Minimizing the Maximal Loss: Why and How?

Shai Shalev-Shwartz and Yonatan Wexler

The Hebrew University of Jerusalem
and
OrCam

ICML 2016
Typical vs. Rare Cases
Typical vs. Rare Cases
PAC Learning with Train/Test Mismatch

PAC learning

- \mathcal{D} is a distribution over \mathcal{X}
- A target labeling function $h^* \in \mathcal{H}$
- Training set is sampled i.i.d. from \mathcal{D}
- Goal: find h s.t. $L_{\mathcal{D}}(h) < \epsilon$ where $L_{\mathcal{D}}(h) = \mathbb{P}_{x \sim \mathcal{D}}[h(x) \neq h^*(x)]$
PAC Learning with Train/Test Mismatch

PAC learning

- \(\mathcal{D} \) is a distribution over \(\mathcal{X} \)
- A target labeling function \(h^* \in \mathcal{H} \)
- Training set is sampled i.i.d. from \(\mathcal{D} \)
- Goal: find \(h \) s.t. \(L_\mathcal{D}(h) < \epsilon \) where \(L_\mathcal{D}(h) = \mathbb{P}_{x \sim \mathcal{D}}[h(x) \neq h^*(x)] \)

PAC Learning with Train/Test Mismatch

- \(\mathcal{D}_1, \mathcal{D}_2 \) are two distributions over \(\mathcal{X} \)
- A target labeling function \(h^* \in \mathcal{H} \)
- Training set is sampled i.i.d. from \(\mathcal{D} = \lambda_1 \mathcal{D}_1 + \lambda_2 \mathcal{D}_2, \lambda_1 \gg \lambda_2 \)
- Goal: find \(h \) s.t. both \(L_{\mathcal{D}_1}(h) < \epsilon \) and \(L_{\mathcal{D}_2}(h) < \epsilon \)
- Note: Learner can only sample from \(\mathcal{D} \)
Most popular approach: Minimize the average error to accuracy ϵ

$$\min_{w \in \mathbb{R}^d} L_S(w) := \frac{1}{n} \sum_{i=1}^{n} 1[h_w(x_i) \neq y_i]$$
Most popular approach: Minimize the average error to accuracy ϵ

$$\min_{w \in \mathbb{R}^d} L_S(w) := \frac{1}{n} \sum_{i=1}^{n} 1[h_w(x_i) \neq y_i]$$

Intuitively: this won’t work if $\epsilon > \lambda_2$
How to learn?

- **Most popular approach**: Minimize the average error to accuracy ϵ

 $$\min_{w \in \mathbb{R}^d} L_S(w) := \frac{1}{n} \sum_{i=1}^{n} 1[h_w(x_i) \neq y_i]$$

- **Intuitively**: this won’t work if $\epsilon > \lambda_2$

- **Sample complexity**: what if we solve the ERM, i.e., find w for which $L_S(w) = 0$?
How to learn?

- **Most popular approach:** Minimize the average error to accuracy ϵ

 $$\min_{w \in \mathbb{R}^d} L_S(w) := \frac{1}{n} \sum_{i=1}^{n} 1[h_w(x_i) \neq y_i]$$

- **Intuitively:** this won’t work if $\epsilon > \lambda_2$

- **Sample complexity:** what if we solve the ERM, i.e., find w for which $L_S(w) = 0$?

 - **Intuitively:** still not enough, because if we only see few examples from D_2 we might overfit
How to learn?

- **Most popular approach**: Minimize the average error to accuracy ϵ

 $$\min_{w \in \mathbb{R}^d} L_S(w) := \frac{1}{n} \sum_{i=1}^{n} 1[h_w(x_i) \neq y_i]$$

- **Intuitively**: this won’t work if $\epsilon > \lambda_2$

- **Sample complexity**: what if we solve the ERM, i.e., find w for which $L_S(w) = 0$?

- **Intuitively**: still not enough, because if we only see few examples from D_2 we might overfit

- **Theorem (informally)**: under some conditions, many examples from D_1 and a few examples from D_2 suffices to ensure small error on both D_1 and D_2
Refined Sample Complexity Analysis

Theorem

Define

- $\mathcal{H}_{1,\epsilon} = \{ h \in \mathcal{H} : L_{D_1}(h) \leq \epsilon \}$
- $c = \max \{ c' \in [\epsilon, 1) : \forall h \in \mathcal{H}_{1,\epsilon}, L_{D_2}(h) \leq c' \Rightarrow L_{D_2}(h) \leq \epsilon \}$.

Then, it suffices to sample $\frac{\text{VC}(\mathcal{H})}{\epsilon}$ examples from D_1 and $\frac{\text{VC}(\mathcal{H}_{1,\epsilon})}{c}$ examples from D_2.

Proof idea:

- Think about ERM as two steps: (1) find $\mathcal{H}_{1,\epsilon}$ based on examples from D_1 (2) find a hypothesis within $\mathcal{H}_{1,\epsilon}$ that is good on the examples from D_2
- “Shell analysis” (Haussler-Kearns-Seung-Tishby’96) for the 2nd step
Theorem

Define

- $\mathcal{H}_{1,\epsilon} = \{h \in \mathcal{H} : L_{D_1}(h) \leq \epsilon\}$
- $c = \max\{c' \in [\epsilon, 1) : \forall h \in \mathcal{H}_{1,\epsilon}, L_{D_2}(h) \leq c' \Rightarrow L_{D_2}(h) \leq \epsilon\}$.

Then, it suffices to sample $\frac{\text{VC}(\mathcal{H})}{\epsilon}$ examples from D_1 and $\frac{\text{VC}(\mathcal{H}_{1,\epsilon})}{c}$ examples from D_2.

Proof idea:

- Think about ERM as two steps: (1) find $\mathcal{H}_{1,\epsilon}$ based on examples from D_1 (2) find a hypothesis within $\mathcal{H}_{1,\epsilon}$ that is good on the examples from D_2
- “Shell analysis” (Haussler-Kearns-Seung-Tishby’96) for the 2nd step

Implication: to be good on D_2 we must achieve zero training error
Two Equivalent Ways to Solve the ERM problem

Minimize average loss to accuracy $< 1/n$:

$$\min_{w \in \mathbb{R}^d} L_S(w) := \frac{1}{n} \sum_{i=1}^{n} 1[h_w(x_i) \neq y_i]$$

Minimize max loss to accuracy < 1:

$$\min_{w \in \mathbb{R}^d} L_S(w) := \max_{i \in [n]} 1[h_w(x_i) \neq y_i]$$
Assumption: There exists an online learner for w with a mistake bound C'
The Mistake Bound Model (Littlestone 1988)

- **The Online Game:** At each round t, learner picks w_t, adversary responds with i_t, and learner pays $\phi_{i_t}(w_t) = 1[h_{w_t}(x_{i_t}) \neq y_{i_t}]$.
The Mistake Bound Model (Littlestone 1988)

- **The Online Game:** At each round t, learner picks w_t, adversary responds with i_t, and learner pays $\phi_{i_t}(w_t) = 1[h_{w_t}(x_{i_t}) \neq y_{i_t}]$

- **Mistake Bound:** The learner enjoys a mistake bound C if for any T and any sequence i_1, \ldots, i_T, it makes at most T mistakes
The Mistake Bound Model (Littlestone 1988)

- **The Online Game**: At each round t, learner picks w_t, adversary responds with i_t, and learner pays $\phi_{i_t}(w_t) = 1[h_{w_t}(x_{i_t}) \neq y_{i_t}]$

- **Mistake Bound**: The learner enjoys a mistake bound C if for any T and any sequence i_1, \ldots, i_T, it makes at most T mistakes.

- **Example**: The Perceptron (Rosenblatt 1958):
 - $h_w(x) = \text{sign}(\langle w, x \rangle)$, $y \in \{\pm 1\}$
 - The Perceptron rule: $w_{t+1} = w_t + \phi_{i_t}(w_t) x_{i_t} / \|x_{i_t}\|$
 - Theorem (Agmon 1954, Minsky, Papert 1969):
 If exists w^* s.t. for every i, $y_i \langle w^*, x_i \rangle / \|x_i\| \geq 1$, then Perceptron’s mistake bound is $C = \|w^*\|^2$
Back to the ERM problem

Minimize average loss to accuracy \(< \frac{1}{n}\):

\[
\min_{w \in \mathbb{R}^d} L_S(w) := \frac{1}{n} \sum_{i=1}^{n} \phi_i(w)
\]

Minimize max loss to accuracy \(< 1\):

\[
\min_{w \in \mathbb{R}^d} L_S(w) := \max_{i \in [n]} \phi_i(w)
\]
Naive Approaches

Minimize **average loss to accuracy** < $1/n$

- Apply the online learner with random examples from $[n]$
- **Runtime to achieve zero error**: Need $C/T < 1/n$ so $T > nC$ and total time $> nCd$
Naive Approaches

Minimize **average loss to accuracy** $< 1/n$
- Apply the online learner with random examples from $[n]$
- **Runtime to achieve zero error:** Need $C/T < 1/n$ so $T > nC$ and total time $> nCd$

Minimize **max loss to accuracy** < 1:
- Apply the online learner while feeding it with the worst example at each iteration
- **Runtime for zero error:** C iterations, each cost dn, so total time $> nC d$
Naive Approaches

Minimize **average loss to accuracy** $< 1/n$
- Apply the online learner with random examples from $[n]$
- Runtime to achieve zero error: Need $C/T < 1/n$ so $T > nC$ and total time $> nCd$

Minimize **max loss to accuracy** < 1:
- Apply the online learner while feeding it with the worst example at each iteration
- Runtime for zero error: C iterations, each cost dn, so total time $> nCd$

Our approach: runtime is $\tilde{O}((n + C) d)$
Our Approach: Focused Online Learning

Rewrite the Max-Loss problem:

$$\min_w \max_{i \in [n]} \phi_i(w) = \min_w \max_{p \in S_n} \sum_{i=1}^{n} p_i \phi_i(w)$$

- Zero-sum game between w player and p player
- Use the online learner for the w player
- Use a variant of EXP3 (Auer, Cesa-Bianchi, Freund, Schapire, 2002) for the p player
- Our variant explores w.p. $1/2$: this leads to low-variance, and crucial for the analysis
Our Approach: Focused Online Learning

- Initialize: \(q = (1/n, \ldots, 1/n) \)
- For \(t = 1, 2, \ldots, T \)
 - Sample \(i_t \) according to \(p = 0.5 \cdot q + 0.5 \cdot (1/n, \ldots, 1/n) \)
 - Feed \(i_t \) to the online learner
 - Update \(q_{i_t} = q_{i_t} \cdot \exp(\phi_{i_t}(w_t)/(2np_{i_t})) \) and normalize

Observe: Using tree data-structure, each iteration costs \(O(\log(n)) \) plus the online learner time

Theorem
If \(T \geq \tilde{\Omega}(n + C) \), and \(k = \Omega(\log(n)) \), and \(t_1, \ldots, t_k \) are sampled at random from the \([T]\), then with high probability \(\forall i, \phi_i(\text{Majority}(w_{t_1}, \ldots, w_{t_k})) = 0 \)
Our Approach: Focused Online Learning

- Initialize: $q = (1/n, \ldots, 1/n)$
- For $t = 1, 2, \ldots, T$
 - Sample i_t according to $p = 0.5 q + 0.5 (1/n, \ldots, 1/n)$
 - Feed i_t to the online learner
 - Update $q_{i_t} = q_{i_t} \exp(\phi_{i_t}(w_t)/(2np_{i_t}))$ and normalize

Observe: Using tree data-structure, each iteration costs $O(\log(n))$ plus the online learner time
Our Approach: Focused Online Learning

- Initialize: \(q = (1/n, \ldots, 1/n) \)
- For \(t = 1, 2, \ldots, T \)
 - Sample \(i_t \) according to \(p = 0.5 q + 0.5 (1/n, \ldots, 1/n) \)
 - Feed \(i_t \) to the online learner
 - Update \(q_{i_t} = q_{i_t} \exp(\phi_{i_t}(w_t)/(2np_{i_t})) \) and normalize

Observe: Using tree data-structure, each iteration costs \(O(\log(n)) \) plus the online learner time

Theorem

If \(T \geq \tilde{\Omega}(n + C) \), and \(k = \Omega(\log(n)) \), and \(t_1, \ldots, t_k \) are sampled at random from \([T]\), then with high probability

\[
\forall i, \quad \phi_i(\text{Majority}(w_{t_1}, \ldots, w_{t_k})) = 0
\]
Proof Sketch

- The vector $z_t = \frac{\phi_{it}(w_t)}{p_{it}} e_{it}$ is an unbiased estimate of the gradient $(\phi_1(w_t), \ldots, \phi_n(w_t))$
- The update of q is Mirror Descent w.r.t. Entropic regularization with z_t
- A certain generalized definition of variance of z_t is bounded by $2n$ because of the strong exploration
- A Bernstein’s type inequality for Martingales leads to strong concentration
- Union bound over every i concludes the proof
Related Work

- Auer et al 2002: The main idea is there, but EXP3.P.1 costs $\Omega(n)$ per iteration.
 (Our rate is $(n + C)d$)
- AdaBoost (Freund & Schapire 1995): Only for binary classification, batch nature, similar rate.
 In practice: AdaBoost’s predictor is an ensemble while ours is a single classifier.
FOL vs. AdaBoost

![Graph showing the comparison between FOL and AdaBoost over epochs. The graph plots % error on the y-axis and Epochs on the x-axis. The red line represents AdaBoost and the green line represents FOL. The graph shows that FOL has a lower error rate than AdaBoost throughout the epochs.]
Summary

- Some applications call for 100% success
- Focused Learning means faster learning!