\}$
- New class: $\mathcal{H}^{\prime}=\{\mathbf{x} \mapsto\langle\mathbf{v}, \psi(\mathbf{x})\rangle:\|\mathbf{v}\| \leq B\}$ where $\psi: \mathcal{X} \rightarrow \mathbb{R}^{\mathbb{N}}$ s.t. $\forall j, \forall\left(i_{1}, \ldots, i_{j}\right), \psi(\mathbf{x})_{\left(i_{1}, \ldots, i_{j}\right)}=2^{j / 2} x_{i_{1}} \cdots x_{i_{j}}$

Lemma (S, Shamir, Sridharan 2009)

If $B=\exp (\tilde{O}(1 / \mu))$ then for all $h \in \mathcal{H}$ exists $h^{\prime} \in \mathcal{H}^{\prime}$ s.t. for all \mathbf{x}, $h(\mathbf{x}) \approx h^{\prime}(\mathbf{x})$.

Remark: The above is a pessimistic choice of B. In practice, smaller B suffices. Is it tight? Even if it is, are there natural assumptions under which a better bound holds ?
(e.g. Kalai, Klivans, Mansour, Servedio 2005)

Proof idea

- Polynomial approximation: $\phi(z) \approx \sum_{j=0}^{\infty} \beta_{j} z^{j}$

Proof idea

- Polynomial approximation: $\phi(z) \approx \sum_{j=0}^{\infty} \beta_{j} z^{j}$
- Therefore:

$$
\begin{aligned}
\phi(\langle\mathbf{w}, \mathbf{x}\rangle) & \approx \sum_{j=0}^{\infty} \beta_{j}(\langle\mathbf{w}, \mathbf{x}\rangle)^{j} \\
& =\sum_{j=0}^{\infty} \sum_{k_{1}, \ldots, k_{j}} 2^{-j / 2} \beta_{j} 2^{j / 2} w_{k_{1}} \cdots w_{k_{j}} x_{k_{1}} \cdots x_{k_{j}} \\
& =\left\langle\mathbf{v}_{\mathbf{w}}, \psi(\mathbf{x})\right\rangle
\end{aligned}
$$

Proof idea

- Polynomial approximation: $\phi(z) \approx \sum_{j=0}^{\infty} \beta_{j} z^{j}$
- Therefore:

$$
\begin{aligned}
\phi(\langle\mathbf{w}, \mathbf{x}\rangle) & \approx \sum_{j=0}^{\infty} \beta_{j}(\langle\mathbf{w}, \mathbf{x}\rangle)^{j} \\
& =\sum_{j=0}^{\infty} \sum_{k_{1}, \ldots, k_{j}} 2^{-j / 2} \beta_{j} 2^{j / 2} w_{k_{1}} \cdots w_{k_{j}} x_{k_{1}} \cdots x_{k_{j}} \\
& =\left\langle\mathbf{v}_{\mathbf{w}}, \psi(\mathbf{x})\right\rangle
\end{aligned}
$$

- To obtain a concrete bound we use Chebyshev approximation technique: Family of orthogonal polynomials w.r.t. inner product:

$$
\langle f, g\rangle=\int_{x=-1}^{1} \frac{f(x) g(x)}{\sqrt{1-x^{2}}} d x
$$

Infinite-Dimensional-Polynomial-Kernel

- Although the dimension is infinite, can be solved using the kernel trick
- The corresponding kernel (a.k.a. Vovk's infinite polynomial):

$$
\left\langle\psi(\mathbf{x}), \psi\left(\mathbf{x}^{\prime}\right)\right\rangle=K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\frac{1}{1-\frac{1}{2}\left\langle\mathbf{x}, \mathbf{x}^{\prime}\right\rangle}
$$

- Algorithm boils down to linear regression with the above kernel
- Convex! Can be solved efficiently
- Sample complexity: $(B / \epsilon)^{2}=2^{\tilde{O}(1 / \mu)} / \epsilon^{2}$
- Time complexity: m^{2}

Trading samples for time

Algorithm	sample	time
Covering	$\frac{1}{\epsilon^{2} \mu^{2}}$	$\left(\frac{1}{\epsilon \mu}\right)^{1 /\left(\epsilon \mu^{2}\right)}$
	$\hat{\alpha}$	\bigvee
IDPK	$\left(\frac{1}{\epsilon \mu}\right)^{1 / \mu} \frac{1}{\epsilon^{2}}$	$\left(\frac{1}{\epsilon \mu}\right)^{2 / \mu} \frac{1}{\epsilon^{4}}$

Agnostic learning of Halfspaces with $0-1$ loss

Outline

How can more data speedup training runtime?

- Learning using Stochastic Optimization (S. \& Srebro 2008)
- Injecting Structure (S., Shamir, Sirdharan 2010)

How can more data speedup prediction runtime?

- Proper Semi-Supervised Learning (S., Ben-David, Urner 2011)

How can more data compensate for missing information?

- Attribute Efficient Learning (Cesa-Bianchi, S., Shamir 2010) Technique: Rely on Stochastic Optimization

More data can speedup prediction time

- Semi-Supervised Learning: Many unlabeled examples, few labeled examples
- Most previous work: how unlabeled data can improve accuracy ?
- Our goal: how unlabeled data can help constructing faster classifiers
- Modeling: Proper-Semi-Supervised-Learning - we must output a classifier from a predefined class \mathcal{H}

Proper Semi-Supervised Learning

A simple two phase procedure:

- Use labeled examples to learn an arbitrary classifier (which is as accurate as possible)
- Apply the learned classifier to label the unlabeled examples
- Feed the now-labeled examples to a proper supervised learning for \mathcal{H}

Proper Semi-Supervised Learning

A simple two phase procedure:

- Use labeled examples to learn an arbitrary classifier (which is as accurate as possible)
- Apply the learned classifier to label the unlabeled examples
- Feed the now-labeled examples to a proper supervised learning for \mathcal{H}

Lemma

Agnostic learners are robust with respect to small changes in the input distribution:

$$
P[h(x) \neq f(x)] \leq P[h(x) \neq g(x)]+P[g(x) \neq f(x)]
$$

Demonstration

Demonstration

Outline

How can more data speedup training runtime?

- Learning using Stochastic Optimization (S. \& Srebro 2008)
- Injecting Structure (S., Shamir, Sirdharan 2010)

How can more data speedup prediction runtime?

- Proper Semi-Supervised Learning (S., Ben-David, Urner 2011)

How can more data compensate for missing information?

- Attribute Efficient Learning (Cesa-Bianchi, S., Shamir 2010) Technique: Rely on Stochastic Optimization

Attribute efficient regression

- Each training example is a pair $(\mathbf{x}, y) \in \mathbb{R}^{d} \times \mathbb{R}$
- Partial information: can only view $O(1)$ attributes of each individual example

How more data helps?

Three main techniques:

(1) Missing information as noise
(2) Active Exploration - try to "fish" the relevant information
(3) Inject structure - problem hard in the original representation but becomes simple in another representation (different hypothesis class)

More data helps because:
(1) It reduces variance - compensates for the noise
(2) It allows more exploration
(3) It compensates for larger sample complexity due to using larger hypotheses classes

Attribute efficient regression

Formal problem statement:

- Unknown distribution \mathcal{D} over $\mathbb{R}^{d} \times \mathbb{R}$
- Goal: learn a linear predictor $\mathbf{x} \mapsto\langle\mathbf{w}, \mathbf{x}\rangle$ with low risk:
- Risk: $L_{\mathcal{D}}(\mathbf{w})=\mathbb{E}_{\mathcal{D}}\left[(\langle\mathbf{w}, \mathbf{x}\rangle-y)^{2}\right]$
- Training set: $\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{m}, y_{m}\right)$
- Partial information: For each $\left(\mathbf{x}_{i}, y_{i}\right)$, learner can view only k attributes of \mathbf{x}_{i}
- Active selection: learner can choose which k attributes to see

Similar to "Learning with restricted focus of attention" (Ben-David \& Dichterman 98)

Dealing with missing information

- Usually difficult - exponential ways to complete the missing information
- Popular approach - Expectation Maximization (EM)

Previous methods usually do not come with guarantees (neither sample complexity nor computational complexity)

Partial information as noise

- Observation:

$$
\mathbf{x}=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{d}
\end{array}\right)=\frac{1}{d}\left(\begin{array}{c}
d x_{1} \\
0 \\
\vdots \\
0
\end{array}\right)+\ldots+\frac{1}{d}\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
d x_{d}
\end{array}\right)
$$

- Therefore, choosing i uniformly at random gives

$$
\underset{i}{\mathbb{E}}\left[d x_{i} \mathbf{e}^{i}\right]=\mathbf{x}
$$

- If $\|\mathbf{x}\| \leq 1$ then $\left\|d x_{i} \mathbf{e}^{i}\right\| \leq d$ (i.e. variance increased)
- Reduced missing information to unbiased noise
- Many examples can compensate for the added noise

A Stochastic Optimization Approach

- Our goal: minimize over \mathbf{w} the true risk

$$
L_{\mathcal{D}}(\mathbf{w})=\mathbb{E}_{(\mathbf{x}, y) \sim \mathcal{D}}\left[(\langle\mathbf{w}, \mathbf{x}\rangle-y)^{2}\right]
$$

- We can only obtain i.i.d. samples from \mathcal{D}

A Stochastic Optimization Approach

- Our goal: minimize over \mathbf{w} the true risk

$$
L_{\mathcal{D}}(\mathbf{w})=\mathbb{E}_{(\mathbf{x}, y) \sim \mathcal{D}}\left[(\langle\mathbf{w}, \mathbf{x}\rangle-y)^{2}\right]
$$

- We can only obtain i.i.d. samples from \mathcal{D}

A Stochastic Optimization Approach

How to construct an unbiased estimate of the gradient:

- Sample $(\mathbf{x}, y) \sim \mathcal{D}$
- Sample j uniformly from [d]
- Sample i from $[d]$ based on $P[i]=\left|w_{i}\right| /\|\mathbf{w}\|_{1}$
- Set $\mathbf{v}=2\left(\operatorname{sign}\left(w_{i}\right)\|\mathbf{w}\|_{1} x_{j}-y\right) d x_{j} \mathbf{e}^{j}$
- Claim: $\mathbb{E}[\mathbf{v}]=\nabla L_{\mathcal{D}}(W)$

A Stochastic Optimization Approach

Theorem (Cesa-Bianchi, S, Shamir)

Let $\hat{\mathbf{w}}$ be the output of AER and let w^{\star} be a competing vector. Then, with high probability

$$
L_{\mathcal{D}}(\hat{\mathbf{w}}) \leq L_{D}\left(\mathbf{w}^{\star}\right)+\tilde{O}\left(\frac{d\left\|\mathbf{w}^{\star}\right\|_{2}\left\|\mathbf{w}^{\star}\right\|_{1}}{\sqrt{m}}\right)
$$

where d is dimension and m is number of examples.

Corollary

Factor of d^{2} additional examples compensates for the lack of full information on each individual example.

Demonstration

- Full information classifiers (top line) \Rightarrow error of $\sim 1.1 \%$
- Our algorithm (bottom line) \Rightarrow error of $\sim 3.5 \%$

Demonstration

What to do with other loss functions?

- General question: Given r.v. X and function $f: \mathbb{R} \rightarrow \mathbb{R}$, how to construct an unbiased estimate of $f(\mathbb{E}[X])$?

What to do with other loss functions?

- General question: Given r.v. X and function $f: \mathbb{R} \rightarrow \mathbb{R}$, how to construct an unbiased estimate of $f(\mathbb{E}[X])$?
- Claim (Paninski 2003): In general, not possible

What to do with other loss functions?

- General question: Given r.v. X and function $f: \mathbb{R} \rightarrow \mathbb{R}$, how to construct an unbiased estimate of $f(\mathbb{E}[X])$?
- Claim (Paninski 2003): In general, not possible
- Claim (Singh 1964, The Indian Journal of Statistics): Possible if sample size is also a random number !

The key idea

- Can construct $Q_{n}(x)=\sum_{i=0}^{n} \gamma_{n, i} x^{i} \xrightarrow{n \rightarrow \infty} f(x)$
- Let $Q_{n}^{\prime}\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=0}^{n} \gamma_{n, i} \prod_{j=1}^{i} x_{j}$
- Estimator:
- draw a positive integer N according to $\operatorname{Pr}(N=n)=p_{n}$
- sample i.i.d. $x_{1}, x_{2}, \ldots, x_{N}$
- return $\frac{1}{p_{N}}\left(Q_{N}^{\prime}\left(x_{1}, \ldots, x_{N}\right)-Q_{N-1}^{\prime}\left(x_{1}, \ldots, x_{N-1}\right)\right)$,
- Claim: This is an unbiased estimator of $f(\mathbb{E}[X])$

$$
\begin{aligned}
& \underset{N, x_{1}, \ldots, x_{N}}{\mathbb{E}}\left[\frac{1}{p_{N}}\left(Q_{N}^{\prime}\left(x_{1}, \ldots, x_{N}\right)-Q_{N-1}^{\prime}\left(x_{1}, \ldots, x_{N-1}\right)\right)\right] \\
& =\sum_{n=1}^{\infty} \frac{p_{n}}{p_{n}} x_{1}, \ldots, x_{n} \\
& =\sum_{n=1}^{\infty}\left(Q_{n}^{\prime}\left(x_{1}, \ldots, x_{n}\right)-Q_{n-1}^{\prime}\left(x_{1}, \ldots, x_{n-1}\right)\right] \\
& \left.=[X])-Q_{n-1}(\mathbb{E}[X])\right)=f(\mathbb{E}[X]) .
\end{aligned}
$$

Summary

- Learning theory: Many examples \Rightarrow smaller error
- This work: Many examples \Rightarrow
- Speedup training time
- Speedup prediction time
- Compensating for missing information
- Techniques:
(1) Stochastic optimization
(2) Inject structure
(3) Missing information as noise
(- Active Exploration

