Introduction to Machine Learning (67577)
Reinforcement Learning

Shai Shalev-Shwartz

School of CS and Engineering,
The Hebrew University of Jerusalem

Reinforcement Learning
1 Reinforcement Learning

2 Multi-Armed Bandit
 - ϵ-greedy exploration
 - EXP3
 - UCB

3 Markov Decision Process (MDP)
 - Value Iteration
 - Q-Learning
 - Deep-Q-Learning
 - Temporal Abstraction
Reinforcement Learning

Goal: Learn a policy, mapping from state space, S, to action space, A

Learning Process:

For $t = 1, 2, \ldots$

- Agent observes state $s_t \in S$
- Agent decides on action $a_t \in A$ based on the current policy
- Environment provides reward $r_t \in \mathbb{R}$
- Environment moves the agent to next state $s_{t+1} \in S$
Reinforcement Learning

Goal: Learn a policy, mapping from state space, S, to action space, A

Learning Process:
For $t = 1, 2, \ldots$
- Agent observes state $s_t \in S$
- Agent decides on action $a_t \in A$ based on the current policy
- Environment provides reward $r_t \in \mathbb{R}$
- Environment moves the agent to next state $s_{t+1} \in S$

Many applications, e.g.: Robotics, Playing games, Finance, Inventory management, ...
Examples

Merge into traffic:

- **Goal:** Adjust the speed of the car according to traffic
- **State** is positions and velocities of the car and the preceding car
- **Action** is acceleration/braking command
- **Reward** is composed of avoiding accidents, smooth driving, and making progress
Examples

Merge into traffic:

- **Goal:** Adjust the speed of the car according to traffic
- State is positions and velocities of the car and the preceding car
- Action is acceleration/braking command
- Reward is composed of avoiding accidents, smooth driving, and making progress

Playing Atari Game:

- https://www.youtube.com/watch?v=V1eYniJ0RnK
Average Reward and Discounted Reward

Average Reward: Given time horizon T, the average reward of following a policy π is

$$R_T(\pi) = \mathbb{E} \frac{1}{T} \sum_{t=1}^{T} r_t$$

Discounted Reward: Given $\gamma \in (0, 1)$, the discounted reward of following a policy π is

$$R_\gamma(\pi) = \mathbb{E} \sum_{t=1}^{\infty} \gamma^{t-1} r_t$$
Average Reward and Discounted Reward

Average Reward: Given time horizon T, the average reward of following a policy π is

$$R_T(\pi) = \mathbb{E} \frac{1}{T} \sum_{t=1}^{T} r_t$$

Discounted Reward: Given $\gamma \in (0, 1)$, the discounted reward of following a policy π is

$$R_\gamma(\pi) = \mathbb{E} \sum_{t=1}^{\infty} \gamma^t r_t$$
Reinforcement Learning vs. Supervised Learning

SL is a special case of RL in which s_t is the “instance”, a_t is the predicted label, $-r_t$ is the loss measuring the discrepancy between a_t and the “true” label, y_t, and s_{t+1} is chosen independent of s_t and a_t.
Reinforcement Learning vs. Supervised Learning

SL is a special case of RL in which s_t is the “instance”, a_t is the predicted label, $-r_t$ is the loss measuring the discrepancy between a_t and the “true” label, y_t, and s_{t+1} is chosen independent of s_t and a_t.

Differences:

- In SL, actions do not effect the environment, therefore we can collect training examples in advance, and only then search for a policy
- In SL, the effect of actions is local, while in RL, actions have long-term effect
- In SL we are given the correct answer, while in RL we only observe a reward
Outline

1. Reinforcement Learning

2. Multi-Armed Bandit
 - \(\epsilon \)-greedy exploration
 - EXP3
 - UCB

3. Markov Decision Process (MDP)
 - Value Iteration
 - \(Q \)-Learning
 - Deep-Q-Learning
 - Temporal Abstraction
The Multi-Armed Bandit Problem (Robbins 1952)

- **States**: The state is constant (has no effect)
The Multi-Armed Bandit Problem (Robbins 1952)

- **States:** The state is constant (has no effect)
- **Actions:** n slot machines ("arms").
The Multi-Armed Bandit Problem (Robbins 1952)

- **States**: The state is constant (has no effect).
- **Actions**: \(n \) slot machines ("arms").
- **Reward**: There exists a deterministic function \(\rho \) from \(A = [n] \) to all distributions over \([0, 1]\) s.t. for every \(t \), \(r_t \sim \rho(a_t) \).
The Multi-Armed Bandit Problem (Robbins 1952)

- **States:** The state is constant (has no effect)
- **Actions:** \(n \) slot machines ("arms").
- **Reward:** There exists a deterministic function \(\rho \) from \(A = [n] \) to all distributions over \([0, 1]\) s.t. for every \(t, r_t \sim \rho(a_t) \)
- **Denote:** \(\mu_i = \mathbb{E}[r_t|a_t = i], \ i^* = \arg\max_i \mu_i, \ \mu^* = \mu_{i^*}, \ \Delta_i = \mu^* - \mu_i \)
The Multi-Armed Bandit Problem (Robbins 1952)

- **States:** The state is constant (has no effect)
- **Actions:** \(n \) slot machines ("arms").
- **Reward:** There exists a deterministic function \(\rho \) from \(A = [n] \) to all distributions over \([0, 1]\) s.t. for every \(t \), \(r_t \sim \rho(a_t) \)
- **Denote:** \(\mu_i = \mathbb{E}[r_t | a_t = i] \), \(i^* = \text{argmax}_i \mu_i \), \(\mu^* = \mu_{i^*} \), \(\Delta_i = \mu^* - \mu_i \)
- **Regret:**
\[
\mu^* - \mathbb{E} R_T(\pi)
\]
The Exploration-Exploitation Tradeoff

How to pick the next action?

- **Exploitation**: Choose the most promising action based on your current understanding
How to pick the next action?

- **Exploitation**: Choose the most promising action based on your current understanding
- **Exploration**: Maybe there is a better arm?
Naive approach: first explore then exploit

Procedure:

- Pure exploration for the first m iterations (pick actions at random)
- Let $\hat{i} = \text{argmax}_i \hat{\mu}_i$, where $\hat{\mu}_i = \text{avg}(r_t: a_t = i)$
- Pure exploitation for the rest of the $T - m$ iterations (always pick \hat{i})

Analysis:

Claim: If m is order of $n \log(n) / \epsilon^2$ then for all i,

$$|\mu_i - \hat{\mu}_i| \leq \epsilon$$

Proof: Hoeffding + union bound

Regret:

$$\mu^* - m \bar{\mu} + (T - m) \hat{\mu}_i$$

$$\leq \mu^* - \hat{\mu}_i^* + \hat{\mu}_i^* - \bar{\mu} + m$$

$$\leq 2 \epsilon + n \log(n) / T \epsilon^2$$

For the best ϵ, the regret is order of $\left(n \log(n) / T \right)^{1/3}$
Naive approach: first explore then exploit

- Procedure:
 - Pure exploration for the first m iterations (pick actions at random)

\[
\hat{i} = \arg\max_i \hat{\mu}_i, \quad \text{where} \quad \hat{\mu}_i = \text{avg}(r_t: a_t = i)
\]

Pure exploitation for the rest of the $T - m$ iterations (always pick \hat{i})

Analysis:

Claim:

If m is order of $n \log(n)/\epsilon^2$ then for all i,

\[
|\mu_i - \hat{\mu}_i| \leq \epsilon
\]

Proof:

Hoeffding + union bound

Regret:

\[
\mu^* - m \bar{\mu}_i + (T - m) \hat{\mu}_i
\leq \mu^* - \hat{\mu}_i + \hat{\mu}_i - \bar{\mu}_i
\leq 2\epsilon + n\log(n)/T\epsilon^2
\]

For the best ϵ, the regret is order of $n\log(n)/T^{1/3}$
Naive approach: first explore then exploit

- **Procedure:**
 - Pure exploration for the first m iterations (pick actions at random)
 - Let $\hat{i} = \arg\max_i \hat{\mu}_i$, where $\hat{\mu}_i = \text{avg}(r_t : a_t = i)$
Naive approach: first explore then exploit

Procedure:
- Pure exploration for the first m iterations (pick actions at random)
- Let $\hat{i} = \arg\max_i \hat{\mu}_i$, where $\hat{\mu}_i = \text{avg}(r_t : a_t = i)$
- Pure exploitation for the rest of the $T - m$ iterations (always pick \hat{i})

Analysis:
Claim: If m is order of $\frac{n \log(n)}{\epsilon^2}$ then for all i, $|\mu_i - \hat{\mu}_i| \leq \epsilon$

Proof: Hoeffding + union bound

Regret:
$\mu_* - m\bar{\mu} + \sum_{t=0}^{T-m} \mu_{\hat{i}}_t \leq \left(\mu_* - \hat{\mu}_i + \hat{\mu}_i - \bar{\mu} \right) + m \leq 2\epsilon + \frac{n \log(n)}{T\epsilon^2}$

For the best ϵ, the regret is order of $\left(\frac{n \log(n)}{T} \right)^{1/3}$
Naive approach: first explore then exploit

- **Procedure:**
 - Pure exploration for the first m iterations (pick actions at random)
 - Let $\hat{i} = \arg\max_i \hat{\mu}_i$, where $\hat{\mu}_i = \text{avg}(r_t : a_t = i)$
 - Pure exploitation for the rest of the $T - m$ iterations (always pick \hat{i})

- **Analysis:**
Naive approach: first explore then exploit

- Procedure:
 - Pure exploration for the first m iterations (pick actions at random)
 - Let $\hat{i} = \text{argmax}_i \hat{\mu}_i$, where $\hat{\mu}_i = \text{avg}(r_t : a_t = i)$
 - Pure exploitation for the rest of the $T - m$ iterations (always pick \hat{i})

- Analysis:
 - **Claim:** If m is order of $n \log(n)/\epsilon^2$ then for all i, $|\mu_i - \hat{\mu}_i| \leq \epsilon$
Naive approach: first explore then exploit

Procedure:
- Pure exploration for the first m iterations (pick actions at random)
- Let $\hat{i} = \text{argmax}_i \hat{\mu}_i$, where $\hat{\mu}_i = \text{avg}(r_t : a_t = i)$
- Pure exploitation for the rest of the $T - m$ iterations (always pick \hat{i})

Analysis:
- **Claim:** If m is order of $n \log(n)/\epsilon^2$ then for all i, $|\mu_i - \hat{\mu}_i| \leq \epsilon$
- **Proof:** Hoeffding + union bound
Naive approach: first explore then exploit

- **Procedure:**
 - Pure exploration for the first m iterations (pick actions at random)
 - Let $\hat{i} = \arg\max_i \hat{\mu}_i$, where $\hat{\mu}_i = \text{avg}(r_t : a_t = i)$
 - Pure exploitation for the rest of the $T - m$ iterations (always pick \hat{i})

- **Analysis:**
 - **Claim:** If m is order of $n \log(n)/\epsilon^2$ then for all i, $|\mu_i - \hat{\mu}_i| \leq \epsilon$
 - **Proof:** Hoeffding + union bound

 Regret:
 $$\mu^* - \frac{m\bar{\mu} + (T - m)\mu_{\hat{i}}}{T} = (\mu^* - \mu_{\hat{i}}) + \frac{m}{T}(\mu_{\hat{i}} - \bar{\mu})$$

 $$\leq (\mu^* - \hat{\mu}_i + \hat{\mu}_i - \hat{\mu}_{\hat{i}} + \hat{\mu}_{\hat{i}} - \mu_{\hat{i}}) + \frac{m}{T} \leq 2\epsilon + \frac{n \log(n)}{T \epsilon^2}$$
Naive approach: first explore then exploit

- **Procedure:**
 - Pure exploration for the first m iterations (pick actions at random)
 - Let $\hat{i} = \arg\max_i \hat{\mu}_i$, where $\hat{\mu}_i = \text{avg}(r_t : a_t = i)$
 - Pure exploitation for the rest of the $T - m$ iterations (always pick \hat{i})

- **Analysis:**
 - **Claim:** If m is order of $n \log(n) / \epsilon^2$ then for all i, $|\mu_i - \hat{\mu}_i| \leq \epsilon$
 - **Proof:** Hoeffding + union bound
 - **Regret:**
 \[
 \mu^* - \frac{m\bar{\mu} + (T - m)\mu_{\hat{i}}}{T} = (\mu^* - \mu_{\hat{i}}) + \frac{m}{T}(\mu_{\hat{i}} - \bar{\mu})
 \]
 \[
 \leq (\mu^* - \mu_i^* + \mu_i^* - \mu_{\hat{i}} + \mu_{\hat{i}} - \mu_i) + \frac{m}{T} \leq 2\epsilon + \frac{n \log(n)}{T \epsilon^2}
 \]
 - For the best ϵ, the regret is order of $\left(\frac{n \log(n)}{T}\right)^{1/3}$
SGD with ϵ-greedy exploration

- Want to minimize $L(w) = -w^\top \mu$ over $\{w \in [0, 1]^n : \sum_i w_i = 1\}$
SGD with ϵ-greedy exploration

- Want to minimize $L(w) = -w^T\mu$ over $\{w \in [0, 1]^n : \sum_i w_i = 1\}$
- A convex objective with convex constraint — can we use Stochastic Gradient Descent?
SGD with ϵ-greedy exploration

- Want to minimize $L(w) = -w^\top \mu$ over $\{w \in [0, 1]^n : \sum_i w_i = 1\}$
- A convex objective with convex constraint — can we use Stochastic Gradient Descent?
- For every probability vector p, if we choose $i_t \sim p$ and set
 $\hat{\nabla} L(w(t)) = -r_t \frac{1}{p_{i_t}} e_{i_t}$, then

 $$\mathbb{E}[\hat{\nabla} L(w(t))] = \sum_{i=1}^{n} p_i \cdot \left(-\mathbb{E}[r_t] \frac{1}{p_i} e_i\right) = -\mu = \nabla L(w(t))$$

Problem: we need that $\mathbb{E}[\|\hat{\nabla} L(w(t))\|_2]$ will be bounded

ϵ-greedy exploration: set $p_t = (1 - \epsilon) w(t) + \epsilon \frac{1}{n}$

That is, we explore w.p. ϵ and exploit w.p. $(1 - \epsilon)$
SGD with ϵ-greedy exploration

- Want to minimize $L(w) = -w^\top \mu$ over $\{w \in [0, 1]^n : \sum_i w_i = 1\}$
- A convex objective with convex constraint — can we use Stochastic Gradient Descent?
- For every probability vector p, if we choose $i_t \sim p$ and set $\hat{\nabla} L(w^{(t)}) = -r_t \frac{1}{p_i} e_{i_t}$, then

$$E[\hat{\nabla} L(w^{(t)})] = \sum_{i=1}^n p_i \cdot \left(-E[r_t] \frac{1}{p_i} e_i \right) = -\mu = \nabla L(w^{(t)})$$

- Problem: we need that $E[\|\hat{\nabla} L(w^{(t)})\|^2]$ will be bounded
SGD with ϵ-greedy exploration

- Want to minimize $L(w) = -w^\top \mu$ over $\{w \in [0,1]^n : \sum_i w_i = 1\}$
- A convex objective with convex constraint — can we use Stochastic Gradient Descent?
- For every probability vector p, if we choose $i_t \sim p$ and set $\hat{\nabla} L(w(t)) = -r_t \frac{1}{p_i} e_{i_t}$, then
 \[
 \mathbb{E}[\hat{\nabla} L(w(t))] = \sum_{i=1}^{n} p_i \cdot \left(-\mathbb{E}[r_t] \frac{1}{p_i} e_i \right) = -\mu = \nabla L(w(t))
 \]

- Problem: we need that $\mathbb{E}[\|\hat{\nabla} L(w(t))\|^2]$ will be bounded
- ϵ-greedy exploration: set $p = (1 - \epsilon)w(t) + \epsilon 1/n$
 That is, we explore w.p. ϵ and exploit w.p. $(1 - \epsilon)$
SGD with ϵ-greedy exploration

- Want to minimize $L(w) = -w^\top \mu$ over $\{w \in [0, 1]^n : \sum_i w_i = 1\}$
- A convex objective with convex constraint — can we use Stochastic Gradient Descent?
- For every probability vector p, if we choose $i_t \sim p$ and set $\hat{\nabla} L(w(t)) = -r_t \frac{1}{p_{i_t}} e_{i_t}$, then

$$
\mathbb{E}[\hat{\nabla} L(w(t))] = \sum_{i=1}^n p_i \cdot \left(-\mathbb{E}[r_t] \frac{1}{p_i} e_i \right) = -\mu = \nabla L(w(t))
$$

- Problem: we need that $\mathbb{E}[\|\hat{\nabla} L(w(t))\|^2]$ will be bounded
- ϵ-greedy exploration: set $p = (1 - \epsilon)w(t) + \epsilon \frac{1}{n}$
 That is, we explore w.p. ϵ and exploit w.p. $(1 - \epsilon)$
- Regret analysis: it can be show that the regret is order of $\left(\frac{n}{T}\right)^{1/3}$
EXP3 (Auer, Cesa-Bianchi, Freund, Schapire)

- Same as SGD, but we pick $p = w^{(t)}$ and update using Stochastic Gradient in the Exponent
EXP3 (Auer, Cesa-Bianchi, Freund, Schapire)

- Same as SGD, but we pick $p = w^{(t)}$ and update using Stochastic Gradient in the Exponent
- Initialize: $w^{(1)} = (1/n, \ldots, 1/n)$
EXP3 (Auer, Cesa-Bianchi, Freund, Schapire)

- Same as SGD, but we pick \(p = w(t) \) and update using Stochastic Gradient in the Exponent
- Initialize: \(w^{(1)} = (1/n, \ldots, 1/n) \)
- Update: \(w_i^{(t+1)} = \frac{1}{Z_t} w_i^{(t)} \exp(-\eta \hat{\nabla} L(w^{(t)})[i]) \)
EXP3 (Auer, Cesa-Bianchi, Freund, Schapire)

- Same as SGD, but we pick $p = w(t)$ and update using Stochastic Gradient in the Exponent
- Initialize: $w^{(1)} = (1/n, \ldots, 1/n)$
- Update: $w_i^{(t+1)} = \frac{1}{Z_t} w_i^{(t)} \exp(-\eta \hat{\nabla} L(w^{(t)})[i])$
- The update makes sure that we have some exploration (we never completely zero components of w)
EXP3 (Auer, Cesa-Bianchi, Freund, Schapire)

- Same as SGD, but we pick \(p = w^{(t)} \) and update using Stochastic Gradient in the Exponent.
- Initialize: \(w^{(1)} = (1/n, \ldots, 1/n) \)
- Update: \(w_i^{(t+1)} = \frac{1}{Z_t} w_i^{(t)} \exp(-\eta \nabla L(w^{(t)}))[i] \)
- The update makes sure that we have some exploration (we never completely zero components of \(w \))
- Regret analysis: it can be show to be order of \(\left(\frac{n \log(n)}{T} \right)^{1/2} \)
EXP3 (Auer, Cesa-Bianchi, Freund, Schapire)

- Same as SGD, but we pick $p = w^{(t)}$ and update using Stochastic Gradient in the Exponent.
- Initialize: $w^{(1)} = (1/n, \ldots, 1/n)$
- Update: $w_{i}^{(t+1)} = \frac{1}{Z_t} w_{i}^{(t)} \exp(-\eta \nabla_{w} L(w^{(t)})[i])$
- The update makes sure that we have some exploration (we never completely zero components of w)
- Regret analysis: it can be show to be order of $\left(\frac{n \log(n)}{T}\right)^{1/2}$
- EXP3 stands for “Exploration-Exploitation using Exponentiated Gradient”
EXP3 (Auer, Cesa-Bianchi, Freund, Schapire)

- Same as SGD, but we pick $p = w^{(t)}$ and update using Stochastic Gradient in the Exponent
- Initialize: $w^{(1)} = (1/n, \ldots, 1/n)$
- Update: $w_{i}^{(t+1)} = \frac{1}{Z_t} w_{i}^{(t)} \exp(-\eta \hat{\nabla} L(w^{(t)})[i])$
- The update makes sure that we have some exploration (we never completely zero components of w)
- Regret analysis: it can be show to be order of $\left(\frac{n \log(n)}{T}\right)^{1/2}$
- EXP3 stands for “Exploration-Exploitation using Exponentiated Gradient”
- Remark: EXP3 works also in the adversarial setting
Upper Confidence Bound (UCB)

- Optimism in the face of uncertainty (Lai and Robbins’ 1985)

Using Hoeffding’s inequality, if we pulled arm i for $N_i(t)$ times then:

$$\mu_i \leq \hat{\mu}_i + \sqrt{\frac{2 \log(T)}{N_i(t)}} := UCB_i(t)$$

The UCB rule is to pull the arm that maximizes $UCB_i(t)$.

Regret can be shown to be bounded by

$$\log(T) \sum_{i: \Delta_i > 0} 1$$
Upper Confidence Bound (UCB)

- Optimism in the face of uncertainty (Lai and Robbins’ 1985)
- Using Hoeffding’s inequality, if we pulled arm i for $N_i(t)$ times then:

\[
\mu_i \leq \hat{\mu}_i + \sqrt{\frac{2 \log(T)}{N_i(t)}} := \text{UCB}_i(t)
\]
Upper Confidence Bound (UCB)

- Optimism in the face of uncertainty (Lai and Robbins’ 1985)
- Using Hoeffding’s inequality, if we pulled arm i for $N_i(t)$ times then:

$$\mu_i \leq \hat{\mu}_i + \sqrt{\frac{2 \log(T)}{N_i(t)}} := \text{UCB}_i(t)$$

- The UCB rule is to pull the arm that maximizes $\text{UCB}_i(t)$
Upper Confidence Bound (UCB)

- Optimism in the face of uncertainty (Lai and Robbins’ 1985)
- Using Hoeffding’s inequality, if we pulled arm i for $N_i(t)$ times then:
 \[\mu_i \leq \hat{\mu}_i + \sqrt{\frac{2 \log(T)}{N_i(t)}} := \text{UCB}_i(t) \]
- The UCB rule is to pull the arm that maximizes $\text{UCB}_i(t)$
- Regret can be shown to be bounded by $\frac{\log(T)}{T} \sum_{i: \Delta_i > 0} \frac{1}{\Delta_i}$
1. **Reinforcement Learning**

2. **Multi-Armed Bandit**
 - ϵ-greedy exploration
 - EXP3
 - UCB

3. **Markov Decision Process (MDP)**
 - Value Iteration
 - Q-Learning
 - Deep-Q-Learning
 - Temporal Abstraction
Markov Decision Process (MDP)

The Markovian Assumption:

- For every t, $s_{t+1} \sim \tau(s_t, a_t)$ where τ is a deterministic function over $S \times A$.
- For every t, r_t is a random variable over $[0, 1]$ whose distribution depends deterministically only on (s_t, a_t) and we denote its expected value by $\rho(s_t, a_t)$.
- It follows that (s_{t+1}, r_t) is conditionally independent of $(s_{t-1}, a_{t-1}), (s_{t-2}, a_{t-2}), \ldots, (s_1, a_1)$ given (s_t, a_t).
MDP — algorithms

- **Value Iteration**: Find the optimal policy when τ and ρ are known
- **Q-Learning**: Find the optimal policy when τ and ρ are not known
The optimal value function is $V^* : S \rightarrow \mathbb{R}$ s.t.

$$V^*(s) = \mathbb{E} \left[\sum_{t=1}^{\infty} \gamma^t r_t \mid s_1 = s \right]$$
The Value Function and the Q-Function

- The optimal value function is $V^* : S \to \mathbb{R}$ s.t.
 $$V^*(s) = \mathbb{E} \left[\sum_{t=1}^{\infty} \gamma^t r_t \mid s_1 = s \right]$$

- Observe (this is known as Bellman’s Equation:)
 $$V^*(s) = \max_{a \in A} \left[\rho(s, a) + \gamma \mathbb{E}_{s' \sim \tau(s,a)} V^*(s') \right]$$
The optimal value function is $V^* : S \rightarrow \mathbb{R}$ s.t.

$$V^*(s) = \mathbb{E} \left[\sum_{t=1}^{\infty} \gamma^t r_t \mid s_1 = s \right]$$

Observe (this is known as Bellman’s Equation:)

$$V^*(s) = \max_{a \in A} \left[\rho(s, a) + \gamma \mathbb{E}_{s' \sim \tau(s, a)} V^*(s') \right]$$

The objective function in the above maximization problem is called the optimal action-value function, and is denoted by

$$Q^*(s, a) = \rho(s, a) + \gamma \mathbb{E}_{s' \sim \tau(s, a)} V^*(s') .$$
The optimal value function is $V^* : S \rightarrow \mathbb{R}$ s.t.

$$V^*(s) = \mathbb{E} \left[\sum_{t=1}^{\infty} \gamma^t r_t \mid s_1 = s \right]$$

Observe (this is known as Bellman’s Equation:)

$$V^*(s) = \max_{a \in A} \left[\rho(s, a) + \gamma \mathbb{E}_{s' \sim \tau(s, a)} V^*(s') \right]$$

The objective function in the above maximization problem is called the optimal action-value function, and is denoted by

$$Q^*(s, a) = \rho(s, a) + \gamma \mathbb{E}_{s' \sim \tau(s, a)} V^*(s')$$

corollary: The optimal policy is the greedy policy w.r.t. Q^*, namely,

$$\pi^*(s) = \arg\max_a Q^*(s, a)$$
The Value Function and the Q-Function

- The optimal value function is $V^* : S \rightarrow \mathbb{R}$ s.t.

 $$V^*(s) = \mathbb{E} \left[\sum_{t=1}^{\infty} \gamma^t r_t \mid s_1 = s \right]$$

- Observe (this is known as Bellman’s Equation:)

 $$V^*(s) = \max_{a \in A} \left[\rho(s, a) + \gamma \mathbb{E}_{s' \sim \tau(s, a)} V^*(s') \right]$$

- The objective function in the above maximization problem is called the optimal action-value function, and is denoted by

 $$Q^*(s, a) = \rho(s, a) + \gamma \mathbb{E}_{s' \sim \tau(s, a)} V^*(s')$$

- Corollary: The optimal policy is the greedy policy w.r.t. Q^*, namely,

 $$\pi^*(s) = \arg\max_a Q^*(s, a)$$

- In particular, the optimal a_t is a deterministic function of s_t
Value Iteration

- Iterative algorithm for finding V^*: Start with some arbitrary V_0 and update

$$V_{t+1}(s) = \max_{a \in A} \left[\rho(s, a) + \gamma \mathbb{E}_{s' \sim \tau(s, a)} V_t(s') \right]$$
Value Iteration

- Iterative algorithm for finding V^*:
 Start with some arbitrary V_0 and update

$$V_{t+1}(s) = \max_{a \in A} \left[\rho(s, a) + \gamma \mathbb{E}_{s' \sim \tau(s, a)} V_t(s') \right]$$

- Theorem: $\|V_t - V^*\|_\infty \leq \gamma^t \|V_0 - V^*\|_\infty$
Value Iteration

- Iterative algorithm for finding V^*:
 - Start with some arbitrary V_0 and update

$$V_{t+1}(s) = \max_{a \in A} \left[\rho(s, a) + \gamma \mathbb{E}_{s' \sim \tau(s, a)} V_t(s') \right]$$

- Theorem: $\|V_t - V^*\|_\infty \leq \gamma^t \|V_0 - V^*\|_\infty$
- Proof idea:
Value Iteration

- Iterative algorithm for finding V^*:
 - Start with some arbitrary V_0 and update

\[
V_{t+1}(s) = \max_{a \in A} \left[\rho(s, a) + \gamma \mathbb{E}_{s' \sim \tau(s, a)} V_t(s') \right]
\]

- **Theorem:** $\|V_t - V^*\|_\infty \leq \gamma^t \|V_0 - V^*\|_\infty$

- **Proof idea:**
 - Define $T^* : \mathbb{R}^{|S|} \rightarrow \mathbb{R}^{|S|}$ to be the operator s.t. $V_{t+1} = T^*(V_t)$
Value Iteration

- Iterative algorithm for finding V^*:
 Start with some arbitrary V_0 and update

$$V_{t+1}(s) = \max_{a \in A} \left[\rho(s, a) + \gamma \mathbb{E}_{s' \sim \tau(s, a)} V_t(s') \right]$$

- Theorem: $\|V_t - V^*\|_\infty \leq \gamma^t \|V_0 - V^*\|_\infty$

- Proof idea:
 - Define $T^* : \mathbb{R}^{|S|} \rightarrow \mathbb{R}^{|S|}$ to be the operator s.t. $V_{t+1} = T^*(V_t)$
 - Show that T^* is a contraction mapping: for any two vector in $\mathbb{R}^{|S|}$ we have $\|T^*(u) - T^*(v)\|_\infty \leq \gamma \|u - v\|_\infty$
Value Iteration

- Iterative algorithm for finding V^*:
 Start with some arbitrary V_0 and update

 $$V_{t+1}(s) = \max_{a \in A} \left[\rho(s, a) + \gamma \mathbb{E}_{s' \sim \tau(s, a)} V_t(s') \right]$$

- **Theorem:** $\|V_t - V^*\|_\infty \leq \gamma^t \|V_0 - V^*\|_\infty$

- **Proof idea:**
 - Define $T^* : \mathbb{R}^{|S|} \rightarrow \mathbb{R}^{|S|}$ to be the operator s.t. $V_{t+1} = T^*(V_t)$
 - Show that T^* is a contraction mapping: for any two vector in $\mathbb{R}^{|S|}$ we have $\|T^*(u) - T^*(v)\|_\infty \leq \gamma \|u - v\|_\infty$
 - The proof follows from Banach’s fixed point theorem
Naive Learner

- Step 1: Estimate τ and ρ by applying purely random policy
- Step 2: Apply Value Iteration to learn the optimal policy
Bellman’s equation for the Q function:

$$Q^*(s, a) = \rho(s, a) + \gamma \mathbb{E}_{s' \sim \tau(s,a)} \max_{a'} Q^*(s', a')$$
Q-Learning

- Bellman’s equation for the Q function:

$$Q^*(s, a) = \rho(s, a) + \gamma \mathbb{E}_{s' \sim \tau(s, a)} \max_{a'} Q^*(s', a')$$

- Given (s_t, a_t, s_{t+1}, r_t), define

$$\delta_{s_t, a_t}(Q) = Q(s_t, a_t) - \left(r_t + \gamma \max_{a'} Q(s_{t+1}, a') \right)$$
Bellman’s equation for the Q function:

$$Q^*(s, a) = \rho(s, a) + \gamma \mathbb{E}_{s' \sim \tau(s, a)} \max_{a'} Q^*(s', a')$$

Given (s_t, a_t, s_{t+1}, r_t), define

$$\delta_{s_t, a_t}(Q) = Q(s_t, a_t) - \left(r_t + \gamma \max_{a'} Q(s_{t+1}, a') \right)$$

Initialize Q_1 and update

$$Q_{t+1}(s, a) = Q_t(s, a) - \eta_t \delta_{s_t, a_t}(Q_t) 1[s = s_t, a = a_t]$$
Q-Learning

- Bellman’s equation for the Q function:

 $$Q^*(s, a) = \rho(s, a) + \gamma \mathbb{E}_{s' \sim \tau(s, a)} \max_{a'} Q^*(s', a')$$

- Given (s_t, a_t, s_{t+1}, r_t), define

 $$\delta_{s_t, a_t}(Q) = Q(s_t, a_t) - \left(r_t + \gamma \max_{a'} Q(s_{t+1}, a') \right)$$

- Initialize Q_1 and update

 $$Q_{t+1}(s, a) = Q_t(s, a) - \eta_t \delta_{s_t, a_t}(Q_t) 1[s = s_t, a = a_t]$$

- The above update aims at converging to Bellman’s equation
Exploration for Q-Learning

- Q-Learning can be applied for any choice of a_t (it is an “off policy” learner)
Exploration for Q-Learning

- Q-Learning can be applied for any choice of a_t (it is an “off policy” learner)
- Speed of convergence can be improved if we balance the exploration-exploitation tradeoff (by one of the methods described previously)
The Curse of Dimensionality

- The Q function is a table of size $|S| \times |A|$.
- This size grows exponentially with the dimensions of S and A.
- The convergence of the “tabular” Q-learning (namely, maintaining Q is a table of size $|S| \times |A|$) becomes very slow.
- We describe two approaches to overcome this problem:
 - Function Approximation
 - Temporal Abstractions
Function Approximation for Q-Learning

- Maintain a parametric hypothesis class of Q functions
Function Approximation for Q-Learning

- Maintain a parametric hypothesis class of Q functions
- Rewrite δ as a function of the parameter θ:

$$
\delta_{s_t, a_t}(\theta) = Q_\theta(s_t, a_t) - \left(r_t + \gamma \max_{a'} Q_\theta(s_{t+1}, a') \right)
$$
Function Approximation for Q-Learning

- Maintain a parametric hypothesis class of Q functions
- Rewrite δ as a function of the parameter θ:

$$\delta_{s_t,a_t}(\theta) = Q_\theta(s_t,a_t) - \left(r_t + \gamma \max_{a'} Q_\theta(s_{t+1},a') \right)$$

- Since we want to minimize $\frac{1}{2} \delta_{s_t,a_t}(\theta)^2$ we take a gradient step:

$$\theta_{t+1} = \theta_t - \eta_t \delta_{s_t,a_t}(\theta_t) \nabla Q_\theta(s_t,a_t)$$
Deep-Q-Learning

- Used by DeepMind to learn to play Atari games

Let $Q^\theta : S \rightarrow R | A$ be a deep network, where we take $S \subset \mathbb{R}^d$ and assume that $|A|$ is not too large.

Exploration: ϵ-greedy

Memory replay: After executing a_t and observing r_t, s_{t+1}, we store the example (s_t, a_t, r_t, s_{t+1}) in a database. Instead of updating just based on the last example, update based on a mini-batch of random examples from the database.

Freezing Q^θ: Every C step, freeze the value of Q^θ and denote it by \hat{Q}.

Then, redefine δ to be $\delta(s_t, a_t)(\theta) = Q^\theta(s_t, a_t) - (r_t + \gamma \max_{a'} \hat{Q}(s_{t+1}, a'))$.

This has some stabilization effect on the algorithm.
Deep-Q-Learning

- Used by DeepMind to learn to play Atari games
- Let $Q_\theta : S \to \mathbb{R}^{|A|}$ be a deep network, where we take $S \subset \mathbb{R}^d$ and assume that $|A|$ is not too larger
Deep-Q-Learning

- Used by DeepMind to learn to play Atari games
- Let $Q_\theta : S \rightarrow \mathbb{R}^{|A|}$ be a deep network, where we take $S \subset \mathbb{R}^d$ and assume that $|A|$ is not too larger
- Exploration: ϵ-greedy
Deep-Q-Learning

- Used by DeepMind to learn to play Atari games
- Let $Q_\theta : S \rightarrow \mathbb{R}^{|A|}$ be a deep network, where we take $S \subset \mathbb{R}^d$ and assume that $|A|$ is not too large.
- Exploration: ϵ-greedy
- Memory replay: After executing a_t and observing r_t, s_{t+1} we store the example (s_t, a_t, r_t, s_{t+1}) in a database. Instead of updating just based on the last example, update based on a mini-batch of random examples from the database.
Deep-Q-Learning

- Used by DeepMind to learn to play Atari games
- Let $Q_\theta : S \rightarrow \mathbb{R}^{|A|}$ be a deep network, where we take $S \subset \mathbb{R}^d$ and assume that $|A|$ is not too larger
- Exploration: ϵ-greedy
- Memory replay: After executing a_t and observing r_t, s_{t+1} we store the example (s_t, a_t, r_t, s_{t+1}) in a database. Instead of updating just based on the last example, update based on a mini-batch of random examples from the database
- Freezing Q: Every C step, freeze the value of Q_θ and denote it by \hat{Q}. Then, redefine δ to be

$$
\delta_{s_t, a_t}(\theta) = Q_\theta(s_t, a_t) - \left(r_t + \gamma \max_{a'} \hat{Q}(s_{t+1}, a') \right)
$$

This has some stabilization effect on the algorithm
Intuition: Structuring a State Space

- Consider some state space $S \subset \mathbb{R}^d$
- Suppose we partition it to $S = S_1 \cup S_2 \cup \ldots \cup S_k$
- Assuming homogenous actions within each S_i, we can apply Q learning while using $[k]$ as a new state space
- One can think of Deep-Q-Learning as automatically finding the partition (the first layers of the network)
Temporal Abstraction

Decisions are often structured into sub-tasks with a broad range of time scale. E.g.:
- Task: Call a taxi
 - Step 1: finding my phone
 - Step 2: finding the number
 - Step 3: dialing the first digit
- ...
 - Step 20: commanding my finger muscle to move into the right place ...
Temporal Abstraction

- Decisions are often structured into sub-tasks with a broad range of time scale. E.g.:
 - Task: Call a taxi
 - Step 1: finding my phone
 - Step 2: finding the number
 - Step 3: dialing the first digit
 - ...
 - Step 20: commanding my finger muscle to move into the right place ...

- Options: (Sutton, Precup, Singh)
 - An option is a pair \((\pi, \beta)\) where
 - \(\pi: S \rightarrow A\) is the policy to apply while within the “option”
 - \(\beta: S \rightarrow [0, 1]\) is a stochastic termination function
Temporal Abstraction

- Decisions are often structured into sub-tasks with a broad range of time scale. E.g.:
 - Task: Call a taxi
 - Step 1: finding my phone
 - Step 2: finding the number
 - Step 3: dialing the first digit
 - ...
 - Step 20: commanding my finger muscle to move into the right place ...

- Options: (Sutton, Precup, Singh)
 - An option is a pair (π, β) where
 - $\pi : S \rightarrow A$ is the policy to apply while within the “option”
 - $\beta : S \rightarrow [0, 1]$ is a stochastic termination function
 - Instead of directly choosing actions, the agent picks an option $o_t \in O$, and this option is applied until it terminates
 - That is, we should learn a policy over options, $\mu : S \rightarrow O$
Temporal Abstraction

- Decisions are often structured into sub-tasks with a broad range of time scale. E.g.:
 - Task: Call a taxi
 - Step 1: finding my phone
 - Step 2: finding the number
 - Step 3: dialing the first digit
 - ...
 - Step 20: commanding my finger muscle to move into the right place ...

- Options: (Sutton, Precup, Singh)
 - An option is a pair \((\pi, \beta)\) where
 - \(\pi : S \rightarrow A\) is the policy to apply while within the “option”
 - \(\beta : S \rightarrow [0, 1]\) is a stochastic termination function
 - Instead of directly choosing actions, the agent picks an option \(o_t \in O\), and this option is applied until it terminates
 - That is, we should learn a policy over options, \(\mu : S \rightarrow O\)
 - We can learn \(\mu\) similarly to how we learn a vanilla policy, and the advantage is that \(mt\) may be easier to pick \(O\) than picking \(A\)
Limitations of MDPs

- The Markovian assumption is mathematically convenient but rarely holds in practice.

- **POMDP = Partially Observed MDP**: There is a hidden Markovian state, but we only observe a view that depends on it.

- Another approach is “direct policy search”, that do not necessarily rely on the Markovian assumption.
Summary

- Reinforcement Learning is a powerful and useful learning setting, but is much harder than Supervised Learning
- The Exploration-Exploitation Tradeoff
- MDP: Connecting the future rewards to current actions using a Markovian assumption
Appendix
A MDP and a deterministic policy function π induces a Markov chain over S, because $\mathbb{P}[s_{t+1} | s_t, a_t, \ldots, s_1, a_1] = \mathbb{P}[s_{t+1} | s_t]$

The stationary distribution over S is the probability vector q such that $q_s = \lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} 1[s_t = s]$

We have that $q_s = \sum_{s'} q_{s'} \mathbb{P}[s | s']$

We have $R_T(\pi) \to \sum_s q_s \rho_s$ where $\rho_s = (s, \pi(s))$

Using P to denote the matrix s.t. $P_{s,s'} = \mathbb{P}[s | s']$, we obtain that the average reward is the solution of the following Linear Program (LP):

$$\min_{q} \langle q, -\rho \rangle \text{ s.t. } q \geq 0, \langle q, 1 \rangle = 1, (P - I)q = 0$$
The Dual Problem and the Value Function

- **Primal**

 \[
 \min_{q \in \mathbb{R}^{|S|}} \langle q, -\rho \rangle \text{ s.t. } q \geq 0, \langle q, 1 \rangle = 1, (P - I)q = 0
 \]

- **Dual:** define \(A = [(P^T - I), 1] \)

 \[
 \max_{v \in \mathbb{R}^{|S|+1}} \langle v, [0, \ldots, 0, 1] \rangle \text{ s.t. } Av \leq -\rho
 \]

- **Equivalently:**

 \[
 \max_{v \in \mathbb{R}^{|S|}, \beta \in \mathbb{R}} \beta \text{ s.t. } \beta \leq -\rho + (I - P^T)v = v - [\rho + P^T v]
 \]

- **Equivalently (since at the optimum, \(\beta = \min_s [v_s - (\rho_s + (P^T v)_s)] \))**

 \[
 \max_{v \in \mathbb{R}^{|S|}} \min_s [v_s - (\rho_s + (P^T v)_s)]
 \]
Solution

- **Assumption:** rewards are ≥ 0
- **Claim:** If there’s a solution to $(I - P^\top)v = \rho$, then it is an optimal solution for which $\beta = 0$
- **Proof:** For any v, choose s s.t. v_s is minimal, then $(P^\top v)_s \geq v_s$, because the rows of P^\top are probabilities vector. Since $\rho_s \geq 0$, we have that for this s, $v_s - (\rho_s + (P^\top v)_s) \leq 0$, so $\beta \leq 0$, which concludes our proof.