The Forgetron:
A Kernel-Based Perceptron on a Fixed Budget

Ofer Dekel Shai Shalev-Shwartz Yoram Singer
School of Computer Science & Engineering
The Hebrew University, Jerusalem 91904, Israel
{of erd, shai s, si nger }@s. huji.ac.il

Abstract

The Perceptron algorithm, despite its simplicity, oftemfgens well on
online classification problems. The Perceptron become=cesly effec-
tive when it is used in conjunction with kernels. Howeverpanmon dif-
ficulty encountered when implementing kernel-based ordigerithms
is the amount of memory required to store the online hypdathesich
may grow unboundedly. In this paper we describe and analy®ssvan-
frastructure for kernel-based learning with the Percepivbile adhering
to a strict limit on the number of examples that can be stok¥d.first
describe a template algorithm, called the Forgetron, féineriearning
on a fixed budget. We then provide specific algorithms andrderiuni-
fied mistake bound for all of them. To our knowledge, this is finst
online learning paradigm which, on one hand, maintaissiat limit on
the number of examples it can store and, on the other hangttains a
relative mistake bound. We also present experiments withdatasets
which underscore the merits of our approach.

1 Introduction

The introduction of the Support Vector Machine (SVM) [8] gged a widespread interest
in kernel methods as a means of solving (binary) classifingtroblems. Although SVM
was initially stated as a batch-learning technique, it ificgmtly influenced the develop-
ment of kernel methods in the online-learning setting. @mtlassification algorithms that
can incorporate kernels include the Perceptron [7], ROMMRALMA [4], NORMA [5]
and the Passive-Aggressive family of algorithms [1]. Eatthese algorithms observes
examples in a sequence of rounds, and constructs its atasisifi function incrementally
by storing a subset of the observed examples in its intereathony. The classification
function is then defined by a kernel-dependent combinatidhestored examples. This
set of stored examples is the online equivalent ofghpport setin SVMs, however in
contrast to the support it continually changes as learningnesses. In this paper, we call
this set theactive setas it includes those examples that actively define the otictassi-
fier. Typically, an example is added to the active set eveng the online algorithm makes
a prediction mistake or when its confidence in a predictioimaslequately low. A rapid
growth of the active set can lead to significant computatidifficulties. Naturally, since
computing devices have bounded memory resources, thdre danger that an online al-

gorithm would require more memory than is physically ad##a This problem becomes
especially eminent in cases where the online algorithm pdeémented as part of a special-
ized hardware system with a small memory, such as a mobéphehe or an autonomous
robot. Moreover, the growth of the active set can lead to cep@bly long running times,
as the time-complexity of each online round scales lineaitly the size of the active set.

Crammer, Kandola, and Singer [2] first addressed this prolidg describing an online
kernel-based modification of the Perceptron algorithm iictvithe active set does not ex-
ceed a predefinedudget Their algorithm removes redundant examples from the activ
set so as to make the best use of the limited memory resourestow/ Bordes and Bot-
tou [9] followed with their own online kernel machine on a lgetl Both techniques work
relatively well in practice, however they both lack a themad guarantee on prediction
accuracy. In this paper we present online kernel-basedifitas which are restricted to a
budget of active examples and for which we can give a fornahiag-theoretic analysis.
To the best of our knowledge, these are the first online dlyos with a fixed predeter-
mined budget which also entertain formal worst-case méstadunds. Some of our proofs
are omitted due to the lack of space. Detailed proofs of atheftheorems stated in this
paper can be found in [3].

This paper is organized as follows. In Sec. 2 we begin with eenfrmal presentation of
our problem and discuss some difficulties in proving mistakands for kernel-methods
on a budget. In Sec. 3 we present an algorithmic frameworkfine prediction with a
predefined budget of active examples. Then in Sec. 4 we desiveus algorithms from
this framework. We name our algorithmic framework Boggetron since its update builds
on that of the Perceptron, and since it gradually forgets@aekamples. Finally, we present
an empirical evaluation of our algorithms in Sec. 5.

2 Problem Setting

Online learning is performed in a sequence of consecutivads, where on rountthe
online algorithm observes an instancg which is drawn from some predefined instance
domainX. The algorithm predicts the binary label associated witt ifistance and is then
given the correct labe); € {—1,+1}. At this point, the algorithm may use the instance-
label pair(x;, y:) to improve its prediction mechanism. The goal of the algonitis to
correctly predict as many labels as possible.

The predictions of the online algorithm are determined bwracfion which is stored in
its internal memory and is updated from round to round. Werrtf this function as the
hypothesi®f the algorithm and denote the hypothesis used on reundf;. Our focus
in this paper is on margin based hypotheses, nanfelg a function fromX to R where
sign(f:(x:)) constitutes the actual binary prediction gife{x;)| is the confidence in this
prediction. The terny f (x) is called themarginof the prediction and is positive whenever
y and sigrif(x)) agree. We can evaluate the performance of an hypothesis are g
example(x, y) in one of two ways. First, we can check whether the hypothasikes

a prediction mistake, namely determineyif= sign(f(x)). Throughout this paper, we
use M to denote the number of prediction mistakes made by an oalgerithm on a

sequence of examplés;, y1),. .., (xr,yr). The second way to evaluate the predictions
of an hypothesis is by using tlenge-losgunction, defined by,
. _ 0 if yf(x) =1
((f; (xy) = { 1—yf(x) otherwise ' @)

The hinge-loss penalizes an hypothesis for any margin kessit Additionally, if y #
sign(f(x)) then’(f, (x,y)) > 1 and therefore theumulative hinge-lossuffered over a
sequence of examples upper boundsThe algorithms discussed in this paper use kernel-
based hypotheses that are defined with respect to a kernatop& : X’ x X — R which

adheres to Mercer’s positivity conditions [8]. A kernelskd hypothesis takes the form,

k
f(x) = Z%‘K(Xux)) (2)
=1
wherexy, ..., x; are members ot andaq, ..., are real weights. To facilitate the

derivation of our algorithms and their analysis, we asseaareproducing kernel Hilbert
space (RKHS) withK in the standard way common to all kernel methods. Formally,
let Hx be the closure of the set of all hypotheses of the form give&dn (2). For

any two functions,f(x) = ZleaiK(xi,x) andg(x) = Z;ZlﬁjK(zj,x), define
the inner product between them to k¢, g) = S| 3", 03K (x;,2;). This inner-
product naturally induces a norm defined ||| = (f, f)/? and a metrid|f — g|| =

((f, f) = 2(f,9) + (g,9))"/%. These definitions play an important role in the analysis of
our algorithms. Online kernel methods typically restriwmselves to hypotheses that are
defined by some subset of the examples observed on previendsoThat is, the hypothe-
sis used on rountltakes the formf;(x) = Zielt a; K (x;,x), wherel, is some subset of

1,...,(t-1) andx; is the example observed by the algorithm on roinds stated above,
1, is called the active set, and we say tRais activeon round if ¢ € I,.

Perhaps the most well known online algorithm for binary sifésation is the Percep-
tron [7]. Stated in the form of a kernel method, the hypoteegmerated by the Perceptron
take the formf;(x) = > .., v:K(x;,x). Namely, the weight assigned to each active
example is eithes-1 or —1, Jepending on the label of that example. The Perceptron ini-
tializes I; to be the empty set, which implicitly sef§ to be the zero function. It then
updates its hypothesis only on rounds where a predictiotak@ss made. Concretely, on
roundt, if f:(x:) # y: then the index is inserted into the active set. As a consequence, the
size of the active set on roun@quals the number of prediction mistakes made on previous
rounds. A relative mistake bound can be proven for the Pénmeplgorithm. The bound
holds for any sequence of instance-label pairs, and corapla@aumber of mistakes made
by the Perceptron with the cumulative hinge-loss of any fixgpothesisy € Hy, even

one defined with prior knowledge of the sequence.

Theorem 1. Let K be a Mercer kernel and letxy,41), . - ., (x7, yr) be a sequence of
examples such thak (x¢,x;) < 1 for all t. Letg be an arbitrary function inHx and

definel, = é(g; (x¢, yt)). Then the number of prediction mistakes made by the Peareptr
on this sequence is bounded BY, < ||g[|2 +2 3/, 4;.

The proof can be found in [3]. Although the Perceptron is gntged to be competitive with
any fixed hypothesig € Hx, the fact that its active set can grow without a bound poses
a serious computational problem, as noted in the previautsse In fact, this problem is
common to most kernel-based online methods that do notakplinonitor the size of .

As discussed above, our goal is to derive and analyze aneopiadiction algorithm which
resolves these problems by enforcinfip@dbound on the size of the active set. Formally,
let B be a positive integer which we refer to as thalget parameterWe would like to
devise an algorithm which enforcég| < B on every round. Furthermore, we would
like to prove a relative mistake bound for this algorithm lagaus to the bound stated
in Thm. 1. Regretfully, this goal turns out to be impossiblighaut making additional
assumptions. Concretely, for any kernel-based algorittmchwis restricted byl;| < B,
we can find an hypothesess H x and an arbitrarily long sequence of examples such that
the algorithm makes a prediction mistake on every singladauhereag suffers no loss at
all. We show this inherent limitation by presenting a simgenterexample which applies
to any online algorithm which uses a prediction functionta form given in Eqg. (2), and
for which |I;| < B for all t. In our example, we choose the instance sp¥de be the set

of B+ 1 standard unit vectors iR°+*, namelyX’ = {e;} 24! wheree; is the vector withl

in its ’th coordinate and zeros elsewhefé.is set to be the standard dot producRf+!,
that isK (x,x’) = x - x’. Now for everyt, f; is a linear combination of at mo& vectors
from X. Since|X| = B + 1, there exists a vectot, € X which is not currently active.
Furthermorex, is orthogonal to all of the active vectors and thereffife;) = 0. Assume
without loss of generality that the online algorithm we aseng predicts;; to be—1 when
fi(x) = 0. If on every round we were to present the online algorithnhwlie example

(x¢, +1) then the online algorithm would make a prediction mistakeseery round. On

the other hand, the hypothegis= Zf:’;l e; is a member off i and attains a hinge-loss

of 0 on every round. We have found a sequence of examples and dfipethesis (which
is indeed defined by more thds vectors fromX) that attains a cumulative loss of zero
on this sequence, while the number of mistakes made by oineoalgorithm equals the
number of rounds. Clearly, a theorem along the lines of Thoarihot be proven.

One way to resolve this problem is to limit the set of compgptiypotheses to a subset
of Hx, which would naturally excludg. In this paper, we limit the set of competitors
to hypotheses with small norms. Formally, we wish to devis@aline algorithm which
is competitive with every hypothesise Hy for which ||g|| < U, for some constart.
Our counterexample indicates that we cannot prove a relatigtake bound witly set to

v B + 1 or greater, since that was the normgoih our counterexample. However, in this
paper we come close to this upper bound by proving that owrithgns can compete with

any hypothesis with a norm bounded by/B/ log(B).

3 Forgetron: A Template Algorithm

In this section we present a general framework for onlinaigt®n which builds upon

the basic Perceptron algorithm. We intentionally leavesémportant details unspecified
in this section and defer their definition to a later sectidrhis strategy will make our

framework general and will enable us to derive various diifé online algorithms from

it. Furthermore, the general framework also enables usaaige a unified analysis of all

of the algorithms presented in this paper. The pseudo-coééi 1 defines the generic
skeleton of any algorithm that fits in our framework.

The online hypothesis used on rounds defined byf;(x) = Zieh oi-1 YK (%4, %),
whereo; ., are weights already defined from previous rounds. The alguarstarts round

t by outputting the prediction sidifi:(x:)). It then receives the correct labgland modifies
the current hypothesig only if sign(f:(x:)) # y:. Step (1) of the update is simply the
Perceptron update, that is, the current example is adddtktadtive set. We denote the
resulting active set by/, and the hypothesis obtained after the application of st@y

fi, namely,f{(x) = f:(x) + y: K (x¢,x). Step (2) of the update is a rescaling step, where
the updated hypothesjs is multiplied by a scalag, € (0, 1). The specific choice af, is
provided in Sec. 4, where we derive three specific algoritiioma our general framework.
We usef/’ to denote the scaled version ¢f. Since the hypothesis is represented as a
weighted sum of kernel functions, multiplyirfg by ¢, is achieved by adjusting the weights
of these functions, setting; ; = ¢:0;+.1. The idea behind decreasing the weights of the
active examplesis to lessen the influence of older activeples on the current hypothesis.
Thus, examples that have been active for a long time can beweghfrom the active set
without drastically changing the current hypothesis. Bnan step (3) the active set is
modified so that its size will not exceed the buddgt If the current number of active
examples is less than the buddgtthen we can simply sd}; to be]. Otherwise, the
algorithm has already reached its budget and some index; must be removed. As with
¢¢, the specifics of how to choose are discussed in Sec. 4. In generalis an example
whose weight has decreased enough, such that its influertbe bpothesis is negligible.

INPUT: Mercer kernelK (-, -) ; budgetB > 0
INITIALIZE: I; =0 ; fi=0
For t=1,2,...

receive an instance; s.t. K (x¢,x;) < 1

predict sigri f;(x;))
receive correct labe};
If yefe(xe) >0 setl 1 =1, and V(i€ ;) seto;: =01

Else

(1) setl] = I; U {t}
I definef! = f; + 1, K (x,-).

(2) chooseg; € (0,1)
setoy, = ¢, andv(i € I;) seto; = ¢pr 0511
Il definef! = ¢. f].

3) If |I;| = B chooser; € I; Elsesetr, =¢
set Iy1 = I\ {r:}

definefii1 = 3 cy,,, oiayiK (i,)

Figure 1: The template Forgetron algorithm.

Although we have not fully specified the steps of our update@dure, we can already
prove a formal claim which applies to any algorithm that fit®ithe Forgetron framework.
At this point we need to introduce some additional notatibwet 7" denote the number
of examples presented to the online algorithm. For evgelst s; be the round on which
examplei was removed from the active set, gr= ¢ if it was never removed. That is;
equalse in one of two cases: eithérwas never inserted into the active setiof I 1.
For everys; # ¢, the weighto; ,, is defined in Fig. 1, however, §; = ¢ theno; , is not
yet defined. For completeness of our notation, werset= 0 for all i. Finally, for everyi
such thats; # e, definep; = 1 — y; f (x;). On rounds;, after completing step (2) of the
update, we obtain the hypothegi$, and our next step is to removdrom the active set.
i indicates how wellf ! classifiex;. It plays a central role in our analysis and motivates
one of the algorithms presented in Sec. 4. We are now readgt®ageneral lemma from
which we derive mistake bounds in the next section.

Lemmal. Let(x1,41),..., (X7, yr) be a sequence of examples such #higk,, x;) < 1
for all £. Assume that this sequence is presented to the Forgetramithlion in Fig. 1, and
let J denote the set of rounds on which it makes a prediction nastadtg be an arbitrary

function inHx and defing/, = £(g; (xt,yt)). If ¢, in step (2) of the algorithm is chosen

to be at leastnin{ ””J?”” , B~25} then,

M1
M < |g||2<1+i) +23 0+ > Qo+t -

teJ teJ

The proof is omitted due to the lack of space and can be foufg].in

4 Forgetron: Derived Algorithms

In this section we derive and analyze three specific algnstirom the Forgetron template
algorithm defined in the previous section. Our goal is to prthat our algorithms are
competitive with every fixed hypothesise Hx for which ||g|| < U, for some constant

U. Recall that in Sec. 2 we proved that there does not existgoritiim for whichU >
v B + 1. We now present online algorithms for which,

U = 1./B/log(B) . 3)

Forgetron.1 - Remove Oldest: We begin with the simplest of the three algorithms. On
step (2) of the update in Fig. 1, the Forgetron.1 algorithta ggto,

o= min{nftn __B} ’)

and on step (3), on rounds whéig| = B, r; is chosen to be,
ry = minl; .

We can now prove a relative mistake bound for the Forgetralyarithm, which holds
whenB > 84.

Theorem 2. Let(x1,41),- .., (xr,yr) be asequence of examples such tigk;, x;) < 1
for all t. Assume that this sequence is presented to the Forgetrtgodithm, with a budget
parameter ofB > 84. LetU be as defined in Eq. (3) and lgbe an hypothe5|s ikl i with

gl < U. Denotingl; = £(g; (x:,4:)), it holds that,M < 2U2 + 45, ¢

Proof. The definition of¢, from Eq. (4) clearly satisfies the condition @n stated in
Lemma 1, so we get that,

M1
M < |g||2<1+i) +23 0+ S Qorsmtol,) . ()

teJ teJ

We derive the mistake bound in the theorem from the above byimy that2o, s, p1: +
of,, < 15/32forall ¢t € J and that||g||*log(B)/(2B) < 1/32. Starting with the first
inequality, we note that if, = ¢ theno, ,, = 0 and the inequality clearly holds, so we
focus on rounds where, # e. Sincey; is defined to bel — y; f! (x;) we can use the
Cauchy-Shwartz inequality along with the assumption #ék;,x;) < 1 to obtain the
boundy; < 14 | f.||. Sinceg, < U/f. andf! = ¢, f., ,itholdsthat|f!| < U. We
thus get thaj;; < 14 U and therefore,

20t73tﬂt + U?,st < 2Ut,8t(1 + U) + 0'252,st . (6)

Next, we boundr, ;,. Since the oldest active example is the one removed fromdhe a
tive set, then the algorithm performs exacyupdates from the time an example is in-
serted into the active set until the time it is removed. Initald, o, , is initialized to ¢,
and on each update this weight is multiplied §y Since¢; < B~z5, we have that,

015, < (B~25)B*t1 < 1//B. Plugging this inequality back into Eq. (6) and using the
definition of U from Eq. (3) we get,

pmtot, < el o 2 1,1
ettt T O = TR TR VB 2./log(B

The right-hand side of the above is monotonically decrgpsinB and is smaller than
15/32 for B > 84. We have thus shown that, ,, u: + C’tz.,st < 15/32forall t € J.
Finally note that the inequalityjg||? log(B)/(2B) < 1/32 follows directly from the fact
that||g|| < U and the definition o/ in Eq. (3). Plugging these two inequalities into Eq. (5)
and rearranging terms gives the bound stated in the theorem. O

Forgetron.2 - A Gentler Scaling Scheme: In the second algorithm we present, is
again chosen to be the minimal index in In contrast to the previous algorithm, the
scaling parametes, is now set to be,

max{¢e (0.B735] & (6004-2)" + 2(005,4-1) (1 = yr 6 (x,)) < g} qG

In words, ¢, is set such that the inequali®y,, +4,, + Uzt,t < 15/32 is satisfied, while
ensuring that, is at mostB~z5 . We now briefly argue that the mistake bound of Thm. 2
still holds for this choice ofp;. To do so, we need to verify that the conditign >
min{||g||/||f/]l, B~25} from Lemma 1 is still met. To distinguish between the current
choice of¢; and the value of; chosen by Forgetron.1, we denote the lattersbySince
the choice o) clearly ensures that > min{||g||/||f/||, B~ 27 }, itis enough to show that
¢+ > ¢. This inequality immediately follows from the facts thais in the rangéo, B~ 2=],

it satisfies the inequalityp o, ;1) + 2(¢or, 1—1)(1 — yr,df}(xr,)) < 15/32, ande, is
chosen to be the maximal value among those which satisfg tt@sstraints. In summary,
we have shown that the condition stated in Lemma 1 holds argittte mistake bound of
Thm. 2 is still applicable by using the same line of derivatiee used for Forgetron.1.

Forgetron.3- A Smarter Removal Strategy The above two algorithms always remove
the oldest element ify. While this removal strategy ensures that the inequadity ;.. +
Uft,t < é—g holds, this inequality may also hold for other elementg,ofFurthermore, the

bound on the number of mistakes from Lemma 1 decreases véthetin20,., ;41,, +
o2, ;- Our third algorithm removes the index ify for which this term is the smallest.
Formally, for eachr € I; defineQ(r) = 2B~ %5 0,41, + B~ 02,_,, and leti =
argmin,cz, Q(r). In words, is the best candidate for removal had we¢eto beB~z5.
Finally, if Q(7) < é—g then we sety, = B~ 25 andr, = 7. Otherwise, we resort to the
previous algorithm and set = min I; and¢; as in Eq. (7). We conclude this section by
briefly showing how the mistake bound in Thm. 2 can be adatexit third algorithm.
First note that the value af; for this algorithm cannot exceed the value assigned by the
second algorithm and therefore the conditionggrstated in Lemma 1 holds. In addition,
the definition ofr, implies that the inequalitgo,, .-, + 02, , < 15/32 also holds and
thus the mistake bound of Thm. 2 is also applicable here.

5 Experiments

In this section we present experimental results which destnate the merits of our For-
getron algorithms. For brevity, we refer to the three alpnis asF.1, F.2, andF.3. We
compare the performance of our algorithms with the methatritleed in [2], which we
abbreviate byCK S, and with the standard kernel-based Perceptron. Whe@Hkltgalgo-
rithm exceeds its budget, it removes the active example evhtargin is the largest after
the removal. In the first experiment, we examine the accusétye different budget algo-
rithms in the presence of label noise. Recall that the nurabactive examples used by
the basic Perceptron algorithm grows with each predictisiake. Therefore, we expect
the Perceptron algorithm to require a large active set ipthsence of noise. In this exper-
iment, we chose the Gaussian kernel and used a synthetgetiathich was generated as
follows. We randomly sample&D00 positive examples from a two-dimensional Gaussian
with a mean of(1, 1) and a diagonal covariance matrix, witt.2, 2) on its diagonal. We
sampled000 negative examples from a Gaussian with a meaf-df, —1) and the same
covariance matrix as before. Finally, we flipped each lalith & probability of0.1, thus
introducing label noise. We then presented the data in atramporder to each of the algo-
rithms. We repeated this for different values of the budgeameter3, ranging froml0 to

—F.1
\ e F3
04 CKS

o
@
&
Q7
=
%
°
=

o
@

o
N
average error

average error
average error

°
2

Figure 2: The average error of different budget algorithms as a fonadf the budge on a syn-
thetic dataset (left), the USPS dataset (middle) and theSaNataset (right). The average accuracy
of the Perceptron and its budget requirements for eachgmohle marked by a circle.

2000. We repeated the entire experiméfattimes, where in each repetition we generated a
new dataset, and averaged the results ovet@hepetitions. The average error attained by
each algorithm for each choice 6fis depicted on the left-hand side of Fig. 2. For clarity
of presentation, we only depict the errors of Eh& andF.3 algorithms, as the performance

of F.2is rather similar to that of.3. Since the standard Perceptron does not take a budget
parameter, we mark its accuracy and active set size on theigilog a small circle. As

can be seen from the plot, the Forgetron algorithms cleartpexform theCK S method.

In fact, all of our algorithms achieve almost the same aecgusas the vanilla Perceptron
algorithm while requiring less than a tenth of active se¢ semuired by the Perceptron.

Our next experiment was performed with two standard datatet MNIST dataset, which
consists of 60,000 training examples, and the USPS dataibt10,000 examples. The
instances in both datasets are handwritten images of difjits each image corresponds
to one of the 10 digit classes. We generat2él binary problems by splitting th&0 labels
into two equal-size sets in all possible wa;(%oﬁ/2 = 126). For each budget value, we
ran the various algorithms on all 126 binary problems andamed the results. We chose
a fifth degree non-homogeneous polynomial kernel for the $Ndlataset and a Gaussian
kernel for the USPS dataset. The results of these expersaemsummarized in the middle
and on the right-hand side of Fig. 2. Note that regardlesB@&pecific dataset and kernel
used, the empirical results on the two datasets exhibitaimualitative behavior. Itis also
apparent that both thie.3 algorithm and theCK S method outperform th&.1 algorithm.
The relative inaccuracy of the.1 algorithm on these dataset might be explained by the
rather aggressive scaling step it performs. Comparingehfepnance of thé&.3 algorithm
with theCK Smethod, we note that the former performs better with smalbjets while the
latter is slightly better with large budgets. We leave fartbomparisons to future research.

References

[1] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, ar8inger. Online passive aggressive
algorithms.Leibniz TR2005-29. Available from http://leibniz.cs.huji.ac.illt74.pdf.

[2] K. Crammer, J. Kandola, and Y. Singer. Online classifaabn a budgetNIPS16, 2003.

[3] O. Dekel, S. Shalev-Shwartz and Y. Singer. The Forgetiikernel-Based Perceptron on a
Fixed Budget.Leibniz TR2005-34. Available from http://leibniz.cs.huji.ac.illt81.pdf.

[4] C. Gentile. A new approximate maximal margin classifimatlgorithm. JMLR, 2003.

[5] J.Kivinen, A. J. Smola, and R. C. Williamson. Online leimg with kernels.|EEE TSP 2002.

[6] YiLiand Phil M. Long. The relaxed online maximum margilgarithm. NIPS13, 1999.

[7] F. Rosenblatt. The perceptron: A probabilistic modelifdormation storage and organization
in the brain.Psychological Reviey$5:386—407, 1958.

[8] V. N. Vapnik. Statistical Learning TheoryWiley, 1998.

[9] J. Weston, A. Bordes, and L. Bottou. Online (and offline)an even tighter budgeAISTATS
10, 2005.

