Introduction to Machine Learning (67577)
Lecture 5

Shai Shalev-Shwartz

School of CS and Engineering,
The Hebrew University of Jerusalem

Nonuniform learning, MDL, SRM, Decision Trees, Nearest Neighbor
Outline

1. Minimum Description Length
2. Non-uniform learnability
3. Structural Risk Minimization
4. Decision Trees
5. Nearest Neighbor and Consistency
So far, learner expresses prior knowledge by specifying the hypothesis class \mathcal{H}.
Other Ways to Express Prior Knowledge

Occam’s Razor: “A short explanation is preferred over a longer one”

William of Occam (1287-1347)
Other Ways to Express Prior Knowledge

Occam’s Razor: “A short explanation is preferred over a longer one”

“Things that look alike must be alike”

William of Occam (1287-1347)
Outline

1. Minimum Description Length
2. Non-uniform learnability
3. Structural Risk Minimization
4. Decision Trees
5. Nearest Neighbor and Consistency
Bias to Shorter Description

- Let \mathcal{H} be a countable hypothesis class
- Let $w : \mathcal{H} \to \mathbb{R}$ be such that $\sum_{h \in \mathcal{H}} w(h) \leq 1$
- The function w reflects prior knowledge on how important $w(h)$ is
Suppose that each $h \in \mathcal{H}$ is described by some word $d(h) \in \{0, 1\}^*$

E.g.: \mathcal{H} is the class of all python programs
Example: Description Length

- Suppose that each $h \in \mathcal{H}$ is described by some word $d(h) \in \{0, 1\}^*$

 E.g.: \mathcal{H} is the class of all python programs

- Suppose that the description language is prefix-free, namely, for every $h \neq h'$, $d(h)$ is not a prefix of $d(h')$

 (Always achievable by including an “end-of-word” symbol)
Example: Description Length

- Suppose that each \(h \in \mathcal{H} \) is described by some word \(d(h) \in \{0, 1\}^* \)
 E.g.: \(\mathcal{H} \) is the class of all python programs

- Suppose that the description language is prefix-free, namely, for every \(h \neq h' \), \(d(h) \) is not a prefix of \(d(h') \)
 (Always achievable by including an “end-of-word” symbol)

- Let \(|h| \) be the length of \(d(h) \)
Example: Description Length

- Suppose that each \(h \in \mathcal{H} \) is described by some word \(d(h) \in \{0, 1\}^* \)
 E.g.: \(\mathcal{H} \) is the class of all python programs
- Suppose that the description language is **prefix-free**, namely, for every \(h \neq h' \), \(d(h) \) is not a prefix of \(d(h') \)
 (Always achievable by including an “end-of-word” symbol)
- Let \(|h| \) be the length of \(d(h) \)
- Then, set \(w(h) = 2^{-|h|} \)
Example: Description Length

- Suppose that each \(h \in \mathcal{H} \) is described by some word \(d(h) \in \{0, 1\}^* \)
 E.g.: \(\mathcal{H} \) is the class of all python programs

- Suppose that the description language is prefix-free, namely, for every \(h \neq h' \), \(d(h) \) is not a prefix of \(d(h') \)
 (Always achievable by including an “end-of-word” symbol)

- Let \(|h| \) be the length of \(d(h) \)

- Then, set \(w(h) = 2^{-|h|} \)

- Kraft’s inequality implies that \(\sum_h w(h) \leq 1 \)
Example: Description Length

- Suppose that each \(h \in \mathcal{H} \) is described by some word \(d(h) \in \{0, 1\}^* \)

 E.g.: \(\mathcal{H} \) is the class of all python programs

- Suppose that the description language is prefix-free, namely, for every \(h \neq h' \), \(d(h) \) is not a prefix of \(d(h') \)

 (Always achievable by including an “end-of-word” symbol)

- Let \(|h| \) be the length of \(d(h) \)

- Then, set \(w(h) = 2^{-|h|} \)

- Kraft’s inequality implies that \(\sum_h w(h) \leq 1 \)

 - Proof: define probability over words in \(d(\mathcal{H}) \) as follows: repeatedly toss an unbiased coin, until the sequence of outcomes is a member of \(d(\mathcal{H}) \), and then stop. Since \(d(\mathcal{H}) \) is prefix-free, this is a valid probability over \(d(\mathcal{H}) \), and the probability to get \(d(h) \) is \(w(h) \).
Theorem (Minimum Description Length (MDL) bound)

Let $w : \mathcal{H} \to \mathbb{R}$ be such that $\sum_{h \in \mathcal{H}} w(h) \leq 1$. Then, with probability of at least $1 - \delta$ over $S \sim D^m$ we have:

$$\forall h \in \mathcal{H}, \quad L_D(h) \leq L_S(h) + \sqrt{\frac{-\log(w(h)) + \log(2/\delta)}{2m}}$$

Compare to VC bound:

$$\forall h \in \mathcal{H}, \quad L_D(h) \leq L_S(h) + C\sqrt{\text{VCdim}(\mathcal{H}) + \log(2/\delta)} + \log(2m)$$
Bias to Shorter Description

Theorem (Minimum Description Length (MDL) bound)

Let \(w : \mathcal{H} \to \mathbb{R} \) be such that \(\sum_{h \in \mathcal{H}} w(h) \leq 1 \). Then, with probability of at least \(1 - \delta \) over \(S \sim D^m \) we have:

\[
\forall h \in \mathcal{H}, \quad L_D(h) \leq L_S(h) + \sqrt{\frac{-\log(w(h)) + \log(2/\delta)}{2m}}
\]

Compare to VC bound:

\[
\forall h \in \mathcal{H}, \quad L_D(h) \leq L_S(h) + C \sqrt{\frac{\text{VCdim}(\mathcal{H}) + \log(2/\delta)}{2m}}
\]
Proof

- For every h, define $\delta_h = w(h) \cdot \delta$.
Proof

- For every h, define $\delta_h = w(h) \cdot \delta$
- By Hoeffding’s bound, for every h,

$$
\mathcal{D}_m \left(\left\{ S : L_D(h) > L_S(h) + \sqrt{\frac{\log(2/\delta_h)}{2m}} \right\} \right) \leq \delta_h
$$
Proof

- For every h, define $\delta_h = w(h) \cdot \delta$
- By Hoeffding's bound, for every h,

$$D^m \left(\left\{ S : L_D(h) > L_S(h) + \sqrt{\frac{\log(2/\delta_h)}{2m}} \right\} \right) \leq \delta_h$$

- Applying the union bound,

$$D^m \left(\left\{ S : \exists h \in \mathcal{H}, L_D(h) > L_S(h) + \sqrt{\frac{\log(2/\delta_h)}{2m}} \right\} \right) = D^m \left(\bigcup_{h \in \mathcal{H}} \left\{ S : L_D(h) > L_S(h) + \sqrt{\frac{\log(2/\delta_h)}{2m}} \right\} \right) \leq \sum_{h \in \mathcal{H}} \delta_h \leq \delta.$$
Bound Minimization

- **MDL bound:** \(\forall h \in \mathcal{H}, \ L_D(h) \leq L_S(h) + \sqrt{\frac{-\log(w(h)) + \log(2/\delta)}{2m}} \)

- **VC bound:** \(\forall h \in \mathcal{H}, \ L_D(h) \leq L_S(h) + C \sqrt{\frac{\text{VCdim}(\mathcal{H}) + \log(2/\delta)}{2m}} \)

Recall that our goal is to minimize \(L_D(h) \) over \(h \in \mathcal{H} \).

Minimizing the VC bound leads to the ERM rule.

Minimizing the MDL bound leads to the MDL rule:

\(\text{MDL}(S) \in \underset{h \in \mathcal{H}}{\text{argmin}} \left[L_S(h) + \sqrt{\frac{-\log(w(h)) + \log(2/\delta)}{2m}} \right] \)

When \(w(h) = 2^{-|h|} \) we obtain

\(-\log(w(h)) = |h| \log(2) \)

Explicit tradeoff between bias (small \(L_S(h) \)) and complexity (small \(|h| \)).
Bound Minimization

- **MDL bound**: $\forall h \in \mathcal{H}, \ L_D(h) \leq L_S(h) + \sqrt{\frac{-\log(w(h)) + \log(2/\delta)}{2m}}$

- **VC bound**: $\forall h \in \mathcal{H}, \ L_D(h) \leq L_S(h) + C \sqrt{\frac{\text{VCdim}(\mathcal{H}) + \log(2/\delta)}{2m}}$

- Recall that our goal is to minimize $L_D(h)$ over $h \in \mathcal{H}$
Bound Minimization

- MDL bound: \(\forall h \in \mathcal{H}, \ L_D(h) \leq L_S(h) + \sqrt{\frac{-\log(w(h)) + \log(2/\delta)}{2m}} \)

- VC bound: \(\forall h \in \mathcal{H}, \ L_D(h) \leq L_S(h) + C \sqrt{\frac{\text{VCdim}(\mathcal{H}) + \log(2/\delta)}{2m}} \)

Recall that our goal is to minimize \(L_D(h) \) over \(h \in \mathcal{H} \)

Minimizing the VC bound leads to the ERM rule
Bound Minimization

- **MDL bound:** $\forall h \in \mathcal{H}, \quad L_D(h) \leq L_S(h) + \sqrt{-\log(w(h)) + \log(2/\delta) \over 2m}$

- **VC bound:** $\forall h \in \mathcal{H}, \quad L_D(h) \leq L_S(h) + C \sqrt{{\text{VCdim}}(\mathcal{H}) + \log(2/\delta) \over 2m}$

Recall that our goal is to minimize $L_D(h)$ over $h \in \mathcal{H}$

- Minimizing the VC bound leads to the ERM rule
- Minimizing the MDL bound leads to the MDL rule:

$$\text{MDL}(S) \in \arg\min_{h \in \mathcal{H}} \left[L_S(h) + \sqrt{-\log(w(h)) + \log(2/\delta) \over 2m} \right]$$
Bound Minimization

- MDL bound: \(\forall h \in \mathcal{H}, \ L_D(h) \leq L_S(h) + \sqrt{\frac{-\log(w(h)) + \log(2/\delta)}{2m}} \)

- VC bound: \(\forall h \in \mathcal{H}, \ L_D(h) \leq L_S(h) + C \sqrt{\frac{\text{VCdim}({\mathcal{H}}) + \log(2/\delta)}{2m}} \)

Recall that our goal is to minimize \(L_D(h) \) over \(h \in \mathcal{H} \)

Minimizing the VC bound leads to the ERM rule

Minimizing the MDL bound leads to the MDL rule:

\[
\text{MDL}(S) \in \arg\min_{h \in \mathcal{H}} \left[L_S(h) + \sqrt{\frac{-\log(w(h)) + \log(2/\delta)}{2m}} \right]
\]

When \(w(h) = 2^{-|h|} \) we obtain \(-\log(w(h)) = |h| \log(2) \)
Bound Minimization

- **MDL bound:** \(\forall h \in \mathcal{H}, \ L_D(h) \leq L_S(h) + \sqrt{\frac{-\log(w(h)) + \log(2/\delta)}{2m}} \)

- **VC bound:** \(\forall h \in \mathcal{H}, \ L_D(h) \leq L_S(h) + C \sqrt{\frac{\text{VCdim}(\mathcal{H}) + \log(2/\delta)}{2m}} \)

Recall that our goal is to minimize \(L_D(h) \) over \(h \in \mathcal{H} \)

- Minimizing the VC bound leads to the ERM rule
- Minimizing the MDL bound leads to the MDL rule:

\[
\text{MDL}(S) \in \arg\min_{h \in \mathcal{H}} \left[L_S(h) + \sqrt{\frac{-\log(w(h)) + \log(2/\delta)}{2m}} \right]
\]

- When \(w(h) = 2^{-|h|} \) we obtain \(-\log(w(h)) = |h| \log(2) \)
- Explicit tradeoff between bias (small \(L_S(h) \)) and complexity (small \(|h| \))
MDL guarantee

Theorem

For every \(h^* \in \mathcal{H} \), w.p. \(\geq 1 - \delta \) over \(S \sim D^m \) we have:

\[
L_D(MDL(S)) \leq L_D(h^*) + \sqrt{\frac{-\log(w(h^*)) + \log(2/\delta)}{2m}}
\]
Theorem

For every $h^* \in \mathcal{H}$, w.p. $\geq 1 - \delta$ over $S \sim D^m$ we have:

$$L_D(\text{MDL}(S)) \leq L_D(h^*) + \sqrt{\frac{-\log(w(h^*)) + \log(2/\delta)}{2m}}$$

- **Example:** Take \mathcal{H} to be the class of all python programs, with $|h|$ be the code length (in bits)
Theorem

For every $h^* \in \mathcal{H}$, w.p. $\geq 1 - \delta$ over $S \sim \mathcal{D}^m$ we have:

$$L_D(\text{MDL}(S)) \leq L_D(h^*) + \sqrt{-\log(w(h^*)) + \log(2/\delta)} / 2m$$

- **Example:** Take \mathcal{H} to be the class of all python programs, with $|h|$ be the code length (in bits)
- **Assume** $\exists h^* \in \mathcal{H}$ with $L_D(h^*) = 0$. Then, for every ϵ, δ, exists sample size m s.t. $\mathcal{D}^m(\{S : L_D(\text{MDL}(S)) \leq \epsilon\}) \geq 1 - \delta$
MDL guarantee

Theorem

For every $h^* \in H$, w.p. $\geq 1 - \delta$ over $S \sim D^m$ we have:

$$L_D(\text{MDL}(S)) \leq L_D(h^*) + \sqrt{-\log(w(h^*)) + \log(2/\delta)} \over 2m$$

- **Example:** Take H to be the class of all python programs, with $|h|$ be the code length (in bits)
- **Assume** $\exists h^* \in H$ with $L_D(h^*) = 0$. Then, for every ϵ, δ, exists sample size m s.t. $D^m(\{S : L_D(\text{MDL}(S)) \leq \epsilon\}) \geq 1 - \delta$
- **MDL is a Universal Learner**
MDL guarantee

Theorem

For every $h^* \in \mathcal{H}$, w.p. $\geq 1 - \delta$ over $S \sim D^m$ we have:

$$L_D(\text{MDL}(S)) \leq L_D(h^*) + \sqrt{-\log(w(h^*)) + \log(2/\delta)} \over 2m$$

- **Example:** Take \mathcal{H} to be the class of all python programs, with $|h|$ be the code length (in bits)
- **Assume** $\exists h^* \in \mathcal{H}$ with $L_D(h^*) = 0$. Then, for every ϵ, δ, exists sample size m s.t. $D^m(\{S : L_D(\text{MDL}(S)) \leq \epsilon\}) \geq 1 - \delta$
- **MDL is a Universal Learner**
Contradiction to the fundamental theorem of learning?

- Take again \mathcal{H} to be all python programs
- Note that $\text{VCdim}(\mathcal{H}) = \infty$
- The No-Free-Lunch theorem we can’t learn \mathcal{H}
- So how come we can learn \mathcal{H} using MDL???
Outline

1. Minimum Description Length
2. Non-uniform learnability
3. Structural Risk Minimization
4. Decision Trees
5. Nearest Neighbor and Consistency
Definition (Non-uniformly learnable)

\mathcal{H} is non-uniformly learnable if $\exists A$ and $m^\text{NUL}_{\mathcal{H}} : (0, 1)^2 \times \mathcal{H} \rightarrow \mathbb{N}$ s.t., $
forall \epsilon, \delta \in (0, 1), \forall h \in \mathcal{H}$, if $m \geq m^\text{NUL}_{\mathcal{H}}(\epsilon, \delta, h)$ then $\forall \mathcal{D},$

$$\mathcal{D}^m \left(\{S : L_D(A(S)) \leq L_D(h) + \epsilon \} \right) \geq 1 - \delta.$$

- Number of required examples depends on $\epsilon, \delta,$ and h

Definition (Agnostic PAC learnable)

\mathcal{H} is agnostically PAC learnable if $\exists A$ and $m_{\mathcal{H}} : (0, 1)^2 \rightarrow \mathbb{N}$ s.t. $
forall \epsilon, \delta \in (0, 1)$, if $m \geq m_{\mathcal{H}}(\epsilon, \delta)$, then $\forall \mathcal{D}$ and $\forall h \in \mathcal{H}$,

$$\mathcal{D}^m \left(\{S : L_D(A(S)) \leq L_D(h) + \epsilon \} \right) \geq 1 - \delta.$$

- Number of required examples depends only on ϵ, δ
Corollary

Let \mathcal{H} be the class of all computable functions

1. \mathcal{H} is non-uniform learnable, with sample complexity,
 \[
 m_{\mathcal{H}}^{\text{NUL}}(\epsilon, \delta, h) \leq \frac{-\log(w(h)) + \log(2/\delta)}{2\epsilon^2}
 \]

2. \mathcal{H} is not PAC learnable.
Non-uniform learning vs. PAC learning

Corollary

Let \mathcal{H} be the class of all computable functions

\mathcal{H} is non-uniform learnable, with sample complexity,

$$m_{\mathcal{H}}^{NUL}(\epsilon, \delta, h) \leq \frac{-\log(w(h)) + \log(2/\delta)}{2\epsilon^2}$$

\mathcal{H} is not PAC learnable.

- We saw that the VC dimension characterizes PAC learnability
- What characterizes non-uniform learnability?
A class $\mathcal{H} \subseteq \{0, 1\}^X$ is non-uniform learnable if and only if it is a countable union of PAC learnable hypothesis classes.
Proof (Non-uniform learnable \Rightarrow countable union)

- Assume that \mathcal{H} is non-uniform learnable using A with sample complexity $m^\text{NUL}_\mathcal{H}$.
Proof (Non-uniform learnable ⇒ countable union)

- Assume that \mathcal{H} is non-uniform learnable using A with sample complexity $m^\text{NUL}_\mathcal{H}$
- For every $n \in \mathbb{N}$, let $\mathcal{H}_n = \{ h \in \mathcal{H} : m^\text{NUL}_\mathcal{H}(1/8, 1/7, h) \leq n \}$

Clearly, $\mathcal{H} = \bigcup_{n \in \mathbb{N}} \mathcal{H}_n$.

For every D s.t. $\exists h \in \mathcal{H}_n$ with $L_D(h) = 0$ we have that $D_n(\{S : L_D(A(S)) \leq 1/8\}) \geq 6/7$.

The fundamental theorem of statistical learning implies that $\text{VCdim}(\mathcal{H}_n) < \infty$, and therefore \mathcal{H}_n is agnostic PAC learnable.
Proof (Non-uniform learnable \Rightarrow countable union)

- Assume that \mathcal{H} is non-uniform learnable using A with sample complexity $m_{\mathcal{H}}^{\text{NUL}}$.
- For every $n \in \mathbb{N}$, let $\mathcal{H}_n = \{ h \in \mathcal{H} : m_{\mathcal{H}}^{\text{NUL}}(1/8, 1/7, h) \leq n \}$.
- Clearly, $\mathcal{H} = \bigcup_{n \in \mathbb{N}} \mathcal{H}_n$.

The fundamental theorem of statistical learning implies that $\text{VCdim}(\mathcal{H}_n) < \infty$, and therefore \mathcal{H}_n is agnostic PAC learnable.
Proof (Non-uniform learnable \Rightarrow countable union)

- Assume that \mathcal{H} is non-uniform learnable using A with sample complexity $m_{\mathcal{H}}^{\text{NUL}}$.
- For every $n \in \mathbb{N}$, let $\mathcal{H}_n = \{ h \in \mathcal{H} : m_{\mathcal{H}}^{\text{NUL}}(1/8, 1/7, h) \leq n \}$.
- Clearly, $\mathcal{H} = \bigcup_{n \in \mathbb{N}} \mathcal{H}_n$.
- For every \mathcal{D} s.t. $\exists h \in \mathcal{H}_n$ with $L_{\mathcal{D}}(h) = 0$ we have that $\mathcal{D}^n(\{ S : L_{\mathcal{D}}(A(S)) \leq 1/8 \}) \geq 6/7$.
Proof (Non-uniform learnable \Rightarrow countable union)

- Assume that \mathcal{H} is non-uniform learnable using A with sample complexity $m_{\mathcal{H}}^{\text{NUL}}$
- For every $n \in \mathbb{N}$, let $\mathcal{H}_n = \{ h \in \mathcal{H} : m_{\mathcal{H}}^{\text{NUL}}(1/8, 1/7, h) \leq n \}$
- Clearly, $\mathcal{H} = \bigcup_{n \in \mathbb{N}} \mathcal{H}_n$.
- For every D s.t. $\exists h \in \mathcal{H}_n$ with $L_D(h) = 0$ we have that $D^n(\{ S : L_D(A(S)) \leq 1/8 \}) \geq 6/7$
- The fundamental theorem of statistical learning implies that $\text{VCdim}(\mathcal{H}_n) < \infty$, and therefore \mathcal{H}_n is agnostic PAC learnable
Proof (Countable union \Rightarrow non-uniform learnable)

- Assume $\mathcal{H} = \bigcup_{n \in \mathbb{N}} \mathcal{H}_n$, and $\text{VCdim}(\mathcal{H}_n) = d_n < \infty$
Proof (Countable union \(\Rightarrow\) non-uniform learnable)

- Assume \(\mathcal{H} = \bigcup_{n \in \mathbb{N}} \mathcal{H}_n\), and \(\text{VCdim}(\mathcal{H}_n) = d_n < \infty\)
- Choose \(w : \mathbb{N} \rightarrow [0, 1]\) s.t. \(\sum_n w(n) \leq 1\). E.g. \(w(n) = \frac{6}{\pi^2 n^2}\)

By the fundamental theorem, for every \(n\),

\[
D_m(\{S : \exists h \in \mathcal{H}_n, L_D(h) > L_S(h) + \epsilon_n\}) \leq \delta_n.
\]

Applying the union bound over \(n\) we obtain

\[
D_m(\{S : \exists n, h \in \mathcal{H}_n, L_D(h) > L_S(h) + \epsilon_n\}) \leq \sum_n \delta_n \leq \delta.
\]

This yields a generic non-uniform learning rule.
Proof (Countable union \Rightarrow non-uniform learnable)

- Assume $\mathcal{H} = \bigcup_{n \in \mathbb{N}} \mathcal{H}_n$, and $\text{VCdim}(\mathcal{H}_n) = d_n < \infty$
- Choose $w : \mathbb{N} \to [0, 1]$ s.t. $\sum_n w(n) \leq 1$. E.g. $w(n) = \frac{6}{\pi^2 n^2}$
- Choose $\delta_n = \delta \cdot w(n)$ and $\epsilon_n = \sqrt{\frac{C(d_n + \log(1/\delta_n))}{m}}$
Proof (Countable union \Rightarrow non-uniform learnable)

- Assume $\mathcal{H} = \bigcup_{n \in \mathbb{N}} \mathcal{H}_n$, and $\text{VCdim} (\mathcal{H}_n) = d_n < \infty$
- Choose $w : \mathbb{N} \rightarrow [0, 1]$ s.t. $\sum_n w(n) \leq 1$. E.g. $w(n) = \frac{6}{\pi^2 n^2}$
- Choose $\delta_n = \delta \cdot w(n)$ and $\epsilon_n = \sqrt{C \frac{d_n + \log(1/\delta_n)}{m}}$
- By the fundamental theorem, for every n,

$$
\mathcal{D}^m (\{ S : \exists h \in \mathcal{H}_n, L_D(h) > L_S(h) + \epsilon_n \}) \leq \delta_n .
$$
Proof (Countable union ⇒ non-uniform learnable)

- Assume $\mathcal{H} = \bigcup_{n \in \mathbb{N}} \mathcal{H}_n$, and \(\text{VCdim}(\mathcal{H}_n) = d_n < \infty \)
- Choose $w : \mathbb{N} \to [0, 1]$ s.t. $\sum_n w(n) \leq 1$. E.g. $w(n) = \frac{6}{\pi^2 n^2}$
- Choose $\delta_n = \delta \cdot w(n)$ and $\epsilon_n = \sqrt{C \frac{d_n + \log(1/\delta_n)}{m}}$
- By the fundamental theorem, for every n,

\[
\mathcal{D}^m(\{S : \exists h \in \mathcal{H}_n, L_D(h) > L_S(h) + \epsilon_n\}) \leq \delta_n.
\]

- Applying the union bound over n we obtain

\[
\mathcal{D}^m(\{S : \exists n, h \in \mathcal{H}_n, L_D(h) > L_S(h) + \epsilon_n\}) \leq \sum_n \delta_n \leq \delta.
\]
Proof (Countable union \Rightarrow non-uniform learnable)

- Assume $\mathcal{H} = \bigcup_{n \in \mathbb{N}} \mathcal{H}_n$, and $\text{VCdim}(\mathcal{H}_n) = d_n < \infty$
- Choose $w : \mathbb{N} \to [0, 1]$ s.t. $\sum_n w(n) \leq 1$. E.g. $w(n) = \frac{6}{\pi^2 n^2}$
- Choose $\delta_n = \delta \cdot w(n)$ and $\epsilon_n = \sqrt{C \frac{d_n + \log(1/\delta_n)}{m}}$
- By the fundamental theorem, for every n,

$$D^m(\{S : \exists h \in \mathcal{H}_n, L_D(h) > L_S(h) + \epsilon_n\}) \leq \delta_n .$$

- Applying the union bound over n we obtain

$$D^m(\{S : \exists n, h \in \mathcal{H}_n, L_D(h) > L_S(h) + \epsilon_n\}) \leq \sum_n \delta_n \leq \delta .$$

- This yields a generic non-uniform learning rule
Structural Risk Minimization (SRM)

\[\text{SRM}(S) \in \arg\min_{h \in \mathcal{H}} \left[L_S(h) + \min_{n: h \in \mathcal{H}_n} \sqrt{C \frac{d_n - \log(w(n)) + \log(1/\delta)}{m}} \right] \]
Structural Risk Minimization (SRM)

\[
\text{SRM}(S) \in \arg\min_{h \in \mathcal{H}} \left[L_S(h) + \min_{n: h \in \mathcal{H}_n} \sqrt{C \frac{d_n - \log(w(n)) + \log(1/\delta)}{m}} \right]
\]

- As in the analysis of MDL, it is easy to show that for every \(h \in \mathcal{H} \),

\[
L_D(\text{SRM}(S)) \leq L_S(h) + \min_{n: h \in \mathcal{H}_n} \sqrt{C \frac{d_n - \log(w(n)) + \log(1/\delta)}{m}}
\]
Structural Risk Minimization (SRM)

\[
\text{SRM}(S) \in \arg \min_{h \in \mathcal{H}} \left[L_S(h) + \min_{n: h \in \mathcal{H}_n} \sqrt{C \frac{d_n - \log(w(n)) + \log(1/\delta)}{m}} \right]
\]

- As in the analysis of MDL, it is easy to show that for every \(h \in \mathcal{H}, \)

\[
L_D(\text{SRM}(S)) \leq L_S(h) + \min_{n: h \in \mathcal{H}_n} \sqrt{C \frac{d_n - \log(w(n)) + \log(1/\delta)}{m}}
\]

- Hence, SRM is a generic non-uniform learner with sample complexity

\[
m_{\mathcal{H}}^{\text{NUL}}(\epsilon, \delta, h) \leq \min_{n: h \in \mathcal{H}_n} C \frac{d_n - \log(w(n)) + \log(1/\delta)}{\epsilon^2}
\]
Claim: For any infinite domain set, \mathcal{X}, the class $\mathcal{H} = \{0, 1\}^\mathcal{X}$ is not a countable union of classes of finite VC-dimension.

Hence, such classes \mathcal{H} are not non-uniformly learnable.
The cost of weaker prior knowledge

- Suppose $\mathcal{H} = \bigcup_n \mathcal{H}_n$, where $\text{VCdim}(\mathcal{H}_n) = n$
- Suppose that some $h^* \in \mathcal{H}_n$ has $L_D(h^*) = 0$
- With this prior knowledge, we can apply ERM on \mathcal{H}_n, and the sample complexity is $C \frac{n + \log(1/\delta)}{\epsilon^2}$
- Without this prior knowledge, SRM will need $C \frac{n + \log(\pi^2 n^2 / 6) + \log(1/\delta)}{\epsilon^2}$ examples
- That is, we pay order of $\log(n)/\epsilon^2$ more examples for not knowing n in advanced
The cost of weaker prior knowledge

- Suppose $\mathcal{H} = \bigcup_n \mathcal{H}_n$, where $\text{VCdim}(\mathcal{H}_n) = n$
- Suppose that some $h^* \in \mathcal{H}_n$ has $L_D(h^*) = 0$
- With this prior knowledge, we can apply ERM on \mathcal{H}_n, and the sample complexity is $C \frac{n + \log(1/\delta)}{\epsilon^2}$
- Without this prior knowledge, SRM will need $C \frac{n + \log(\pi^2 n^2 / 6) + \log(1/\delta)}{\epsilon^2}$ examples
- That is, we pay order of $\log(n)/\epsilon^2$ more examples for not knowing n in advanced

SRM for model selection:
Decision Trees

- **Color?**
 - not-tasty
 - other
 - pale green to pale yellow

- **Softness?**
 - not-tasty
 - other
 - gives slightly to palm pressure
 - tasty
Claim: Consider the class of decision trees over \mathcal{X} with k leaves. Then, the VC dimension of this class is k.

Proof: A set of k instances that arrive to the different leaves can be shattered. A set of $k + 1$ instances can’t be shattered since 2 instances must arrive to the same leaf.
Suppose $\mathcal{X} = \{0, 1\}^d$ and splitting rules are according to $1_{[x_i=1]}$ for some $i \in [d]$.
Suppose $\mathcal{X} = \{0, 1\}^d$ and splitting rules are according to $1_{[x_i=1]}$ for some $i \in [d]$

Consider the class of all such decision trees over \mathcal{X}
Suppose $\mathcal{X} = \{0, 1\}^d$ and splitting rules are according to $1_{[x_i=1]}$ for some $i \in [d]$
Consider the class of all such decision trees over \mathcal{X}
Claim: This class contains $\{0, 1\}^\mathcal{X}$ and hence its VC dimension is $|\mathcal{X}| = 2^d$
Suppose $\mathcal{X} = \{0, 1\}^d$ and splitting rules are according to $1_{[x_i=1]}$ for some $i \in [d]$

Consider the class of all such decision trees over \mathcal{X}

Claim: This class contains $\{0, 1\}^{\mathcal{X}}$ and hence its VC dimension is $|\mathcal{X}| = 2^d$

But, we can bias to “small trees”
Suppose $\mathcal{X} = \{0, 1\}^d$ and splitting rules are according to $1_{[x_i=1]}$ for some $i \in [d]$

Consider the class of all such decision trees over \mathcal{X}

Claim: This class contains $\{0, 1\}^\mathcal{X}$ and hence its VC dimension is $|\mathcal{X}| = 2^d$

But, we can bias to “small trees”

A tree with n nodes can be described as $n + 1$ blocks, each of size $\log_2(d + 3)$ bits, indicating (in depth-first order)
Suppose $\mathcal{X} = \{0, 1\}^d$ and splitting rules are according to $1_{[x_i=1]}$ for some $i \in [d]$

Consider the class of all such decision trees over \mathcal{X}

Claim: This class contains $\{0, 1\}^\mathcal{X}$ and hence its VC dimension is $|\mathcal{X}| = 2^d$

But, we can bias to “small trees”

A tree with n nodes can be described as $n + 1$ blocks, each of size $\log_2(d + 3)$ bits, indicating (in depth-first order)

- An internal node of the form $1_{[x_i=1]}$ for some $i \in [d]$
Suppose $\mathcal{X} = \{0, 1\}^d$ and splitting rules are according to $1_{[x_i=1]}$ for some $i \in [d]$

Consider the class of all such decision trees over \mathcal{X}

Claim: This class contains $\{0, 1\}^\mathcal{X}$ and hence its VC dimension is $|\mathcal{X}| = 2^d$

But, we can bias to “small trees”

A tree with n nodes can be described as $n + 1$ blocks, each of size $\log_2(d + 3)$ bits, indicating (in depth-first order)

- An internal node of the form $1_{[x_i=1]}$ for some $i \in [d]$
- A leaf whose value is 1
Description Language for Decision Trees

- Suppose $\mathcal{X} = \{0, 1\}^d$ and splitting rules are according to $1_{[x_i=1]}$ for some $i \in [d]$
- Consider the class of all such decision trees over \mathcal{X}
- Claim: This class contains $\{0, 1\}^\mathcal{X}$ and hence its VC dimension is $|\mathcal{X}| = 2^d$
- But, we can bias to “small trees”
- A tree with n nodes can be described as $n + 1$ blocks, each of size $\log_2(d + 3)$ bits, indicating (in depth-first order)
 - An internal node of the form '$1_{[x_i=1]}$' for some $i \in [d]$
 - A leaf whose value is 1
 - A leaf whose value is 0

Can apply MDL learning rule: search tree with n nodes that minimizes $L_S(h) + \sqrt{(n+1) \log_2(2d+3) + \log \frac{2}{\delta}}$
Suppose $\mathcal{X} = \{0, 1\}^d$ and splitting rules are according to $1_{[x_i = 1]}$ for some $i \in [d]$.

Consider the class of all such decision trees over \mathcal{X}.

Claim: This class contains $\{0, 1\}^\mathcal{X}$ and hence its VC dimension is $|\mathcal{X}| = 2^d$.

But, we can bias to “small trees”.

A tree with n nodes can be described as $n + 1$ blocks, each of size $\log_2(d + 3)$ bits, indicating (in depth-first order)

- An internal node of the form '$1_{[x_i = 1]}$' for some $i \in [d]$
- A leaf whose value is 1
- A leaf whose value is 0
- End of the code
Suppose $\mathcal{X} = \{0, 1\}^d$ and splitting rules are according to $1_{[x_i=1]}$ for some $i \in [d]$

Consider the class of all such decision trees over \mathcal{X}

Claim: This class contains $\{0, 1\}^\mathcal{X}$ and hence its VC dimension is $|\mathcal{X}| = 2^d$

But, we can bias to “small trees”

A tree with n nodes can be described as $n + 1$ blocks, each of size $\log_2(d + 3)$ bits, indicating (in depth-first order)

- An internal node of the form $1_{[x_i=1]}$ for some $i \in [d]$
- A leaf whose value is 1
- A leaf whose value is 0
- End of the code

Can apply MDL learning rule: search tree with n nodes that minimizes

$$L_S(h) + \sqrt{(n + 1) \log_2(d + 3) + \log(2/\delta)}$$

$$2m$$
Decision Tree Algorithms

- NP hard problem ...
- Greedy approach: ‘Iterative Dichotomizer 3’
- Following the MDL principle, attempts to create a small tree with low train error
- Proposed by Ross Quinlan
ID3(S, A)

- **Input:** training set S, feature subset $A \subseteq [d]$
- **if** all examples in S are labeled by 1, return a leaf 1
- **if** all examples in S are labeled by 0, return a leaf 0
- **if** $A = \emptyset$, return a leaf whose value = majority of labels in S. **else**:
 - Let $j = \arg\max_{i \in A} \text{Gain}(S, i)$
 - **if** all examples in S have the same label
 Return a leaf whose value = majority of labels in S
 - **else**
 Let T_1 be the tree returned by $\text{ID3}((x, y) \in S : x_j = 1, A \setminus \{j\})$.
 Let T_2 be the tree returned by $\text{ID3}((x, y) \in S : x_j = 0, A \setminus \{j\})$.
 Return the tree:
Gain Measures

\[
\text{Gain}(S,i) = C(\mathbb{P}[y]) - \left(\mathbb{P}[x_i] C(\mathbb{P}[y|x_i]) + \mathbb{P}[\neg x_i] C(\mathbb{P}[y|\neg x_i]) \right).
\]

- **Train error**: \(C'(a) = \min\{a, 1 - a\} \)
- **Information gain**: \(C'(a) = -a \log(a) - (1 - a) \log(1 - a) \)
- **Gini index**: \(C'(a) = 2a(1 - a) \)
In the exercise you’ll learn about additional practical variants:

- Pruning the tree
- Random Forests
- Dealing with real valued features
Outline

1. Minimum Description Length
2. Non-uniform learnability
3. Structural Risk Minimization
4. Decision Trees
5. Nearest Neighbor and Consistency
Nearest Neighbor

“Things that look alike must be alike”

- Memorize the training set \(S = (x_1, y_1), \ldots, (x_m, y_m) \)
- Given new \(x \), find the \(k \) closest points in \(S \) and return majority vote among their labels
1-Nearest Neighbor: Voronoi Tessellation

Unlike ERM, SRM, MDL, etc., there's no
At training time: "do nothing"
At test time: search for the nearest neighbors

Shai Shalev-Shwartz (Hebrew U)
IML Lecture 5 MDL, SRM, trees, neighbors 33 / 39
1-Nearest Neighbor: Voronoi Tessellation

- Unlike ERM, SRM, MDL, etc., there’s no \mathcal{H}
- At training time: “do nothing”
- At test time: search S for the nearest neighbors
Analysis of k-NN

- $\mathcal{X} = [0, 1]^d$, $Y = \{0, 1\}$, \mathcal{D} is a distribution over $\mathcal{X} \times \mathcal{Y}$, \mathcal{D}_X is the marginal distribution over \mathcal{X}, and $\eta : \mathbb{R}^d \rightarrow \mathbb{R}$ is the conditional probability over the labels, that is, $\eta(x) = \mathbb{P}[y = 1|x]$.

Recall: the Bayes optimal rule (that is, the hypothesis that minimizes $L_D(h)$ over all functions) is $h^\star(x) = 1[\eta(x) > 1/2]$.

Prior knowledge: η is c-Lipschitz. Namely, for all $x, x' \in \mathcal{X}$, $|\eta(x) - \eta(x')| \leq c \|x - x'\|$.

Theorem: Let h_S be the k-NN rule, then,

$$
E_{S \sim \mathcal{D}}[L_D(h_S)] \leq \left(1 + \sqrt{8/k}\right) L_D(h^\star) + \left(6c\sqrt{d} + k\right) m - \frac{1}{d+1}.
$$
Analysis of k-NN

- $\mathcal{X} = [0, 1]^d$, $Y = \{0, 1\}$, \mathcal{D} is a distribution over $\mathcal{X} \times \mathcal{Y}$, $\mathcal{D}_\mathcal{X}$ is the marginal distribution over \mathcal{X}, and $\eta : \mathbb{R}^d \to \mathbb{R}$ is the conditional probability over the labels, that is, $\eta(x) = \mathbb{P}[y = 1 | x]$.

- Recall: the Bayes optimal rule (that is, the hypothesis that minimizes $L_\mathcal{D}(h)$ over all functions) is

$$h^*(x) = 1[\eta(x) > 1/2] \cdot$$
Analysis of k-NN

- $\mathcal{X} = [0, 1]^d$, $Y = \{0, 1\}$, D is a distribution over $\mathcal{X} \times \mathcal{Y}$, D_X is the marginal distribution over \mathcal{X}, and $\eta : \mathbb{R}^d \rightarrow \mathbb{R}$ is the conditional probability over the labels, that is, $\eta(x) = \mathbb{P}[y = 1|x]$.

- Recall: the Bayes optimal rule (that is, the hypothesis that minimizes $L_D(h)$ over all functions) is

$$h^*(x) = 1[\eta(x) > 1/2].$$

- Prior knowledge: η is c-Lipschitz. Namely, for all $x, x' \in \mathcal{X}$,

$$|\eta(x) - \eta(x')| \leq c \|x - x'\|$$
Analysis of k-NN

- \(\mathcal{X} = [0, 1]^d, Y = \{0, 1\} \), \(D \) is a distribution over \(\mathcal{X} \times \mathcal{Y} \), \(D_{\mathcal{X}} \) is the marginal distribution over \(\mathcal{X} \), and \(\eta : \mathbb{R}^d \to \mathbb{R} \) is the conditional probability over the labels, that is, \(\eta(x) = \mathbb{P}[y = 1|x] \).

- Recall: the Bayes optimal rule (that is, the hypothesis that minimizes \(L_D(h) \) over all functions) is

\[
h^*(x) = 1[\eta(x) > 1/2] .
\]

- Prior knowledge: \(\eta \) is \(c \)-Lipschitz. Namely, for all \(x, x' \in \mathcal{X} \), \(|\eta(x) - \eta(x')| \leq c \|x - x'\| \)

- Theorem: Let \(h_S \) be the k-NN rule, then,

\[
\mathbb{E}_{S \sim D^m}[L_D(h_S)] \leq \left(1 + \sqrt{\frac{8}{k}} \right) L_D(h^*) + \left(6c \sqrt{d} + k \right) m^{-1/(d+1)} .
\]
k-Nearest Neighbor: Bias-Complexity Tradeoff

$S =$

$h^* =$

$k = 1$

$k = 5$

$k = 12$

$k = 50$

$k = 100$

$k = 200$
Curve of Dimensionality

\[\mathbb{E}_{S \sim D^m}[L_D(h_S)] \leq \left(1 + \sqrt{\frac{8}{k'}}\right) L_D(h^*) + \left(6c \sqrt{d} + k\right) m^{-1/(d+1)}. \]

- Suppose \(L_D(h^*) = 0 \). Then, to have error \(\leq \epsilon \) we need \(m \geq (4c \sqrt{d}/\epsilon)^{d+1} \).
- Number of examples grows exponentially with the dimension
- This is not an artifact of the analysis
Curse of Dimensionality

\[\mathbb{E}_{S \sim \mathcal{D}^m}[L_{\mathcal{D}}(h_S)] \leq \left(1 + \sqrt{\frac{8}{k}}\right) L_{\mathcal{D}}(h^*) + \left(6c \sqrt{d} + k\right) m^{-1/(d+1)}. \]

- Suppose \(L_{\mathcal{D}}(h^*) = 0 \). Then, to have error \(\leq \epsilon \) we need \(m \geq (4c \sqrt{d}/\epsilon)^{d+1} \).
- Number of examples grows exponentially with the dimension
- This is not an artifact of the analysis

Theorem

For any \(c > 1 \), and every learner, there exists a distribution over \([0, 1]^d \times \{0, 1\}\), such that \(\eta(x) \) is \(c \)-Lipschitz, the Bayes error of the distribution is 0, but for sample sizes \(m \leq (c + 1)^d/2 \), the true error of the learner is greater than 1/4.
Contradicting the No-Free-Lunch?

\[
\mathbb{E}_{S \sim \mathcal{D}^m}[L_D(h_S)] \leq \left(1 + \sqrt{\frac{8}{k}}\right) L_D(h^*) + \left(6c\sqrt{d} + k\right) m^{-1/(d+1)}.
\]

- Seemingly, we learn the class of all functions over \([0, 1]^d\).
- But this class is not learnable even in the non-uniform model ...
Contradicting the No-Free-Lunch?

\[
 \mathbb{E}_{S \sim \mathcal{D}^m} [L_{\mathcal{D}}(h_S)] \leq \left(1 + \sqrt{\frac{8}{k}} \right) L_{\mathcal{D}}(h^*) + \left(6c \sqrt{d} + k \right) m^{-1/(d+1)}.
\]

- Seemingly, we learn the class of all functions over \([0, 1]^d\)
- But this class is not learnable even in the non-uniform model ...
- There’s no contradiction: The number of required examples depends on the Lipschitzness of \(\eta\) (the parameter \(c\)), which depends on \(\mathcal{D}\).
 - PAC: \(m(\epsilon, \delta)\)
 - non-uniform: \(m(\epsilon, \delta, h)\)
 - consistency: \(m(\epsilon, \delta, h, \mathcal{D})\)
Issues with Nearest Neighbor

- Need to store entire training set
 "Replace intelligence with fast memory"
- Curse of dimensionality
 We’ll later learn dimensionality reduction methods
- Computational problem of finding nearest neighbor
- What is the “correct” metric between objects?
 Success depends on Lipschitzness of η, which depends on the right metric
Expressing prior knowledge: Hypothesis class, weighting hypotheses, metric

Weaker notions of learnability:
“PAC” stronger than “non-uniform” stronger than “consistency”

Learning rules: ERM, MDL, SRM

Decision trees

Nearest Neighbor