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In previous lectures we saw examples in which active learning gives an exponential improvement in the
number of labels required for learning. In this lecture we describe the Disagreement Coefficient —a measure
of the complexity of an active learning problem proposed by Steve Hanneke in 2007. We will derive an
algorithm for the realizable case and analyze it using the disagreement coefficient. In particular, we will
show that if the disagreement coefficient is constant then it is possible to obtain exponential improvement
over passive learning. We will also describe a variant of the Agnostic Active (A2) algorithm (due to Balcan,
Beygelzimer, Langford) and show how an exponential improvement can be obtained even in the agnostic
case, as long as the accuracy is proportional to the best error rate.

1 Motivation
Recall that for the task of learning thresholds on the line we established a logarithmic improvement for
active learning using a binary search. Now, lets consider a different algorithm that achieves the same label
complexity bound but is less specific.

For simplicity, assume thatDx is uniform over [0, 1]. We start with V1 = [0, 1], which represents the initial
version space. Now we sample a random example (x1, y1) and update V2 = {a ∈ V1 : sign(x1 − a) = y1}.
That is, if y1 = 1 then now V2 = [0, x1] and otherwise V2 = [x1, 1]. Next, we sample instances until we have
x2 ∈ V2. We query the label y2 and again update V3 = {a ∈ V2 : sign(x2 − a) = y2}. We continue this
process until Vi = [ai, bi] satisfies bi − ai ≤ ε.

Lets analyze this algorithm. First, it is easy to verify that if we stop then all hypotheses in Vi has error
of at most ε (recall that we assume the data is realizable therefore a? ∈ Vi at all times). Second, whenever
we query the label we have that xi is selected randomly from Vi = [ai, bi]. Denote ∆(Vi) = bi − ai.
Whenever we query xi ∈ [ai, bi], if xi ∈ [ai + ∆(Vi)/4, bi − ∆(Vi)/4] then the size of Vi+1 satisfies
∆(Vi+1) ≤ (3/4)∆(Vi). The probability that xi ∈ [ai + ∆(Vi)/4, bi − ∆(Vi)/4] is 1/2 so the probability
that this will not happen in k consecutive trials is 2−k. For n = kr, we can rewrite ∆(Vn+1) as

∆(Vn+1) = ∆(V1)
(

∆(V2)
∆(V1)

· · · ∆(Vk+1)
∆(Vk)

)
· · ·

(
∆(Vn−k)

∆(Vn−k−1)
· · · ∆(Vn+1)

∆(Vn)

)
All the multiples above are at most 1. Additionally, for each k multiples in each parenthesis, with probability
of 1−2−k at least one multiple is at most 3/4. Therefore, with probability of at least 1−n2−k the expression
within each parenthesis is at most 3/4. It follows that with probability of at least 1− n2−k we have

∆(Vn+1) ≤ (3/4)n/k .

To make the above at most ε it suffices that n ≥ Ω(k log(1/ε)) and to make the probability of failure be at
most δ we can choose k = dlog2(n/δ)e. In summary, we have shown that with probability of at least 1− δ,
the label complexity to achieve accuracy of ε is

n = O (log(n/δ) log(1/ε)) .

The above analysis relied on the property that it is relatively easy to significantly decrease ∆(Vi) by sampling
from Vi. In the next section we describe the disagreement coefficient which characterizes when such an
approach will work.
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2 The Disagreement Coefficient
Let H be a hypothesis class. We define a pseudo-metric on H, based on the marginal distribution Dx over
instances, such that

d(h, h′) = P
x∼Dx

[h(x) 6= h′(x)] .

We define the corresponding ball of radius r around h? to be

B(h?, r) = {h ∈ H : d(h, h?) ≤ ε} .

The disagreement region of a subset of hypotheses V ⊂ H is

DIS(V ) = {x : ∃h, h′ ∈ V, h(x) 6= h′(x)}

and its mass is
∆(V ) = Dx(DIS(V )) = P[x ∈ DIS(V )] .

That is, ∆(V ) measures the probability to choose an instance x such that there are two hypotheses in V that
disagree on its label. Intuitively, for small r we expect ∆(B(h?, r)) to become smaller and smaller. The
disagreement coefficient measures how quickly ∆(B(h?, r)) grows as a function of r.

Definition 1 (Disagreement Coefficient) Let H be a hypothesis class, D be a distribution over X × {0, 1},
and Dx be the marginal distribution over X . Let h? be a minimizer of errD(h). The disagreement coefficient
is

θ
def= sup

r∈(0,1)

∆(B(h?, r))
r

.

The disagreement coefficient allows us to bound the mass of the disagreement region of a ball by its radius
since

∀r ∈ (0, 1), ∆(B(h?, r)) ≤ θ r .

2.1 Examples
Thresholds on the line: Let H be threshold functions of the form x 7→ sign(x− a) for a ∈ R and X = R.
Take two hypotheses h, h′ in B(h?, r). Denote a, a′, a? the thresholds of h, h′, h? respectively. Let a0 be
the minimal threshold such that Dx([a0, a

?]) ≤ r and similarly let a1 be the maximal threshold such that
Dx([a?, a1]) ≤ r. Clearly, both a and a′ are in [a0, a1]. It follows that ∆(B(h?, r)) ≤ 2r and therefore
θ ≤ 2.

Halfspaces: TBA

Finite classes: Let H = {h1, . . . , hk} be a finite class. We show that θ ≤ |H| and that there are classes
for which equality holds. The upper bound is derived as follows. First, for each class of the form {hi, h

?}
we have θ = 1. Second, it is easy to verify that the disagreement coefficient of H1 ∪ H2 with respect to
h? ∈ H1 ∩H2 is at most the sum of the disagreement coefficients. From this it follows that θ ≤ |H|. Finally,
an example in which θ = |H| is a class in which for all i such that hi 6= h? we have that hi(xi) 6= h?(xi) and
for all other instances hi agrees with h?. In such a case, setting r = 1/k gives the matching lower bound.
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3 An algorithm for a finite class in the realizable case
To demonstrate how the disagreement coefficient affects the performance of active learning we start with a
simple algorithm for the case of a finite H and assuming that there exists h? ∈ H with errD(h?) = 0.

Algorithm 1 ActiveLearning
Parameters: k, ε
Initialization V = H
Loop while (∆(V ) > ε)

Keep sampling instances until having k instances in DIS(V )
Query their labels
Let (x1, y1), . . . , (xk, yk) be the resulting examples
Update: V = {h ∈ V : ∀j ∈ [k], h(xj) = yj}

end while
Output: Any hypothesis from V

We now analyze the label complexity of the above algorithm.

Theorem 1 Let H be a finite hypothesis class, D be a distribution, and assume that the disagreement coef-
ficient, θ, is finite. For any δ, ε ∈ (0, 1), if Algorithm 1 is run with ε and with k = d2θ log(n|H|/δ)e, where
n = dlog2(1/ε)e, then the algorithm outputs a hypothesis with errD(h) ≤ ε and with probability of at least
1− δ will stop after at most n rounds. The label complexity is therefore

O (θ log(1/ε) (log(|H|/δ) + log log(1/ε))) .

Proof Let Vi be the version space at round i. First, if we stop then ∆(Vi) ≤ ε and this guarantees that the
error of all hypotheses in Vi is at most ε.

To bound the label complexity of the algorithm we will show that ∆(Vi+1) ≤ 1
2∆(Vi) with high proba-

bility. Let V θ
i = {h ∈ Vi : d(h, h?) > ∆(Vi)/(2θ)} be all hypotheses in Vi with a large error. We will show

that Vi+1 ⊆ Vi \ V θ
i and since Vi \ V θ

i ⊆ B(h?,∆(Vi)/(2θ)) we shall have

∆(Vi+1) ≤ ∆(B(h?,∆(Vi)/(2θ))) ≤ θ ∆(Vi)/(2θ) = ∆(Vi)/2 ,

where in the last inequality we used the definition of the disagreement coefficient.
Indeed, let Di be the conditional distribution of D given that x in DIS(Vi) and note that in the realizable

case we have
∆(Vi) errDi

(h) = errD(h) = d(h, h?) .

It follows that h ∈ V θ
i iff d(h, h?) > ∆(Vi)/(2θ) iff errDi(h) > 1/(2θ). Therefore, for h ∈ V θ

i , the
probability to choose x ∈ DIS(Vi) for which h(x) 6= h?(x) is at least 1/(2θ). Since we sample k points
from DIS(Vi) we obtain that with probability of at least 1− (1−1/(2θ))k at least one of the k points satisfies
h(x) 6= h?(x) which means that h will not be in Vi+1. Applying the union bound over all hypotheses in V θ

i

and note that V θ
i ⊆ H we obtain

P[∃h ∈ Vi+1 ∩ V θ
i ] ≤ |H| (1− 1/(2θ))k ≤ |H| exp(−k/(2θ)) .

Choosing k as in the theorem statement we get that with probability of at least 1− δ/n we have that Vi+1 ⊆
Vi \ V θ

i and as we showed before this implies ∆(Vi+1) ≤ 1
2∆(Vi). Applying a union bound over the first n

rounds of the algorithm we obtain that with probability of at least 1− δ,

∆(Vn) ≤ ∆(V1)2−n ≤ 2−n ,

which will be smaller than ε if n = dlog2(1/ε)e.
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3.1 An extension to a low VC class
It is easy to tackle the case of a hypothesis class with VC dimension of d based on the above. The idea is to
first sample m unlabeled examples. Based on Sauer lemma, the restriction ofH to these m examples is of size
at most O(md). Now, apply the analysis from previous section for finite classes w.r.t. the uniform distribution
over the sample. It gives an almost ERM for the m examples. The result follows from generalization bounds
for almost ERMs.

3.2 Query by Committee revisited
Recall that the QBC algorithm query the label if two random hypotheses from Vi give a different answer.
This is similar in spirit to sampling from the disagreement region. We left as an exercise to analyze QBC
using the concept of disagreement coefficient.

4 The A2 algorithm
In this section we describe and analyze the Agnostic Active (A2) algorithm, originally proposed by Balcan,
Beygelzimer and Langford in 2006. We give a variant of the algorithm which is easier to analyze. A more
complicated variant of the algorithm is described and analyze in Hanneke (2007).

The algorithm is similar to Algorithm 1. We sample examples and query their labels only if they fall in
the disagreement region. The major difference is that while in Algorithm 1, we throw away a hypothesis even
if it makes a single error, now we throw away a hypothesis only if we are certain that it is worse than h?.

The algorithm below relies on a function UB(S, h), which provides an upper bound on errD(h) (one that
holds with high probability), and LB(S, h), which provides a lower bound on errD(h). Such bounds can be
obtained from VC theory. For simplicity, we focus on finite hypotheses class. In that case we have:

Lemma 1 Let H be a finite hypothesis class, let D be a distribution, and let S ∼ Dm be a training set of m
examples sampled i.i.d. from D. Then, with probability of at least 1− δ we have

∀h ∈ H, |errD(h)− errS(h)| ≤
√

log(2|H|/δ)
2m

.

Based on the above lemma, we define

UB(S, h) = min

{
errS(h) +

√
log(2|H|/δ)

2m
, 1

}
; LB(S, h) = max

{
errS(h)−

√
log(2|H|/δ)

2m
, 0

}

and we clearly have that with probability of at least 1− δ

∀h ∈ H, LB(S, h) ≤ errD(h) ≤ UB(S, h)

Algorithm 2 Agnostic Active (A2)

Parameters: ν, θ, and δ (used in UB and LB)
Initialization: V1 = H ; k = d32θ2 log(2|H|/δ)e
Loop while ∆(Vi) > 8θν

Let Di be the conditional distribution D given that x ∈ DIS(Vi)
Sample k i.i.d. labeled examples from Di, denote this set by Si

Update: Vi+1 = {h ∈ Vi : LB(Si, h) ≤ minh′∈HUB(Si, h
′)}

end while
Output: Sample S ∼ D8k

i and return argminh∈Vi
errS(h)
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The following theorem shows that we can achieve a constant approximation of the best possible error
very quickly.

Theorem 2 Let H be a finite hypothesis class, D be a distribution, and assume that the disagreement coeffi-
cient, θ, is finite. Assume that ν ≥ errD(h?) for the optimal h? ∈ H. Then, if Algorithm 2 runs with ν, θ, δ,
then with probability of at least 1 − δ log(1/(8θν)) the algorithm outputs a hypothesis with errD(h) ≤ 2ν
and will query at most

O
(
θ2 log(1/(θν)) log(|H|/δ)

)
labels.

Proof First, suppose that ∆(Vi) ≤ 8θν and that h? ∈ Vi. Then, since for all h ∈ Vi we have

errD(h)− errD(h?) = ∆(Vi)(errDi(h)− errDi(h
?)) ≤ 8θν(errDi(h)− errDi(h

?)) ,

it follows that to find h ∈ Vi with errD(h) − errD(h?) ≤ ν it suffices to find h ∈ Vi with errDi(h) −
errDi(h

?) ≤ 1/(8θ). Standard generalization bounds tell us that taking an i.i.d. sample from Di of size 4k
guarantees that the ERM rule satisfies errDi(h) − errDi(h

?) ≤ 1/(8θ) with probability of at least 1 − δ.
Hence, it is left to analyze how many rounds are required to have ∆(Vi) ≤ 8θν and to verify that h? ∈ Vi at
all times.

Let n = dlog(1/(8θν))e + 1 and let δ′ = nδ. We will show that with probability of at least 1 − δ′ we
have that h? is never removed from Vi and that ∆(Vi+1) ≤ ∆(Vi)/2 on all rounds from 1 to n. This will
imply that ∆(Vn) ≤ 8θν and therefore the algorithm will stop after at most n rounds.

Based on Lemma 1 we have that for all rounds from 1 to n and all h, with probability of at least 1 − δ′

we have that

|errDi
(h)− errSi

(h)| ≤
√

log(2|H|/δ)
2k

.

In particular this means we never remove h? from Vi because no hypothesis can have a lower bound smaller
then the upper bound for h?.

Similarly to the proof of Theorem 1 let V θ
i = {h ∈ Vi : d(h, h?) > ∆(Vi)/(2θ)} be all hypotheses in Vi

with a large disagreement with h?. We will show that Vi+1 ⊆ Vi\V θ
i and since Vi\V θ

i ⊆ B(h?,∆(Vi)/(2θ))
we shall have

∆(Vi+1) ≤ ∆(B(h?,∆(Vi)/(2θ))) ≤ θ ∆(Vi)/(2θ) = ∆(Vi)/2 .

Note that for each h ∈ Vi we have that if h(x) 6= h?(x) then x ∈ DIS(Vi). Therefore,

d(h, h?) ≤ ∆(Vi) P
x∈Di

[h(x) 6= h?(x)] ≤ ∆(Vi)(errDi(h) + errDi(h
?)) ≤ ∆(Vi)errDi(h) + ν ,

where the last inequality is because ν ≥ errD(h?) ≥ ∆(Vi)errDi(h
?). Therefore, if d(h, h?) > ∆(Vi)/(2θ)

then

∆(Vi)
2θ

< d(h, h?) ≤ ∆(Vi)errDi(h) + ν

⇒ errDi(h) >
1
2θ

− ν

∆(Vi)

Using again ν/∆(Vi) ≥ errDi(h
?) we get

errDi(h) >
1
2θ

− ν

∆(Vi)
+

(
errDi(h

?)− ν

∆(Vi)

)
⇒ errDi(h)− 1

8θ
> errDi

(h?) +
3
8θ

− 2
ν

∆(Vi)
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Since we now assume that ∆(Vi) > 8θν the above implies

errDi
(h)− 1

8θ
> errDi(h

?) +
1
8θ

.

Since k ≥ 32θ2 log(2|H|/δ) then all hypotheses in V θ
i will be removed. Thus, ∆(Vi+1) ≤ ∆(Vi)/2.

4.1 An extension to a low VC class
It is easy to tackle the case of a hypothesis class with VC dimension of d using the same technique as in the
previous section. Hanneke gave a direct analysis, without using the Sauer lemma trick
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