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Abstract

We discuss how the runtime of SVM optimiza-
tion shoulddecrease as the size of the training
data increases. We present theoretical and em-
pirical results demonstrating how a simple sub-
gradient descent approach indeed displays such
behavior, at least for linear kernels.

1. Introduction

The traditional runtime analysis of training Support Vec-
tor Machines (SVMs), and indeed most runtime analysis of
training learning methods, shows how the training runtime
increasesas the training set size increases. This is because
the analysis views SVM training as an optimization prob-
lem, whose size increases as the training size increases, and
asks “what is the runtime of finding a very accurate solution
to the SVM training optimization problem?”. However,
this analysis ignores the underlying goal of SVM training,
which is to find a classifier with low generalization error.
When our goal is to obtain a good predictor, having more
training data at our disposal should not increase the run-
time required to get some desired generalization error: If
we can get a predictor with a generalization error of 5%
in an hour using a thousand examples, then given ten thou-
sand examples we can always ignore nine thousand of them
and do exactly what we did before, using the same runtime.
But, can we use the extra nine thousand examples to get a
predictor with a generalization error of 5% inlesstime?

In this paper we begin answering the above question. But
first we analyze the runtime of various SVM optimization
approaches in the data-laden regime, i.e. given unlimited
amounts of data. This serves as a basis to our investigation
and helps us compare different optimization approaches
when working with very large data sets. A similar type
of analysis for unregularized linear learning was recently
presented by Bottou and Bousquet (2008)—here we han-
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dle the more practically relevant case of SVMs, although
we focus on linear kernels.

We then return to the finite-data scenario and ask our origi-
nal question: How does the runtime required in order to get
some desired generalization error change with the amount
of available data? In Section 5, we present both a theoreti-
cal analysis and a thorough empirical study demonstrating
that, at least for linear kernels, the runtime of the subgra-
dient descent optimizer PEGASOS (Shalev-Shwartz et al.,
2007) does indeed decrease as more data is made available.

2. Background

We briefly introduce the SVM setting and the notation used
in this paper, and survey the standard runtime analysis of
several optimization approaches. The goal of SVM train-
ing is to find a linear predictorw that predicts the label
y ∈ ±1 associated with a feature vectorx assign(〈w,x〉).
This is done by seeking a predictor with small empirical
(hinge) loss relative to a large classification “margin”. We
assume that instance-label pairs come from some source
distributionP (X, Y ), and that we are given access to la-
beled examples{(xi, yi)}m

i=1 sampled i.i.d. fromP . Train-
ing a SVM then amounts to minimizing, for some regular-
ization parameterλ, the regularized empirical hinge loss:

f̂λ(w) = ˆ̀(w) +
λ

2
‖w‖2 (1)

where ˆ̀(w) = 1
m

∑

i `(w; (xi, yi)) and `(w; (x, y)) =
max{0, 1−y 〈w,x〉} is the hinge loss. For simplicity, we do
not allow a bias term. We say that an optimization method
finds anε-accurate solutioñw if f̂λ(w̃) ≤ minw f̂λ(w)+ε.

Instead of being provided with the feature vectors di-
rectly, we are often only provided with their inner products
through a kernel function. Our focus here is on “linear ker-
nels”, i.e. we assume we are indeed provided with the fea-
ture vectors themselves. This scenario is natural in several
applications, including document analysis where the bag-
of-words vectors provide a sparse high dimensional repre-
sentation that does not necessarily benefit from the kernel
trick. We used to denote the dimensionality of the feature
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vectors. Or, if the feature vectors are sparse, we used to
denote the average number of non-zero elements in each
feature vector (e.g. when input vectors are bag-of-words,d
is the average number of words in a document).

The runtime of SVM training is usually analyzed as the
required runtime to obtain anε-accurate solution to the op-
timization problemminw f̂λ(w).

Traditional optimization approaches converge linearly, or
even quadratically, to the optimal solution. That is, their
runtime has a logarithmic, or double logarithmic, depen-
dence on the optimization accuracyε. However, they scale
poorly with the size of the training set. For example, a
naı̈ve implementation of interior point search on the dual
of the SVM problem would require a runtime ofΩ(m3)
per iteration, with the number of iterations also theoreti-
cally increasing withm. To avoid a cubic dependence on
m, many modern SVM solvers use “decomposition tech-
niques”: Only a subset of the dual variables is updated at
each iteration (Platt, 1998; Joachims, 1998). It is possi-
ble to establish linear convergence for specific decompo-
sition methods (e.g. Lin, 2002). However, a careful ex-
amination of this analysis reveals that the number of itera-
tions before the linearly convergent stage can grow asm2.
In fact, Bottou and Lin (2007) argue that any method that
solves the dual problem very accurately might in general
require runtimeΩ(dm2), and also provide empirical ev-
idence suggesting that modern dual-decomposition meth-
ods come close to a runtime ofΩ(dm2 log(1/ε)). There-
fore, for the purpose of comparison, we take the runtime of
dual-decomposition methods asO(dm2 log 1/ε).

With the growing importance of handling very large data
sets, optimization methods with a more moderate scaling
on the data set size were presented. The flip side is that
these approaches typically have much worse dependence
on the optimization accuracy. A recent example is SVM-
Perf (Joachims, 2006), an optimization method that uses a
cutting planes approach for training linear SVMs. Smola
et al. (2008) showed that SVM-Perf can find a solution
with accuracyε in timeO(md/(λε)).

Although SVM-Perf does have a much more favorable de-
pendence on the data set size, and runs much faster on
large data sets, its runtime still increases (linearly) with
m. More recently, Shalev-Shwartz et al. (2007) presented
PEGASOS, a simple stochastic subgradient optimizer for
training linear SVMs, whose runtime does not at all in-
crease with the sample size. PEGASOS is guaranteed to
find, with high probability, anε-accurate solution in time1

Õ(d/(λε)). Empirical comparisons show that PEGASOS
is considerably faster than both SVM-Perf and dual decom-
position methods on large data sets with sparse, linear, ker-

1TheÕ(·) notation hides logarithmic factors.

nels (Shalev-Shwartz et al., 2007; Bottou, Web Page).

These runtime guarantees of SVM-Perf and PEGASOS are
not comparable with those of traditional approaches: the
runtimes scale better withm, but worse withε, and also
depend onλ. We will return to this issue in Section 4.

3. Error Decomposition

The goal of supervised learning, in the context we consider
it, is to use the available training data in order to obtain a
predictor with low generalization error (expected error over
future predictions). However, since we cannot directly ob-
serve the generalization error of a predictor, the traininger-
ror is used as a surrogate. But in order for the training error
to be a good surrogate for the generalization error, we must
restrict the space of allowed predictors. This can be done
by restricting ourselves to a certain hypothesis class, or in
the SVM formulation studied here, minimizing a combina-
tion of the training error and some regularization term.

In studying the generalization error of the predictor mini-
mizing the training error on a limited hypothesis class, it is
standard to decompose this error into:

• The approximation error— the minimum general-
ization error achievable by a predictor in the hypothe-
sis class. The approximation error does not depend on
the sample size, and is determined by the hypothesis
class allowed.

• Theestimation error—the difference between the ap-
proximation error and the error achieved by the pre-
dictor in the hypothesis class minimizing the training
error. The estimation error of a predictor is a result of
the training error being only an estimate of the gen-
eralization error, and so the predictor minimizing the
training error being only an estimate of the predictor
minimizing the generalization error. The quality of
this estimation depends on the training set size and
the size, or complexity, of the hypothesis class.

A similar decomposition is also possible for the somewhat
more subtle case of regularized training error minimiza-
tion, as in SVMs. We are now interested in the generaliza-
tion error`(ŵ) = E(X,Y )∼P [`(w;X, Y )] of the predictor

ŵ = arg minw f̂λ(w) minimizing the training objective
(1). Note that for the time being we are only concerned
with the (hinge) loss, and not with the misclassification er-
ror, and even measure the generalization error in terms of
the hinge loss. We will return to this issue in Section 5.2.

• The approximation error is now the generaliza-
tion error `(w∗) achieved by the predictorw∗ =
arg minw fλ(w) that minimizes theregularizedgen-
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eralization error:

fλ(w) = `(w) +
λ

2
‖w‖2

.

As before, the approximation error is independent of
the training set or its size, and depends on the regular-
ization parameterλ. This parameter plays a role sim-
ilar to that of the complexity of the hypothesis class:
Decreasingλ can decrease the approximation error.

• The estimation error is now the difference between the
generalization error ofw∗ and the generalization error
`(ŵ) of the predictor minimizing the training objec-
tive f̂λ(w). Again, this error is a result of the training
error being only an estimate of the generalization er-
ror, and so the training objectivêfλ(w) being only an
estimate of the regularized lossfλ(w).

The error decompositions discussed so far are well under-
stood, as is the trade-off between the approximation and
estimation errors controlled by the complexity of the hy-
pothesis class. In practice, however, we do not minimize
the training objective exactly and so do not use the math-
ematically defined̂w. Rather, we use some optimization
algorithm that runs for some finite time and yields a pre-
dictor w̃ that only minimizes the training objectivêfλ(w)
to within some accuracyεacc. We should therefore con-
sider the decomposition of the generalization error`(w̃) of
this predictor. In addition to the two error terms discussed
above, a third error term now enters the picture:

• The optimization error is the difference in general-
ization error between the actual minimizer of the train-
ing objective and the output̃w of the optimization al-
gorithm. The optimizationerror is controlled by the
optimizationaccuracyεacc: The optimization accu-
racy is the difference in the training objectivêfλ(w)
while the optimization error is the resulting difference
in generalization error̀(w̃) − `(ŵ).

This more complete error decomposition, also depicted in
Figure 1, was recently discussed by Bottou and Bousquet
(2008). Since the end goal of optimizing the training er-
ror is to obtain a predictor̃w with low generalization error
`(w̃), it is useful to consider the entire error decomposition,
and the interplay of its different components.

Before investigating the balance between the data set size
and runtime required to obtain a desired generalization er-
ror, we first consider two extreme regimes: one in which
only a limited training set is available, but computational
resources are not a concern, and the other in which the
training data available is virtually unlimited, but compu-
tational resources are bounded.

-

εaprx εest εopt

0 `(w∗) `(ŵ) `(w̃)

generalization
error

Figure 1.Decomposition of the generalization error of the output
w̃ of the optimization algorithm:̀(w̃) = εaprx + εest + εopt.

Table 1.Summary of Notation
error (hinge loss) `(w; (x, y))=max{0, 1−y 〈w, x〉}

empirical error ˆ̀(w) = 1

m

∑

(x,y)∈S`(w; (x, y))
generalization error `(w) = E [`(w;X, Y )]

SVM objective f̂λ(w) = ˆ̀(w) + λ

2
‖w‖2

Expected SVM obj. fλ(w) = `(w) + λ

2
‖w‖2

Reference predictor w0

Population optimum w
∗ = arg minw fλ(w)

Empirical optimum ŵ = arg minw f̂λ(w)

εacc-optimal predictor w̃ s.t. f̂λ(w̃) ≤ f̂λ(ŵ) + εacc

3.1. The Data-Bounded Regime

The standard analysis of statistical learning theory can be
viewed as an analysis of an extreme regime in which train-
ing data is scarce, and computational resources are plenti-
ful. In this regime, the optimization error diminishes, as we
can spend the time required to optimize the training objec-
tive very accurately. We need only consider the approxi-
mation and estimation errors. Such an analysis provides an
understanding of the sample complexity as a function of the
target error: how many samples are necessary to guarantee
some desired error level.

For low-norm (large-margin) linear predictors, the esti-

mation error can be bounded byO
(

‖w∗‖√
m

)

(Bartlett &

Mendelson, 2003), yielding a sample complexity ofm =

O
(

‖w∗‖2

ε2

)

to get a desired generalization error of`(w∗)+

ε (tighter bounds are possible under certain conditions, but
for simplicity and more general applicability, here we stick
with this simpler analysis).

3.2. The Data-Laden Regime

Another extreme regime is the regime in which we have vir-
tually unlimited data (we can obtain samples on-demand),
but computational resources are limited. This is captured
by the PAC framework (Valiant, 1984), in which we are
given unlimited, on-demand, access to samples, and con-
sider computationally tractable methods for obtaining a
predictor with low generalization error. Most work in the
PAC framework focuses on the distinction between poly-
nomial and super-polynomial computation. Here, we are
interested in understating the details of this polynomial
dependence—how does the runtime scale with the parame-
ters of interest? Discussing runtime as a function of data set
size is inappropriate here, since the data set size is unlim-
ited. Rather, we are interested in understanding the runtime
as a function of the target error: How much runtime is re-
quired to guarantee some desired error level.
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As the data-laden regime does capture many large data set
situations, in which data is virtually unlimited, such an
analysis can be helpful in comparing different optimization
approaches. We saw how traditional runtime guarantees
of different approaches are sometimes seemingly incom-
parable: One guarantee might scale poorly with the sample
size, while another scales poorly with the desired optimiza-
tion accuracy. The analysis we perform here allows us to
compare such guarantees and helps us understand which
methods are appropriate for large data sets.

Recently, Bottou and Bousquet (2008) carried out such a
“data-laden” analysis for unregularized learning of linear
separators in low dimensions. Here, we perform a similar
type of analysis for SVMs, i.e. regularized learning of a
linear separator in high dimensions.

4. Data-Laden Analysis of SVM Solvers

To gain insight into SVM learning in the data-laden regime
we perform the following “oracle” analysis: We assume
there is some good low-norm predictorw0, which achieves
a generalization error (expected hinge loss) of`(w0) and
has norm‖w0‖. We train a SVM by minimizing the train-
ing objectivef̂λ(w) to within optimization accuracyεacc.
Since we have access to an unrestricted amount of data,
we can choose what data set size to work with in order to
achieve the lowest possible runtime.

We will decompose the generalization error of the output
predictorw̃ as follows:

`(w̃) = `(w0)

+ (fλ(w̃) − fλ(w∗))

+ (fλ(w∗) − fλ(w0))

+
λ

2
‖w0‖2 − λ

2
‖w̃‖2 (2)

The degradation in the regularized generalization error,
fλ(w̃)− fλ(w∗), which appears in the second term, can
be bounded by the empirical degradation: For allw with
‖w‖2 ≤ 2/λ (a larger norm would yield a worse SVM ob-
jective thanw=0, and so can be disqualified), with proba-
bility at least1−δ over the training set (Sridharan, 2008):

fλ(w)−fλ(w∗) ≤ 2
[

f̂λ(w) − f̂λ(w∗)
]

+
+O

(

log 1
δ

λm

)

where [z]+ = max(z, 0). Recalling thatw̃ is an εacc-
accurate minimizer of̂fλ(w), we have:

fλ(w̃) − fλ(w∗) ≤ 2εacc+ O

(

log 1
δ

λm

)

(3)

Returning to the decomposition (2), the third term is non-
positive due to the optimality ofw∗, and regardingδ as a

constant we obtain that with arbitrary fixed probability:

`(w̃) ≤ `(w0) + 2εacc+
λ

2
‖w0‖2 + O

(

1

λm

)

(4)

In order to obtain an upper bound of`(w0) + O(ε) on
the generalization error̀(w̃), each of the three remaining
terms on the right hand side of (4) must be bounded from
above byO(ε), yielding:

εacc ≤ O(ε) (5)

λ ≤ O
(

ε
‖w0‖2

)

(6)

m ≥ Ω
(

1
λε

)

≥ Ω
(

‖w0‖2

ε2

)

(7)

Using the above requirements on the optimization accuracy
εacc, the regularization parameterλ and the working sam-
ple sizem, we can revisit the runtime of the various SVM
optimization approaches.

As discussed in Section 2, dual decomposition approaches
require runtimeΩ(m2d), with a very weak dependence
on the optimization accuracy. Substituting in the sample
size required for obtaining the target generalization error

of `(w0) + ε, we get a runtime ofΩ
(

d‖w0‖4

ε4

)

.

We can perform a similar analysis for SVM-Perf by substi-
tuting the requirements onεacc, λ andm into its guaranteed

runtime ofO
(

dm
λεacc

)

. We obtain a runtime ofO
(

d‖w0‖4

ε4

)

,

matching that in the analysis of dual decomposition meth-
ods above. It should be noted that SVM-Perf’s runtime has
been reported to have only a logarithmic dependence on
1/εacc in practice (Smola et al., 2008). If that were the case,

the runtime guarantee would drop tõO
(

d‖w0‖4

ε3

)

, perhaps

explaining the faster runtime of SVM-Perf on large data
sets in practice.

As for the stochastic gradient optimizer PEGASOS, sub-
stituting in the requirements onεacc and λ into its
Õ(d/(λεacc)) runtime guarantee yields a data-laden run-

time of Õ
(

d‖w0‖2

ε2

)

. We see, then, that in the data-laden

regime, where we can choose a data set of arbitrary size in
order to obtain some target generalization error, the runtime
guarantee of PEGASOS dominates those of other methods,
including those with a much more favorable dependence on
the optimization accuracy.

The traditional and data-laden runtimes, ignoring logarith-
mic factors, are summarized in the following table:

Method εacc-accurate `(w̃) ≤ `(w0) + ε

Dual decompositoin dm2 d‖w0‖4

ε4

SVM-Perf dm
λεacc

d‖w0‖4

ε4

PEGASOS d
λεacc

d‖w0‖2

ε2
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5. The Intermediate Regime

We have so far considered two extreme regimes: one in
which learning is bounded only by available data, but
not by computational resources, and another where it is
bounded only by computational resources, but unlimited
data is available. These two analyzes tell us how many
samples are needed in order to guarantee some target er-
ror rate (regardless of computational resources), and how
much computation is needed to guarantee this target error
rate (regardless of available data). However, if we have just
enough samples to allow a certain error guarantee, the run-
time needed in order to obtain such an error rate might be
much higher than the runtime given unlimited samples. In
terms of the error decomposition, the approximation and
estimation errors together would already account for the
target error rate, requiring the optimization error to be ex-
tremely small. Only when more and more samples are
available might the required runtime decrease down to that
obtained in the data-laden regime.

Accordingly, we study the runtime of a training method as a
decreasing function of the available training set size. As ar-
gued earlier, studied this way, the required runtime should
never increase as more data is available. We would like to
understand how the excess data can be used to decrease the
runtime.

In many optimization methods, including dual decompo-
sition methods and SVM-Perf discussed earlier, the com-
putational cost of each basic step increases, sometimes
sharply, with the size of the data set considered. In such
algorithms, increasing the working data set size in the hope
of being able to optimize to within a lower optimization ac-
curacy is a double-edged sword. Although we can reduce
the required optimization accuracy, and doing so reduces
the required runtime, we also increase the computational
cost of each basic step, which sharply increases the run-
time.

However, in the case of a stochastic gradient descent ap-
proach, the runtime to get some desired optimization ac-
curacy does not increase as the sample size increases. In
this case, increasing the sample size is a pure win: The
desired optimization accuracy decreases, with no counter
effect, yielding a net decrease in the runtime.

In the following sections, we present a detailed theoreti-
cal analysis based on performance guarantees, as well as
an empirical investigation, demonstrating a decrease in PE-
GASOS runtime as more data is available.

5.1. Theoretical Analysis

Returning to the “oracle” analysis of Section 4 and substi-
tuting into equation (4) our bound on the optimization ac-

R
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e Dual Decomposition

R
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tim
e

SVM−Perf

PEGASOS

Training Set Size

R
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tim
e

Figure 2.Descriptive behavior of the runtime needed to achieve
some fixed error guarantee based on upper bounds for different
optimization approaches (solid curves). The dotted lines are the
sample-size requirement in the data-bounded regime (vertical)
and the runtime requirement in the data-laden regime (horizon-
tal). In the top two panels (dual decomposition and SVM-Perf),
the minimum runtime is achieved for some finite training set size,
indicated by a dash-dotted line.

curacy of PEGASOS after running for timeT , we obtain:

`(w̃) ≤ `(w0) + Õ(
d

λT
) +

λ

2
‖w0‖2

+ O(
1

λm
) (8)

The above bound is minimized whenλ =

Θ̃

(√
d/T+1/m

‖w0‖

)

, yielding`(w̃) ≤ `(w0) + ε(T, m) with

ε(T, m) = Õ

(

‖w0‖
√

d
T

)

+ O
(

‖w0‖√
m

)

. (9)

Inverting the above expression, we get the following bound
on the runtime required to attain generalization error
`(w̃) ≤ `(w0) + ε using a training set of sizem:

T (m; ε) = Õ







d
(

ε
‖w0‖ − O( 1√

m
)
)2






. (10)

This runtime analysis, which monotonically decreases with
the available data set size, is depicted in the bottom panel
of Figure 2. The data-bounded (statistical learning the-
ory) analysis describes the vertical asymptote ofT (·; ε)—at
what sample size is it at all possible to achieve the desired
error. The analysis of the data-laden regime of Section 4
described the minimal runtime using any amount of data,
and thus specifies the horizontal asymptoteinf T (m; ε) =
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limm→∞ T (m; ε). The more detailed analysis carried out
here bridges between these two extreme regimes.

Before moving on to empirically observing this behavior,
let us contrast this behavior with that displayed by learn-
ing methods whose runtime required for obtaining a fixed
optimization accuracy does increase with data set size. We
can repeat the analysis above, replacing the first term on the
right hand side of (8) with the guarantee on the optimiza-
tion accuracy at runtime ofT , for different algorithms.

For SVM-Perf, we haveεacc ≤ O (dm/(λT )). The opti-

mal choice ofλ is thenλ = Θ
(√

dm
T‖w0‖2

)

and the run-

time needed to guarantee generalization error`(w0) + ε
when running SVM-Perf onm samples isT (m; ε) =

O

(

dm

/

(

ε
‖w0‖ − O( 1√

m
)
)2

)

. The behavior of this

guarantee is depicted in the middle panel of Figure 2. As
the sample size increases beyond the statistical limitm0 =
Θ(‖w0‖2

/ε2), the runtime indeed decreases sharply, un-
til it reaches a minimum, corresponding to the data laden
bound, precisely at4m0, i.e. when the sample size is four
times larger than the minimum required to be able to reach
the desired target generalization error. Beyond this point,
the other edge of the sword comes into play, and the run-
time (according to the performance guarantees) increases
as more samples are included.

The behavior of a dual decomposition method with runtime
Θ(m2d log 1

εacc
) is given byT (m; ε) = m2d log(1/(ε −

Θ ‖w0‖√
m

)) and depicted in the top panel of Figure 2. Here,
the optimal sample size is extremely close to the statistical
limit, and increasing the sample size beyond the minimum
increases the runtime quadratically.

5.2. Empirical Analysis

The above analysis is based on upper bounds, and is only
descriptive, in that it ignores various constants and even
certain logarithmic factors. We now show that this type
of behavior can be observed empirically for the stochastic
subgradient optimizer PEGASOS.

We trained PEGASOS2 on training sets of increasing size
taken from two large data sets, the Reuters CCAT and the
CoverType datasets3. We measured the average hinge loss

2We used a variant of the method described by Shalev-Shwartz
et al. (2007), with a single example used in each update: Follow-
ing Bottou (Web Page), instead of sampling an example indepen-
dently at each iteration, a random permutation over the training set
is used. When the permutation is exhausted, a new, independent,
random permutation is drawn. Although this variation does not
match the theoretical analysis, it performs slightly better in prac-
tice. Additionally, the PEGASOS projection step is skipped, as it
can be shown that even without it,‖w‖2 ≤ 4/λ is maintained.

3The binary text classification task CCAT from the Reuters

of the learned predictor on a (fixed) held-out test set. For
each training set size, we found the median number of it-
erations (over multiple runs with multiple training sets) for
achieving some target average hinge loss, which was very
slightly above the best “test” hinge loss that could be re-
liably obtained by training on the entire available train-
ing set. For each training set size we used the optimal
λ for achieving the desired target hinge loss4. The (me-
dian) required number of iterations is displayed in Figure
3. For easier interpretability and reproducibility, we report
the number of iterations. Since each PEGASOS iteration
takes constant time, the actual runtime is proportional to
the number of iterations.

So far we have measured the generalization error only in
terms of the average hinge loss`(w̃). However, our true
goal is usually to attain low misclassification error,P (Y 6=
sign 〈w̃,X〉). The dashed lines in Figure 3 indicate the
(median) number of iterations required to achieve a target
misclassification error, which again is very slightly above
the best that can be hoped for with the entire data set.

These empirical results demonstrate that the runtime of
SVM training using PEGASOS indeeddecreasesas the
size of the training set increases. It is important to note
that PEGASOS is the fastest published method for these
datasets (Shalev-Shwartz et al., 2007; Bottou, Web Page),
and so we are indeed investigating the best possible run-
times. To gain an appreciation of this, as well as to ob-
serve the runtime dependence on the training set size for
other methods, we repeated a limited version of the experi-
ments using SVM-Perf and the dual decomposition method
SVM-Light (Joachims, 1998). Figure 4 and its caption re-
port the runtimes required by SVM-Perf and SVM-Light to
achieve the same fixed misclassification error using vary-
ing data set sizes. We can indeed verify that PEGASOS’s

RCV1 collection and Class 1 in the CoverType dataset of
Blackard, Jock & Dean. CCAT consists of 804,414 examples
with 47,236 features of which 0.16% are non-zero. CoverType
has 581,012 examples with 54 features of which 22% are non-
zero. We used 23,149 CCAT examples and 58,101 CoverType
examples as test sets and sampled training sets from the remain-
der.

4Selectingλ based on results on the test set seems like cheat-
ing, and is indeed slightly cheating. However, the sameλ was
chosen for multiple random training sets of the same size, and
represents the optimalλ for the learning problem, not for a spe-
cific training set (i.e. we are not gaining here from random fluctu-
ations in learning). The setup in which the optimalλ is “known”
is common in evaluation of SVM runtime. Choosingλ by proper
validation involves many implementation choices that affect run-
time, such as the size of the holdout and/or number of rounds of
cross-validation, the range ofλs considered, and the search strat-
egy overλs. We therefore preferred a “knownλ” setup, where we
could obtain results that are cleaner, more interpretable,and less
affected by implementation details. The behavior displayed by
our results is still indicative of a realistic situation where λ must
be selected.
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Figure 3.Number of PEGASOS iterations required to achieve the
desired hinge loss (solid lines) or misclassification error(dashed
and dotted lines) on the test set. Top: CCAT. The minimum
achievable hinge loss and misclassification error are0.132 and
5.05%. Bottom: CoverType. The minimum achievable hinge loss
and misclassification error are0.536 and 22.3%.

runtime is significantly lower than the optimal SVM-Perf
and SVM-Light runtimes on the CCAT dataset. On the
CoverType data set, PEGASOS and SVM-Perf have sim-
ilar optimal runtimes (both optimal runtimes were under a
second, and depending on the machine used, each method
was up to 50% faster or slower than the other), while SVM-
Light’s runtime is significantly higher (about 7 seconds).
We also clearly see the increase in runtime for large train-
ing set sizes for both SVM-Light and SVM-Perf. On the
CoverType dataset, we were able to experimentally observe
the initial decrease in SVM-Perf runtime, when we are just
past the statistical limit, and up to some optimal training
set size. On CCAT, and on both data sets for SVM-Light,
the optimal data set size is the minimal size statistically re-
quired and any increase in data set size increases runtime
(since the theoretical analysis is just an upper bound, it is
possible that there is no initial decrease, or that it is very
narrow and hard to detect experimentally).

In order to gain a better understanding of the reduction
in PEGASOS’s runtime, we show in Figure 5 the average
(over multiple training sets) generalization error achieved
by PEGASOS over time, for various data set sizes. It
should not be surprising that the generalization error de-
creases with the number of iterations, nor that it is lower
for larger data sets. The important observation is that for
smaller data sets the error decreases more slowly, even be-
fore the statistical limit for that data set is reached, as op-
posed to the hypothetical behavior depicted in the insert of
Figure 5. This can also be seen in the dotted plots of Figure
3, which are essentially contour lines of the generalization
error as a function of runtime and training set size—the
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Figure 4.Runtime required to achieve average misclassification
error of 5.25% on CCAT (top) and 23% on CoverType (bottom)
on a 2.4 GHz Intel Core2, using optimalλ settings. SVM-Light
runtimes for CCAT increased from 1371 seconds using 330k ex-
amples to 4.4 hours using 700k examples. SVM-Light runtimes
for CoverType increased to 552 seconds using 120k examples.

error decreases wheneitherruntime or training set size in-
crease. And so, fixing the error, we can trade off between
the runtime and data set size, decreasing one of them when
the other is increased.

The hypothetical situation depicted in the insert occurs
when runtime and dataset size each limit the attainable er-
ror independently. This corresponds to “L”-shaped con-
tours: both a minimum runtime and a minimum dataset
size are required to attain each error level, and once both
requirements are met, the error is attainable. In such a
situation, the runtime doesnot decrease as data set size
increases, but rather, as in the “L”-shaped graph, remains
constant once the statistical limit is passed. This happens,
e.g., if the optimization can be carried out with a single pass
over the data (or at least, if one pass is enough for getting
very close to`(ŵ)). Although behavior such as this has
been reported usingsecond-orderstochastic gradient de-
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Figure 5.Average misclassification error achieved by PEGASOS
on the CCAT test set as a function of runtime (#iterations), for
various training set sizes. The insert is a cartoon depicting a hy-
pothetical situation discussed in the text.
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scent forunregularizedlinear learning (Bottou & LeCun,
2004), this is not the case here. Unfortunately we are not
aware of an efficient one-pass optimizer for SVMs.

6. Discussion

We suggest here a new way of studying and understanding
the runtime of training: Instead of viewing additional train-
ing data as a computational burden, we view it as an asset
that can be used to our benefit. We already have a fairly
good understanding, backed by substantial theory, on how
additional training data can be used to lower the general-
ization error of a learned predictor. Here, we consider the
situation in which we are satisfied with the error, and study
how additional data can be used to decrease training run-
time. To do so, we study runtime as an explicit function of
the acceptable predictive performance.

Specifically, we show that a state-of-the-art stochastic gra-
dient descent optimizer, PEGASOS, indeed requires train-
ing runtime that monotonically decreases as a function of
the sample size. We show this both theoretically, by analyz-
ing the behavior of upper bounds on the runtime, and em-
pirically on two standard datasets where PEGASOS is the
fastest known SVM optimizer. To the best of our knowl-
edge, this is the first demonstration of a SVM optimizer
that displays this natural behavior.

The reason PEGASOS’s runtime decreases with increased
data is that its runtime to get a fixed optimization accuracy
does not depend on the training set size. This enables us
to leverage a decreased estimation error, without paying a
computational penalty for working with more data.

The theoretical analysis presented in Section 5.1, and we
believe also the empirical reduction in PEGASOS’s run-
time, indeed relies on this decrease in estimation error. This
decrease is significant close to the statistical limit on the
sample size, as is evident in the results of Figure 3—a
roughly 10–20% increase in sample size reduces the run-
time by about a factor of five. However, the decrease di-
minishes for larger sample sizes. This can also be seen
from the theoretical analysis—having a sample size which
is greater than the statistical limit by a constant factor en-
ables us to achieve a runtime which is greater than the the-
oretical (data-laden) limit by a constant factor (in fact, as
the careful reader probably noticed, since our data-laden
theoretical analysis ignores constant factors onε andm,
it seems that the training set size needed to be within the
data-laden regime, as specified in equation (7), is the same
as the minimum data set size required statistically). Such
“constant factor” effects should not be discounted—having
four times as much data (as is roughly the factor for Cover-
Type) is often quite desirable, as is reducing the runtime by
a factor of ten (as this four-fold increase achieves).

We are looking forward to seeing methods that more ex-
plicitly leverage large data sets in order to reduce runtime,
achieving stronger decreases in practice, and being able to
better leverage very large data sets. Although it seems that
not much better can be done theoretically given only the
simple oracle assumption of Section 4, a better theoretical
analysis of such methods might be possible using richer as-
sumptions. We would also like to see practical methods
for non-linear (kernelized) SVMs that display similar be-
havior. Beyond SVMs, we believe that many other prob-
lems in machine learning, usually studied computationally
as optimization problems, can and should be studied using
the type of analysis presented here.
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