
The Forgetron:
A Kernel-Based Perceptron on a Fixed Budget

Ofer Dekel Shai Shalev-Shwartz Yoram Singer
School of Computer Science & Engineering

The Hebrew University, Jerusalem 91904, Israel
{oferd,shais,singer}@cs.huji.ac.il

Abstract

The Perceptron algorithm, despite its simplicity, often performs well on
online classification problems. The Perceptron becomes especially effec-
tive when it is used in conjunction with kernels. However, a common dif-
ficulty encountered when implementing kernel-based onlinealgorithms
is the amount of memory required to store the online hypothesis, which
may grow unboundedly. In this paper we describe and analyze anew in-
frastructure for kernel-based learning with the Perceptron while adhering
to a strict limit on the number of examples that can be stored.We first
describe a template algorithm, called the Forgetron, for online learning
on a fixed budget. We then provide specific algorithms and derive a uni-
fied mistake bound for all of them. To our knowledge, this is the first
online learning paradigm which, on one hand, maintains astrict limit on
the number of examples it can store and, on the other hand, entertains a
relative mistake bound. We also present experiments with real datasets
which underscore the merits of our approach.

1 Introduction

The introduction of the Support Vector Machine (SVM) [8] sparked a widespread interest
in kernel methods as a means of solving (binary) classification problems. Although SVM
was initially stated as a batch-learning technique, it significantly influenced the develop-
ment of kernel methods in the online-learning setting. Online classification algorithms that
can incorporate kernels include the Perceptron [7], ROMMA [6], ALMA [4], NORMA [5]
and the Passive-Aggressive family of algorithms [1]. Each of these algorithms observes
examples in a sequence of rounds, and constructs its classification function incrementally
by storing a subset of the observed examples in its internal memory. The classification
function is then defined by a kernel-dependent combination of the stored examples. This
set of stored examples is the online equivalent of thesupport setin SVMs, however in
contrast to the support it continually changes as learning progresses. In this paper, we call
this set theactive set, as it includes those examples that actively define the current classi-
fier. Typically, an example is added to the active set every time the online algorithm makes
a prediction mistake or when its confidence in a prediction isinadequately low. A rapid
growth of the active set can lead to significant computational difficulties. Naturally, since
computing devices have bounded memory resources, there is the danger that an online al-

gorithm would require more memory than is physically available. This problem becomes
especially eminent in cases where the online algorithm is implemented as part of a special-
ized hardware system with a small memory, such as a mobile telephone or an autonomous
robot. Moreover, the growth of the active set can lead to unacceptably long running times,
as the time-complexity of each online round scales linearlywith the size of the active set.

Crammer, Kandola, and Singer [2] first addressed this problem by describing an online
kernel-based modification of the Perceptron algorithm in which the active set does not ex-
ceed a predefinedbudget. Their algorithm removes redundant examples from the active
set so as to make the best use of the limited memory resource. Weston, Bordes and Bot-
tou [9] followed with their own online kernel machine on a budget. Both techniques work
relatively well in practice, however they both lack a theoretical guarantee on prediction
accuracy. In this paper we present online kernel-based classifiers which are restricted to a
budget of active examples and for which we can give a formal learning-theoretic analysis.
To the best of our knowledge, these are the first online algorithms with a fixed predeter-
mined budget which also entertain formal worst-case mistake bounds. Some of our proofs
are omitted due to the lack of space. Detailed proofs of all ofthe theorems stated in this
paper can be found in [3].

This paper is organized as follows. In Sec. 2 we begin with a more formal presentation of
our problem and discuss some difficulties in proving mistakebounds for kernel-methods
on a budget. In Sec. 3 we present an algorithmic framework foronline prediction with a
predefined budget of active examples. Then in Sec. 4 we derivevarious algorithms from
this framework. We name our algorithmic framework theForgetron, since its update builds
on that of the Perceptron, and since it gradually forgets active examples. Finally, we present
an empirical evaluation of our algorithms in Sec. 5.

2 Problem Setting

Online learning is performed in a sequence of consecutive rounds, where on roundt the
online algorithm observes an instancext, which is drawn from some predefined instance
domainX . The algorithm predicts the binary label associated with that instance and is then
given the correct labelyt ∈ {−1, +1}. At this point, the algorithm may use the instance-
label pair(xt, yt) to improve its prediction mechanism. The goal of the algorithm is to
correctly predict as many labels as possible.

The predictions of the online algorithm are determined by a function which is stored in
its internal memory and is updated from round to round. We refer to this function as the
hypothesisof the algorithm and denote the hypothesis used on roundt by ft. Our focus
in this paper is on margin based hypotheses, namely,ft is a function fromX to

�
where

sign(ft(xt)) constitutes the actual binary prediction and|ft(xt)| is the confidence in this
prediction. The termyf(x) is called themarginof the prediction and is positive whenever
y and sign(f(x)) agree. We can evaluate the performance of an hypothesis on a given
example(x, y) in one of two ways. First, we can check whether the hypothesismakes
a prediction mistake, namely determine ify = sign(f(x)). Throughout this paper, we
useM to denote the number of prediction mistakes made by an onlinealgorithm on a
sequence of examples(x1, y1), . . . , (xT , yT). The second way to evaluate the predictions
of an hypothesis is by using thehinge-lossfunction, defined by,

`
(

f ; (x, y)
)

=

{

0 if yf(x) ≥ 1
1 − yf(x) otherwise . (1)

The hinge-loss penalizes an hypothesis for any margin less than1. Additionally, if y 6=
sign(f(x)) then`(f, (x, y)) ≥ 1 and therefore thecumulative hinge-losssuffered over a
sequence of examples upper boundsM . The algorithms discussed in this paper use kernel-
based hypotheses that are defined with respect to a kernel operatorK : X ×X → �

which

adheres to Mercer’s positivity conditions [8]. A kernel-based hypothesis takes the form,

f(x) =

k
∑

i=1

αiK(xi,x) , (2)

wherex1, . . . ,xk are members ofX andα1, . . . , αk are real weights. To facilitate the
derivation of our algorithms and their analysis, we associate a reproducing kernel Hilbert
space (RKHS) withK in the standard way common to all kernel methods. Formally,
let HK be the closure of the set of all hypotheses of the form given inEq. (2). For
any two functions,f(x) =

∑k
i=1

αiK(xi,x) and g(x) =
∑l

j=1
βjK(zj ,x), define

the inner product between them to be,〈f, g〉 =
∑k

i=1

∑l
j=1

αiβjK(xi, zj). This inner-

product naturally induces a norm defined by‖f‖ = 〈f, f〉1/2 and a metric‖f − g‖ =
(〈f, f〉 − 2〈f, g〉 + 〈g, g〉)1/2. These definitions play an important role in the analysis of
our algorithms. Online kernel methods typically restrict themselves to hypotheses that are
defined by some subset of the examples observed on previous rounds. That is, the hypothe-
sis used on roundt takes the form,ft(x) =

∑

i∈It
αiK(xi,x), whereIt is some subset of

1, . . . , (t-1) andxi is the example observed by the algorithm on roundi. As stated above,
It is called the active set, and we say thatxi is activeon roundt if i ∈ It.

Perhaps the most well known online algorithm for binary classification is the Percep-
tron [7]. Stated in the form of a kernel method, the hypotheses generated by the Perceptron
take the formft(x) =

∑

i∈It
yiK(xi,x). Namely, the weight assigned to each active

example is either+1 or −1, depending on the label of that example. The Perceptron ini-
tializesI1 to be the empty set, which implicitly setsf1 to be the zero function. It then
updates its hypothesis only on rounds where a prediction mistake is made. Concretely, on
roundt, if ft(xt) 6= yt then the indext is inserted into the active set. As a consequence, the
size of the active set on roundt equals the number of prediction mistakes made on previous
rounds. A relative mistake bound can be proven for the Perceptron algorithm. The bound
holds for any sequence of instance-label pairs, and compares the number of mistakes made
by the Perceptron with the cumulative hinge-loss of any fixedhypothesisg ∈ HK , even
one defined with prior knowledge of the sequence.

Theorem 1. Let K be a Mercer kernel and let(x1, y1), . . . , (xT , yT) be a sequence of
examples such thatK(xt,xt) ≤ 1 for all t. Let g be an arbitrary function inHK and
defineˆ̀

t = `
(

g; (xt, yt)
)

. Then the number of prediction mistakes made by the Perceptron

on this sequence is bounded by,M ≤ ‖g‖2 + 2
∑T

t=1
ˆ̀
t.

The proof can be found in [3]. Although the Perceptron is guaranteed to be competitive with
any fixed hypothesisg ∈ HK , the fact that its active set can grow without a bound poses
a serious computational problem, as noted in the previous section. In fact, this problem is
common to most kernel-based online methods that do not explicitly monitor the size ofI.

As discussed above, our goal is to derive and analyze an online prediction algorithm which
resolves these problems by enforcing afixedbound on the size of the active set. Formally,
let B be a positive integer which we refer to as thebudget parameter. We would like to
devise an algorithm which enforces|It| ≤ B on every roundt. Furthermore, we would
like to prove a relative mistake bound for this algorithm analogous to the bound stated
in Thm. 1. Regretfully, this goal turns out to be impossible without making additional
assumptions. Concretely, for any kernel-based algorithm which is restricted by|It| ≤ B,
we can find an hypothesesg ∈ HK and an arbitrarily long sequence of examples such that
the algorithm makes a prediction mistake on every single round whereasg suffers no loss at
all. We show this inherent limitation by presenting a simplecounterexample which applies
to any online algorithm which uses a prediction function of the form given in Eq. (2), and
for which |It| ≤ B for all t. In our example, we choose the instance spaceX to be the set

of B+1 standard unit vectors in
�B+1 , namelyX = {ei}B+1

i=1 whereei is the vector with1
in its i’th coordinate and zeros elsewhere.K is set to be the standard dot product in

�B+1 ,
that isK(x,x′) = x · x′. Now for everyt, ft is a linear combination of at mostB vectors
from X . Since|X | = B + 1, there exists a vectorxt ∈ X which is not currently active.
Furthermore,xt is orthogonal to all of the active vectors and thereforeft(xt) = 0. Assume
without loss of generality that the online algorithm we are using predictsyt to be−1 when
ft(x) = 0. If on every round we were to present the online algorithm with the example
(xt, +1) then the online algorithm would make a prediction mistake onevery round. On
the other hand, the hypothesisḡ =

∑B+1

i=1
ei is a member ofHK and attains a hinge-loss

of 0 on every round. We have found a sequence of examples and a fixedhypothesis (which
is indeed defined by more thanB vectors fromX) that attains a cumulative loss of zero
on this sequence, while the number of mistakes made by our online algorithm equals the
number of rounds. Clearly, a theorem along the lines of Thm. 1cannot be proven.

One way to resolve this problem is to limit the set of competing hypotheses to a subset
of HK , which would naturally excludēg. In this paper, we limit the set of competitors
to hypotheses with small norms. Formally, we wish to devise an online algorithm which
is competitive with every hypothesisg ∈ HK for which ‖g‖ ≤ U , for some constantU .
Our counterexample indicates that we cannot prove a relative mistake bound withU set to√

B + 1 or greater, since that was the norm ofḡ in our counterexample. However, in this
paper we come close to this upper bound by proving that our algorithms can compete with
any hypothesis with a norm bounded by1

4

√

B/ log(B).

3 Forgetron: A Template Algorithm

In this section we present a general framework for online prediction which builds upon
the basic Perceptron algorithm. We intentionally leave some important details unspecified
in this section and defer their definition to a later section.This strategy will make our
framework general and will enable us to derive various different online algorithms from
it. Furthermore, the general framework also enables us to provide a unified analysis of all
of the algorithms presented in this paper. The pseudo-code in Fig. 1 defines the generic
skeleton of any algorithm that fits in our framework.

The online hypothesis used on roundt is defined byft(x) =
∑

i∈It
σi,t-1 yiK(xi,x),

whereσi,t-1 are weights already defined from previous rounds. The algorithm starts round
t by outputting the prediction sign(ft(xt)). It then receives the correct labelyt and modifies
the current hypothesisft only if sign(ft(xt)) 6= yt. Step (1) of the update is simply the
Perceptron update, that is, the current example is added to the active set. We denote the
resulting active set byI ′t, and the hypothesis obtained after the application of step (1) by
f ′

t, namely,f ′
t(x) = ft(x) + ytK(xt,x). Step (2) of the update is a rescaling step, where

the updated hypothesisf ′
t is multiplied by a scalarφt ∈ (0, 1). The specific choice ofφt is

provided in Sec. 4, where we derive three specific algorithmsfrom our general framework.
We usef ′′

t to denote the scaled version off ′
t. Since the hypothesis is represented as a

weighted sum of kernel functions, multiplyingf ′ byφt is achieved by adjusting the weights
of these functions, settingσi,t = φtσi,t-1. The idea behind decreasing the weights of the
active examples is to lessen the influence of older active examples on the current hypothesis.
Thus, examples that have been active for a long time can be removed from the active set
without drastically changing the current hypothesis. Finally, on step (3) the active set is
modified so that its size will not exceed the budgetB. If the current number of active
examples is less than the budgetB, then we can simply setIt+1 to beI ′t. Otherwise, the
algorithm has already reached its budget and some indexrt ∈ I ′t must be removed. As with
φt, the specifics of how to choosert are discussed in Sec. 4. In general,rt is an example
whose weight has decreased enough, such that its influence onthe hypothesis is negligible.

INPUT: Mercer kernelK(·, ·) ; budgetB > 0

INITIALIZE : I1 = ∅ ; f1 ≡ 0

For t = 1, 2, . . .
receive an instancext s.t.K(xt,xt) ≤ 1
predict sign(ft(xt))
receive correct labelyt

If ytft(xt) > 0 set It+1 = It and ∀(i ∈ It) set σi,t = σi,t−1

Else
(1) setI ′t = It ∪ {t}

// definef ′
t = ft + ytK(x, ·).

(2) chooseφt ∈ (0, 1)

set σt,t = φt and∀(i ∈ It) set σi,t = φt σi,t−1

// definef ′′
t = φtf

′
t.

(3) If |It| = B choosert ∈ It Else setrt = ε

set It+1 = I ′t \ {rt}
defineft+1 =

∑

i∈It+1
σi,tyiK(xi, ·)

Figure 1: The template Forgetron algorithm.

Although we have not fully specified the steps of our update procedure, we can already
prove a formal claim which applies to any algorithm that fits into the Forgetron framework.
At this point we need to introduce some additional notation.Let T denote the number
of examples presented to the online algorithm. For everyi, let si be the round on which
examplei was removed from the active set, orsi = ε if it was never removed. That is,si

equalsε in one of two cases: eitheri was never inserted into the active set ori ∈ IT+1.
For everysi 6= ε, the weightσi,si

is defined in Fig. 1, however, ifsi = ε thenσi,si
is not

yet defined. For completeness of our notation, we setσi,ε = 0 for all i. Finally, for everyi
such thatsi 6= ε, defineµi = 1 − yif

′′
si

(xi). On roundsi, after completing step (2) of the
update, we obtain the hypothesisf ′′

si
, and our next step is to removei from the active set.

µi indicates how wellf ′′
si

classifiesxi. It plays a central role in our analysis and motivates
one of the algorithms presented in Sec. 4. We are now ready to state a general lemma from
which we derive mistake bounds in the next section.

Lemma 1. Let (x1, y1), . . . , (xT , yT) be a sequence of examples such thatK(xt,xt) ≤ 1
for all t. Assume that this sequence is presented to the Forgetron algorithm in Fig. 1, and
let J denote the set of rounds on which it makes a prediction mistake. Letg be an arbitrary
function inHK and definề t = `

(

g; (xt, yt)
)

. If φt in step (2) of the algorithm is chosen

to be at leastmin{ ‖g‖
‖f ′

t
‖ , B− 1

2B } then,

M ≤ ‖g‖2

(

1 +
M log(B)

2B

)

+ 2
∑

t∈J

ˆ̀
t +

∑

t∈J

(2σt,st
µt + σ2

t,st
) .

The proof is omitted due to the lack of space and can be found in[3].

4 Forgetron: Derived Algorithms

In this section we derive and analyze three specific algorithms from the Forgetron template
algorithm defined in the previous section. Our goal is to prove that our algorithms are
competitive with every fixed hypothesisg ∈ HK for which ‖g‖ ≤ U , for some constant

U . Recall that in Sec. 2 we proved that there does not exist an algorithm for whichU ≥√
B + 1. We now present online algorithms for which,

U = 1

4

√

B/ log(B) . (3)

Forgetron.1 - Remove Oldest: We begin with the simplest of the three algorithms. On
step (2) of the update in Fig. 1, the Forgetron.1 algorithm setsφt to,

φt = min

{

U

‖f ′
t‖

, B− 1
2B

}

, (4)

and on step (3), on rounds where|It| = B, rt is chosen to be,

rt = min It .

We can now prove a relative mistake bound for the Forgetron.1algorithm, which holds
whenB ≥ 84.

Theorem 2. Let(x1, y1), . . . , (xT , yT) be a sequence of examples such thatK(xt,xt) ≤ 1
for all t. Assume that this sequence is presented to the Forgetron.1 algorithm, with a budget
parameter ofB ≥ 84. LetU be as defined in Eq. (3) and letg be an hypothesis inHK with
‖g‖ ≤ U . Denotingˆ̀

t = `
(

g; (xt, yt)
)

, it holds that,M ≤ 2U2 + 4
∑T

t=1
ˆ̀
t.

Proof. The definition ofφt from Eq. (4) clearly satisfies the condition onφt stated in
Lemma 1, so we get that,

M ≤ ‖g‖2

(

1 +
M log(B)

2B

)

+ 2
∑

t∈J

ˆ̀
t +

∑

t∈J

(2σt,st
µt + σ2

t,st
) . (5)

We derive the mistake bound in the theorem from the above by proving that2σt,st
µt +

σ2
t,st

≤ 15/32 for all t ∈ J and that‖g‖2 log(B)/(2B) ≤ 1/32. Starting with the first
inequality, we note that ifst = ε thenσt,st

= 0 and the inequality clearly holds, so we
focus on rounds wherest 6= ε. Sinceµt is defined to be1 − ytf

′′
st

(xt) we can use the
Cauchy-Shwartz inequality along with the assumption thatK(xt,xt) ≤ 1 to obtain the
boundµt ≤ 1 + ‖f ′′

st
‖. Sinceφt ≤ U/f ′

st
andf ′′

st
= φst

f ′
st

, it holds that‖f ′′
st
‖ ≤ U . We

thus get thatµt ≤ 1 + U and therefore,

2σt,st
µt + σ2

t,st
≤ 2σt,st

(1 + U) + σ2
t,st

. (6)

Next, we boundσt,st
. Since the oldest active example is the one removed from the ac-

tive set, then the algorithm performs exactlyB updates from the time an example is in-
serted into the active set until the time it is removed. In addition, σt,t is initialized toφt

and on each update this weight is multiplied byφi. Sinceφi ≤ B− 1
2B , we have that,

σt,st
≤ (B− 1

2B)B+1 ≤ 1/
√

B. Plugging this inequality back into Eq. (6) and using the
definition ofU from Eq. (3) we get,

2σrt,tµt + σ2
rt,t ≤ 2 + 2U√

B
+

1

B
=

2√
B

+
1

2
√

log(B)
+

1

B
.

The right-hand side of the above is monotonically decreasing in B and is smaller than
15/32 for B ≥ 84. We have thus shown that2σt,st

µt + σ2
t,st

≤ 15/32 for all t ∈ J .
Finally note that the inequality‖g‖2 log(B)/(2B) ≤ 1/32 follows directly from the fact
that‖g‖ ≤ U and the definition ofU in Eq. (3). Plugging these two inequalities into Eq. (5)
and rearranging terms gives the bound stated in the theorem.

Forgetron.2 - A Gentler Scaling Scheme: In the second algorithm we present,rt is
again chosen to be the minimal index inIt. In contrast to the previous algorithm, the
scaling parameterφt is now set to be,

max

{

φ ∈
[

0, B− 1
2B

]

: (φσrt,t−1)
2 + 2(φσrt,t−1)(1 − yrt

φf ′
t(xrt

)) ≤ 15

32

}

. (7)

In words,φt is set such that the inequality2σrt,tµrt
+ σ2

rt,t ≤ 15/32 is satisfied, while

ensuring thatφt is at mostB− 1
2B . We now briefly argue that the mistake bound of Thm. 2

still holds for this choice ofφt. To do so, we need to verify that the conditionφt ≥
min{‖g‖/‖f ′

t‖ , B− 1
2B } from Lemma 1 is still met. To distinguish between the current

choice ofφt and the value ofφt chosen by Forgetron.1, we denote the latter byφ̂. Since
the choice of̂φ clearly ensures that̂φ ≥ min{‖g‖/‖f ′

t‖ , B− 1
2B }, it is enough to show that

φt ≥ φ̂. This inequality immediately follows from the facts thatφ̂ is in the range[0, B− 1
2B],

it satisfies the inequality(φ̂ σrt,t−1)
2 + 2(φ̂σrt,t−1)(1 − yrt

φ̂f ′
t(xrt

)) ≤ 15/32, andφt is
chosen to be the maximal value among those which satisfy these constraints. In summary,
we have shown that the condition stated in Lemma 1 holds and thus the mistake bound of
Thm. 2 is still applicable by using the same line of derivation we used for Forgetron.1.

Forgetron.3 - A Smarter Removal Strategy The above two algorithms always remove
the oldest element inIt. While this removal strategy ensures that the inequality2σrt,tµrt

+
σ2

rt,t ≤ 15

32
holds, this inequality may also hold for other elements ofIt. Furthermore, the

bound on the number of mistakes from Lemma 1 decreases with the term2σrt,tµrt
+

σ2
rt,t. Our third algorithm removes the index inIt for which this term is the smallest.

Formally, for eachr ∈ It defineQ(r) = 2B− 1
2B σr,t−1µr + B− 1

B σ2
r,t−1, and letr̂ =

arg minr∈It
Q(r). In words,r̂ is the best candidate for removal had we setφt to beB− 1

2B .
Finally, if Q(r̂) ≤ 15

32
then we setφt = B− 1

2B andrt = r̂. Otherwise, we resort to the
previous algorithm and setrt = min It andφt as in Eq. (7). We conclude this section by
briefly showing how the mistake bound in Thm. 2 can be adapted to our third algorithm.
First note that the value ofφt for this algorithm cannot exceed the value assigned by the
second algorithm and therefore the condition onφt stated in Lemma 1 holds. In addition,
the definition ofrt implies that the inequality2σrt,tµrt

+ σ2
rt,t ≤ 15/32 also holds and

thus the mistake bound of Thm. 2 is also applicable here.

5 Experiments

In this section we present experimental results which demonstrate the merits of our For-
getron algorithms. For brevity, we refer to the three algorithms asF.1, F.2, andF.3. We
compare the performance of our algorithms with the method described in [2], which we
abbreviate byCKS, and with the standard kernel-based Perceptron. When theCKS algo-
rithm exceeds its budget, it removes the active example whose margin is the largest after
the removal. In the first experiment, we examine the accuracyof the different budget algo-
rithms in the presence of label noise. Recall that the numberof active examples used by
the basic Perceptron algorithm grows with each prediction mistake. Therefore, we expect
the Perceptron algorithm to require a large active set in thepresence of noise. In this exper-
iment, we chose the Gaussian kernel and used a synthetic dataset which was generated as
follows. We randomly sampled5000 positive examples from a two-dimensional Gaussian
with a mean of(1, 1) and a diagonal covariance matrix, with(0.2, 2) on its diagonal. We
sampled5000 negative examples from a Gaussian with a mean of(−1,−1) and the same
covariance matrix as before. Finally, we flipped each label with a probability of0.1, thus
introducing label noise. We then presented the data in an arbitrary order to each of the algo-
rithms. We repeated this for different values of the budget parameterB, ranging from10 to

10
1

10
2

10
3

0.2

0.25

0.3

0.35

0.4

B

av
er

ag
e

er
ro

r

F.1
F.3
CKS

10
2

0

0.1

0.2

0.3

0.4

0.5

B

av
er

ag
e

er
ro

r

F.1
F.3
CKS

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

B

av
er

ag
e

er
ro

r

F.1
F.3
CKS

Figure 2:The average error of different budget algorithms as a function of the budgetB on a syn-
thetic dataset (left), the USPS dataset (middle) and the MNIST dataset (right). The average accuracy
of the Perceptron and its budget requirements for each problem are marked by a circle.

2000. We repeated the entire experiment10 times, where in each repetition we generated a
new dataset, and averaged the results over the10 repetitions. The average error attained by
each algorithm for each choice ofB is depicted on the left-hand side of Fig. 2. For clarity
of presentation, we only depict the errors of theF.1 andF.3 algorithms, as the performance
of F.2 is rather similar to that ofF.3. Since the standard Perceptron does not take a budget
parameter, we mark its accuracy and active set size on the plot using a small circle. As
can be seen from the plot, the Forgetron algorithms clearly outperform theCKS method.
In fact, all of our algorithms achieve almost the same accuracy as the vanilla Perceptron
algorithm while requiring less than a tenth of active set size required by the Perceptron.

Our next experiment was performed with two standard datasets: the MNIST dataset, which
consists of 60,000 training examples, and the USPS dataset,with 10,000 examples. The
instances in both datasets are handwritten images of digits, thus each image corresponds
to one of the 10 digit classes. We generated126 binary problems by splitting the10 labels
into two equal-size sets in all possible ways (

(

10

5

)

/2 = 126). For each budget value, we
ran the various algorithms on all 126 binary problems and averaged the results. We chose
a fifth degree non-homogeneous polynomial kernel for the MNIST dataset and a Gaussian
kernel for the USPS dataset. The results of these experiments are summarized in the middle
and on the right-hand side of Fig. 2. Note that regardless of the specific dataset and kernel
used, the empirical results on the two datasets exhibit similar qualitative behavior. It is also
apparent that both theF.3 algorithm and theCKS method outperform theF.1 algorithm.
The relative inaccuracy of theF.1 algorithm on these dataset might be explained by the
rather aggressive scaling step it performs. Comparing the performance of theF.3 algorithm
with theCKS method, we note that the former performs better with small budgets while the
latter is slightly better with large budgets. We leave further comparisons to future research.

References
[1] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer. Online passive aggressive

algorithms.Leibniz TR2005-29. Available from http://leibniz.cs.huji.ac.il/tr/774.pdf.
[2] K. Crammer, J. Kandola, and Y. Singer. Online classification on a budget.NIPS16, 2003.
[3] O. Dekel, S. Shalev-Shwartz and Y. Singer. The Forgetron: A Kernel-Based Perceptron on a

Fixed Budget.Leibniz TR2005-34. Available from http://leibniz.cs.huji.ac.il/tr/781.pdf.
[4] C. Gentile. A new approximate maximal margin classification algorithm. JMLR, 2003.
[5] J. Kivinen, A. J. Smola, and R. C. Williamson. Online learning with kernels.IEEE TSP, 2002.
[6] Yi Li and Phil M. Long. The relaxed online maximum margin algorithm. NIPS13, 1999.
[7] F. Rosenblatt. The perceptron: A probabilistic model for information storage and organization

in the brain.Psychological Review, 65:386–407, 1958.
[8] V. N. Vapnik. Statistical Learning Theory. Wiley, 1998.
[9] J. Weston, A. Bordes, and L. Bottou. Online (and offline) on an even tighter budget.AISTATS

10, 2005.

