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Abstract

Motivated by the classical problem of privacy amplification, Dodis and Wichs
[DW09] introduced the notion of a non-malleable extractor, significantly strength-
ening the notion of a strong extractor. A non-malleable extractor is a function
nmExt : {0, 1}n × {0, 1}d → {0, 1}m that takes two inputs: a weak source W and
a uniform (independent) seed S, and outputs a string nmExt(W,S) that is nearly
uniform given the seed S as well as the value nmExt(W,S′) for any seed S′ ̸= S
that may be determined as an arbitrary function of S.

The first explicit construction of a non-malleable extractor was recently pro-
vided by Dodis, Li, Wooley and Zuckerman [DLWZ11a]. Their extractor works for
any weak source with min-entropy rate 1/2 + δ, where δ > 0 is an arbitrary con-
stant, and outputs up to a linear number of bits, but suffers from two drawbacks.
First, the length of its seed is linear in the length of the weak source (which leads
to privacy amplification protocols with high communication complexity). Second,
the construction is conditional: when outputting more than a logarithmic number
of bits (as required for privacy amplification protocols) its efficiency relies on a
longstanding conjecture on the distribution of prime numbers.

In this paper we present an unconditional construction of a non-malleable ex-
tractor with short seeds. For any integers n and d such that 2.01 · log n ≤ d ≤ n,
we present an explicit construction of a non-malleable extractor nmExt : {0, 1}n ×
{0, 1}d → {0, 1}m, with m = Ω(d), and error exponentially small in m. The ex-
tractor works for any weak source with min-entropy rate 1/2+ δ, where δ > 0 is an
arbitrary constant. Moreover, our extractor in fact satisfies an even more general
notion of non-malleability: its output nmExt(W,S) is nearly uniform given the seed
S as well as the values nmExt(W,S1), . . . , nmExt(W,St) for several seeds S1, . . . , St

that may be determined as an arbitrary function of S, as long as S /∈ {S1, . . . , St}.
By instantiating the framework of Dodis and Wichs with our non-malleable ex-

tractor, we obtain the first 2-round privacy amplification protocol for min-entropy
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rate 1/2 + δ with asymptotically optimal entropy loss and poly-logarithmic com-
munication complexity. This improves the previously known 2-round privacy am-
plification protocols: the protocol of Dodis and Wichs whose entropy loss is not
asymptotically optimal, and the protocol of Dodis, Li, Wooley and Zuckerman
whose communication complexity is linear.
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1 Introduction

Randomness extractors are functions that extract nearly uniform bits from biased ran-
dom sources. Among the wide variety of settings in which randomness extractors play
an instrumental role is the classical problem of privacy amplification [BBR88, Mau92,
BBCM95]. This problem considers a setting in which two parties, Alice and Bob, begin
by sharing a secret W ∈ {0, 1}n whose distribution may be far from uniform. The parties
interact over a public communication channel in the presence of an adversary, Eve, and
would like to securely agree on a nearly uniform secret R ∈ {0, 1}m.

In various applications, the secret W is often chosen, for example, as a human-
memorizable password or some biometric data, both of which are typically of rather
low min-entropy, or even as a truly uniform secret which may have been partially leaked
to Eve. In this paper we consider the information-theoretic setting of the problem where
no computational assumptions are made (in particular, Eve is assumed to be computa-
tionally unbounded).

Formally, a source of randomness (or simply, a source) of length n is a random variable
W of length n bits. We say that a source is weak if its distribution is not uniform. The
standard measure for the amount of randomness contained in a source W is its min-
entropy, denoted by H∞(W ). We say that an n-bit random variable W has min-entropy
at least k if for every w ∈ {0, 1}n, Pr[W = w] ≤ 2−k. In this case we say that W is an
(n, k)-source. We define the min-entropy rate of an (n, k)-source as the ratio k/n.

Strong Extractors. In the presence of a passive adversary that is assumed to only
observe the communication channel between the parties, any strong extractor provides
an elegant solution to the privacy amplification problem. Informally, a strong (seeded-)
extractor is a function Ext : {0, 1}n × {0, 1}d → {0, 1}m that takes two inputs, a weak
source W and an independent uniform seed S, and outputs a string Ext(W,S) that is
nearly uniform given the seed S. Using a strong extractor, Alice simply sends Bob a seed
S that is chosen uniformly at random, and they both compute R = Ext(W,S) which is
guaranteed to be nearly uniform from Eve’s point of view (who sees only the seed S).

Formally, we denote by Un the uniform distribution over {0, 1}n, and for a random
variable X over {0, 1}n we denote by (X,Um) the joint distribution of X and an inde-
pendent random variable that is uniformly distributed over {0, 1}m. In general, many
times we will confuse notations between random variables and their distributions. We
measure the distance between distributions by the L1 norm. Two distributions, X and
Y , are ϵ-close if ∥X −Y ∥1 =

∑
s |Pr [X = s]− Pr [Y = s]| ≤ ϵ. This measure of distance

is also referred to as statistical distance. More precisely, the statistical distance, denoted
by SD(X, Y ) is defined as 1

2
∥X − Y ∥1. Given an (n, k)-source W with an unknown dis-

tribution, it is well-known that if k ≤ n − 1 then one cannot deterministically extract
even one non-constant bit from W (unless additional information about the distribution
of W is given). Seeded-extractors overcome this barrier by extracting nearly uniform
randomness from a weak source, using an additional number of truly random bits, called
seed. A seeded-extractor is strong if its output is almost independent of the seed.

Definition 1.1 (Seeded-Extractor). A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is a
(k, ϵ)-seeded-extractor if for every (n, k)-source W and an independent random variable
S uniformly distributed over {0, 1}d, the distribution of Ext(W,S) is ϵ-close to Um. A
(k, ϵ)-seeded-extractor is strong if for X and S as above, the distribution of (Ext(X,S), S)
is ϵ-close to (Um, Ud).
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Non-Malleable Extractors. In the presence of an active adversary that fully controls
the communication channel between the parties, however, privacy amplification is signif-
icantly more challenging. One of the main reasons is that in addition to preventing Eve
from learning essentially any information on the resulting secret R, a secure privacy am-
plification protocol should also prevent Eve from causing the parties to output different
secrets R and R′.

In this light, extensive research has been devoted for designing privacy amplification
protocols that are secure under active attacks (see [Mau97, MW97, Wol98, MW03, RW03,
DKRS06, DW09, KR09, CKOR10] and the references therein), with the natural goal of
optimizing the efficiency of such protocols. The main measures of efficiency that have
been studied in this line of research are the following:

1. Required entropy rate: The ratio between the required min-entropy of the weak
secret W and its length.

2. Entropy loss: The difference between the entropy of the weak secret W and the
length of the resulting secret R.

3. Communication complexity: The number of bits exchanged between the two
parties in the protocol.

4. Round complexity: The number of rounds in the protocol.

A major progress in the design of privacy amplification protocols was recently made
by Dodis and Wichs [DW09]. Their approach relies on introducing the new and elegant
notion of a non-malleable extractor, significantly strengthening the notion of a strong
extractor. Informally, a non-malleable extractor is a function nmExt : {0, 1}n×{0, 1}d →
{0, 1}m that takes two inputs: a weak source W and an independent uniform seed S, and
outputs a string nmExt(W,S) that is nearly uniform given the seed S as well as the value
nmExt(W,S ′) for any seed S ′ ̸= S that may be determined as an arbitrary function of S.

Definition 1.2 (Adversarial Function). Let A : {0, 1}d → {0, 1}d. We say that A is an
adversarial function if it has no fixed points. That is, for every s ∈ {0, 1}d it holds that
A(s) ̸= s.

Definition 1.3 (Non-Malleable Extractor). A function nmExt : {0, 1}n × {0, 1}d →
{0, 1}m is a (k, ϵ)-non-malleable extractor if for every (n, k)-source W and independent
random variable S uniformly distributed over {0, 1}d, and for every adversarial function
A : {0, 1}d → {0, 1}d,∥∥(Ext(W,S),Ext(W,A(S)), S)− (Um,Ext(W,A(S)), S)

∥∥
1
≤ ϵ.

In this paper we also consider a natural generalization of non-malleable extractors, in
which the adversary has the value of the extractor not only on one correlated seed A(S)
of her choice, but rather on many correlated seeds A1(S), . . . ,At(S) of her choice.

Definition 1.4 (t-Adversarial Function). Let t ∈ N. Let A : {0, 1}d → {0, 1}td. We
think of the output of A as t concatenated binary strings, each of length d. That is, we
think of A(s) as A(s) = (A1(s), . . . ,At(s)), where for all i ∈ [t], Ai is a function of the
form Ai : {0, 1}d → {0, 1}d. We say that A is a t-adversarial function if for every i ∈ [t]
the function Ai is an adversarial function.
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Definition 1.5 (t-Non-Malleable Extractor). A function nmExt : {0, 1}n × {0, 1}d →
{0, 1}m is a (k, ϵ)-t-non-malleable extractor if for every (n, k)-source W and independent
random variable S uniformly distributed over {0, 1}d, and for every t-adversarial function
A : {0, 1}d → {0, 1}td,∥∥(Ext(W,S),Ext(W,A1(S)), . . . ,Ext(W,At(S)), S

)
−
(
Um,Ext(W,A1(S)), . . . ,Ext(W,At(S)), S

)∥∥
1
≤ ϵ.

1.1 Constructions of Non-Malleable Extractors

Although the approach of Dodis and Wichs [DW09] seems very promising, they were in
fact unable to present an explicit construction of a non-malleable extractor (not even one
with poor parameters). They showed, however, using the probabilistic method, that such
extractors, with excellent parameters, exist. More specifically, Dodis and Wichs proved
the existence of a (k, ϵ)-non-malleable extractor nmExt : {0, 1}n × {0, 1}d → {0, 1}m, as
long as

d > log (n− k − 1) + 2 log (1/ϵ) + 5,

k > 2m+ 2 log (1/ϵ) + log d+ 6.

Recently, Dodis, Li, Wooley, and Zuckerman [DLWZ11a] presented the first explicit
construction of a non-malleable extractor. They showed that an extractor introduced by
Chor and Goldriech in the context of two-source extractors [CG88] is non-malleable as
long as the weak source has min-entropy rate 1/2 + δ for an arbitrarily small constant
δ > 0. Their extractor outputs up to a linear number of bits, but suffers from two
drawbacks. First, the seed used by their extractor is of length d = Ω(n) bits, even for
the purpose of extracting a single bit. Second, the construction is conditional: when
outputting more than a logarithmic number of bits (as required for privacy amplification
protocols) its efficiency relies on a longstanding conjecture on the distribution of prime
numbers.

1.2 Privacy Amplification via Non-Malleable Extractors

Using a non-malleable extractor, Dodis and Wichs constructed the first 2-round privacy
amplification protocol for any min-entropy rate that is secure against active attacks1.
Specifically, Dodis and Wichs demonstrated that the idea underlying the simple privacy
amplification protocol discussed above for passive attacks can be implemented also in
the setting of active attacks. Moreover, when instantiating their approach with a non-
malleable extractor that enjoys sufficiently good parameters (as well as with an essentially
optimal strong extractor), the resulting privacy amplification protocol in turn enjoys
asymptotically optimal entropy loss O(log n + log(1/ϵ)) and communication complexity
O(log n + log(1/ϵ)), where ϵ is the security parameter of the protocol (i.e., the protocol
error).

As discussed above, Dodis and Wichs were in fact unable to present an explicit con-
struction of a non-malleable extractor. Nevertheless, they were still able to construct an
explicit privacy amplification protocol by introducing the weaker notion of a look-ahead

1They also showed that 1-round protocols do not exist when the weak secret W has min-entropy
k ≤ n/2, and are inherently inefficient in terms of communication when n/2 < k ≪ n.
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extractor2, for which they were able to provide an explicit construction. Using their look-
ahead extractor, Dodis and Wichs constructed an explicit 2-round privacy amplification
protocol with entropy loss βk + O(log2 n + log2(1/ϵ)), for an arbitrarily small constant
β > 0, and communication complexity O(log2 n+log2(1/ϵ)), both of which are somewhat
far from optimal3.

Dodis, Li, Wooley, and Zuckerman [DLWZ11a] showed that when instantiating the
protocol of Dodis and Wichs with their explicit non-malleable extractor one obtains
an explicit 2-round privacy amplification protocol for weak sources of min-entropy rate
1/2 + δ, for an arbitrarily small constant δ > 0, with entropy loss O(log n + log(1/ϵ)).
However, since the seed of the extractor is of length Ω(n) bits, the resulting privacy
amplification protocol suffers from communication complexity of Ω(n) bits.

Thus, although the approach of Dodis and Wichs [DW09] for privacy amplification
indeed seems very promising, due to the difficulties in constructing explicit non-malleable
extractors, the resulting protocols are still rather far from optimal either in their entropy
loss or communication complexity.

Finally, we note that privacy amplification protocols can also be constructed using
various other techniques and tools (and not only using non-malleable extractors). For
example, the privacy amplification protocol of Chandran et al. [CKOR10] uses a some-
what different approach that crucially utilizes repeated interaction between the parties,
and is essentially optimal in all parameters except for its rather high round complexity
of O(log(1/ϵ)) rounds.

1.3 Our Results

1.3.1 Explicit Construction of a Non-Malleable Extractor

In this paper we present an unconditional construction of a non-malleable extractor with
short seeds. We prove the following theorem:

Theorem 1.6 (Main Theorem). For any integers n and d such that 2.01 log n ≤ d ≤ n,
and for any constant δ > 0, there exists an explicit ((1/2 + δ) · n, 2−m)-non-malleable
extractor nmExt : {0, 1}n × {0, 1}d → {0, 1}m, with m = Ω(d).

In particular, setting d = 2.01 log n yields the first explicit construction of a non-
malleable extractor that uses a seed of length O(log n) bits 4. This should be compared
with the extractor of [DLWZ11a] that uses a seed of length Ω(n) bits. This improvement
in the seed length is crucial for the communication complexity of the resulting privacy
amplification protocols.

In addition, setting d = n yields the first unconditional explicit construction of a non-
malleable extractor that outputs Ω(n) bits. This should be compared with the extractor
of [DLWZ11a] whose efficiency relies on an unproven conjecture (when outputting ω(log n)

2Informally, a look-ahead extractor is a function laExt : {0, 1}n × {0, 1}d → {0, 1}m that takes two
inputs: a weak source W and a uniform seed S, and outputs a string laExt(W,S) whose any suffix is
nearly uniform given the seed S and the complementing prefix of laExt(W,S′) for some seed S′ ̸= S that
may be determined as an arbitrary function of S. Note that any non-malleable extractor is in particular
also a look-ahead extractor.

3In fact, the dependency on the min-entropy k of the weak source can be eliminated from the entropy
loss in their protocol. This can be done, for example, by instantiating the strong extractor in their
protocol using Theorem 3.4 instead of Theorem 3.3.

4The constant 2.01 can, in fact, be replaced by any constant strictly greater than 2.
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bits). In fact, our extractor is the first non-malleable extractor that outputs ω(log n) bits
unconditionally.

Our main result is in fact more general. We show an explicit construction of a t-non-
malleable-extractor with essentially optimal parameters5, as long as the min-entropy rate
of the weak-source is any constant larger than 1/2 and the output length is shorter than
the seed length.

Theorem 1.7 (Main Theorem – Generalized). For any integers n, d, m and t, and for
any 0 < δ < 1/2 such that

d ≥23

δ
· tm+ 2 log n,

n ≥160

δ
· tm,

δ ≥10 · log (nd)
n

,

there exists an explicit ((1/2 + δ) · n, 2−m)-t-non-malleable extractor nmExt : {0, 1}n ×
{0, 1}d → {0, 1}m.

We note the nice symmetry between m and t in Theorem 1.7.

1.3.2 Applications to Privacy Amplification

By instantiating the framework of Dodis and Wichs [DW09] with the non-malleable ex-
tractor from Theorem 1.6 we obtain an explicit 2-round privacy amplification protocol for
weak sources of min-entropy rate 1/2+δ for an arbitrarily small constant δ > 0. The pro-
tocol offers a trade-off between its entropy loss and communication complexity, resulting
from instantiating it with different explicit constructions of strong extractors. Specifically,
it offers asymptotically optimal entropy loss O(log n+log(1/ϵ)) with communication com-
plexity O(min

{
log2 n+ log n · log(1/ϵ), n

}
), or entropy loss βn+O(log n+ log(1/ϵ)) for

an arbitrarily small constant β > 0 with communication complexity O(log n+ log(1/ϵ)),
where the hidden constant in the big-O notation depends on β. In particular, we prove
the following theorem:

Theorem 1.8. For any integer n, constant δ > 0, and security parameter ϵ = 2−O(n),
there exists an explicit and efficient 2-round privacy amplification protocol for (n, (1/2 +
δ)n)-sources with entropy loss O(log n+ log(1/ϵ)), and communication complexity
O(min

{
log2 n+ log n · log(1/ϵ), n

}
).

This is the first explicit 2-round privacy amplification protocol for min-entropy rate
1/2 + δ with asymptotically optimal entropy loss and poly-logarithmic communication
complexity. This should be compared to the previously known 2-round protocols: the
protocol of [DW09] whose entropy loss is not asymptotically optimal, and the protocol
of [DLWZ11a] whose communication complexity is linear in the length of the weak secret.

1.4 Subsequent Work

Subsequent to our work there has been an extensive research in the construction of non-
malleable extractors, and their applications. Based on ideas that appear in our proofs,

5We made no attempt to optimize the constants in the theorem as they depend on each other.
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Dodis, Li, Wooley and Zuckerman [DLWZ11b] showed how to reduce the seed length
of their extractor from [DLWZ11a] so to match the parameters of our construction 6.
However, their analysis remains conditional when outputting ω(log n) bits.

Li [Li12a] uses our extractor combined with a combinatorial object called design ex-
tractor, and obtains a non-malleable extractor with a logarithmic length seed that can out-
put Ω(n) bits when fed with an n-bit source with min-entropy larger than n/2. In [Li12d],
Li proves that Bourgain’s two-source extractor [Bou05, Rao07] is non-malleable, thus
achieving a non-malleable extractor that works for sources with min-entropy 1/2 − ϵ0
for some small universal constant ϵ0 > 0. In the same paper Li proves that a substan-
tial improvement in the construction of non-malleable extractors will yield (a modest)
improvement in the construction of two-source extractors. A simplified and uniform ap-
proach for constructing, among other objects, non-malleable extractors, was suggested
by Dodis and Yu [DY13].

As mentioned, the motivating application for the construction of non-malleable ex-
tractors is the problem of privacy amplification against an active adversary. In a recent
work [Li12b], Li found a new application for non-malleable extractors. In particular, an
improved construction of multi-source extractors was given, that uses a non-malleable
extractor as a building block.

The problem of constructing privacy amplification protocols against an active adver-
sary has been further studied as well. In [Li12c] Li gives new and improved construc-
tions of 2-round privacy amplification protocols based on the notion of non-malleable
condensers, introduced in [Li12a]. In particular, Li presents a protocol for min-entropy
k = Ω((log n + log(1/ϵ))2) with an optimal entropy loss O(log n + log(1/ϵ)), and with
communication complexity O((log n + log(1/ϵ))2). An interesting open problem in this
area is to construct a 2-round privacy amplification protocol for the minimal min-entropy
k = O(log n+ log(1/ϵ)) with an optimal entropy loss O(log n+ log(1/ϵ)).

2 Overview of Our Results

In this section we overview the main ideas underlying our constructions 7. We begin with
the construction of the non-malleable extractor in Section 2.1, and then proceed with the
resulting privacy amplification protocol in Section 2.2.

2.1 The Non-Malleable Extractor

Raz [Raz05] gave an explicit construction of seeded-extractors8, based on small probability
spaces of 0-1 random variables that have small bias for linear tests of bounded size (see
Section 3.3). We begin by describing the construction of these extractors, starting with
extractors that output one bit, and then turn to describe our approach.

The Extractor of Raz [Raz05]. Let D = 2d, and let Z1, . . . , ZD be 0-1 random
variables that are ϵ-biased for linear tests of size k, and assume that the random variables

6In fact, as pointed out in [DLWZ11b], the construction of Dodis, Li, Wooley and Zuckerman appears
to be a special case of our construction, at least for the one-bit case.

7In this section we use some well known notions. The formal definitions can be found in Section
(Section 3), which an unfamiliar reader might prefer to read first.

8One can find in [Raz05] a construction of two-sources extractors, as well as other types of pseudo-
random objects.
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can be constructed using n random bits. We define Ext : {0, 1}n × {0, 1}d → {0, 1} by
Ext(w, s) = Zs(w). That is, Ext(w, s) is the value of the random variable Zs when using
w as the value of the n bits needed to produce Z1, . . . , ZD. In other words, w is used
to choose the point in the probability space, and s is used to choose the variable from
Z1, . . . , ZD that we evaluate.

Extracting many bits is done similarly: Let D = m · 2d, and let Z1, . . . , ZD be 0-1
random variables, constructed using n random bits, that are ϵ-biased for linear tests of
size k. We interpret the set of indices {1, . . . , D} as the set {(i, s) : i ∈ [m], s ∈ {0, 1}d}.
We define Ext : {0, 1}n × {0, 1}d → {0, 1}m by Exti(w, s) = Z(i,s)(w), where Exti(w, s)
denotes the ith bit of Ext(w, s). In other words, w is used to choose the point in the
probability space, and the pair (i, s) is used to choose the variable from Z1, . . . , ZD that
we evaluate.

Raz showed that the above extractor, based on any small probability space of 0-
1 random variables that have small bias for linear tests of bounded size, is an excel-
lent extractor. Specifically, using any of the probability spaces from [AGHP92], one
gets a ((1/2 + δ) · n, 2−m)-seeded extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with
m = min (Ω(δn),Ω(d)) as long as d = Ω(log n). In the same paper, among other re-
sults, Raz showed that this extractor is a strong seeded-extractor.

Our Approach. In this paper we show that the extractor of Raz is in fact non-malleable
with essentially the same parameters. Moreover, we show that it is t-non-malleable with
optimal dependency on t. We now present the proof strategy. For simplicity, we focus on
the case m = t = 1 (though we do not prove this special case in the paper separately, but
rather give a proof for general m and t). The proof strategy for the t-non-malleability of
the extractor that extracts m bits follows by the same logic, but it is more technical.

Assume for a contradiction that Ext as defined above is not non-malleable. This
implies the existence of a weak-sourceW and an adversarial functionA : {0, 1}d → {0, 1}d
such that for a typical seed s ∈ {0, 1}d, the value Ext(W, s) is correlated to Ext(W,A(s)).
We can then find a large set of seeds S ⊆ {0, 1}d such that for every s ∈ S, the random
variable Ys = Ext(W, s)⊕ Ext(W,A(s)) is biased.

At this point we consider the directed graph G = (S∪A(S), E) where E = {(s,A(s)) :
s ∈ S}. We note that G has no self loops, but it might be the case that G contains cycles.
We prove the existence of a large subset S ′ ⊆ S such that the induced graph of G by
S ′ ∪A(S ′) is acyclic. To this end we prove a simple lemma about graphs (see Section 5).

For every s ∈ S ′, define Y ′s = Zs ⊕ ZA(s). In the next step of the proof we prove that
the set of random variables (Y ′s )s∈S′ is ϵ-biased for linear tests of size at most k/2. This
follows easily by the acyclicity of the above mentioned graph and by the fact that for
every s ∈ S ′, it holds that Y ′s is a parity of two random variables from a probability space
that ϵ-fools linear tests of size k (see Claim 7.2).

Now we consider the extractor that is built upon the random variables (Y ′s )s∈S′ as
described in the beginning of the section (where the (Y ′s )s∈S′ play the role of (Zi)

d
i=1).

The result of Raz, which holds for any probability space that fools linear tests of bounded
size, implies that this is a good seeded-extractor. This yields a contradiction (for an
appropriate choice of parameters) when feeding the weak-source W to this extractor,
because the random variables (Ys)s∈S′ are all biased (see Section 7).
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2.2 The Privacy Amplification Protocol

As discussed in Section 1.3.2, by instantiating the framework of Dodis and Wichs [DW09]
with our non-malleable extractor we obtain the first explicit 2-round privacy amplification
protocol for weak sources of min-entropy rate 1/2 + δ, for an arbitrarily small constant
δ > 0, with asymptotically optimal entropy loss and poly-logarithmic communication
complexity. In what follows we first overview the main idea underlying the Dodis-Wichs
protocol, and then discuss the parameters that we obtain by instantiating it with our
non-malleable extractor.

The Dodis-Wichs Protocol. In the presence of a passive adversary that is assumed to
only observe the communication channel between the parties, the privacy amplification
problem is well-understood. Specifically, any strong exactor Ext yields the following
elegant solution: Alice sends Bob a uniform seed S for Ext, and they both compute
R = Ext(W,S), whereW is their shared weak secret. The property of the strong extractor
guarantees that the resulting value R is nearly uniform from the adversary’s point of view.

The main idea underlying the approach of Dodis and Wichs is that a non-malleable
extractor nmExt can be used for implementing the above elegant solution in the presence
of an active adversary. Specifically, the non-malleable extractor is used for authenticating
the seed S, and as long as the communication complexity involved in the authentication
is rather small. Since only a small number of bits are revealed to the adversary, W still
has sufficient min-entropy that can be extracted as R = Ext(W,S).

For authenticating the seed S, in the first round of the protocol Alice chooses a
uniform seed Y for a non-malleable extractor nmExt, sends Y to Bob, and computes a key
key = nmExt(W,Y ) for a one-time message-authentication codeMAC. The adversary may
modify Y to any value Y ′, and in this case Bob might compute a different authentication
key key′ = nmExt(W,Y ′). Then, in the second round of the protocol, Bob samples
a uniform seed S ′ for a strong extractor Ext, and sends it to Alice together with the
authentication tag σ′ = MACkey′(S

′). At this point Bob concludes his part of the protocol
by outputting the value R′ = Ext(W,S ′). The adversary may modify the pair (S ′, σ′) to
any pair (S, σ), and Alice verifies that σ = MACkey(S). If the verification fails then Alice
aborts, and otherwise Alice outputs R = Ext(W,S).

Note that if the adversary does not modify the seed Y that is chosen by Alice, then
Alice and Bob share the same authentication key = key′, which is nearly uniform from
the adversary’s point of view. Thus, the adversary has only a negligible probability of
computing a valid authentication tag σ for any seed S ̸= S ′. In addition, if the adversary
does modify the seed Y to a different seed Y ′, then the property of the non-malleable
extractor guarantees that the authentication key key computed by Alice is nearly uniform
from the adversary’s point of view, even if she receives key′ (and, in particular, if she
receives σ′ which is a deterministic function of S ′ and key′). Thus, again, the adversary
has only a negligible probability of computing a valid authentication tag σ for any seed
S with respect to key (and this holds even if S = S ′). These two observations then easily
imply the security of the protocol.

Our Instantiation. In the Dodis-Wichs protocol the output key = nmExt(W,Y ) of
the non-malleable extractor is used as a key for a one-time message authentication code.
It is well known (see Theorem 3.7) that explicit and efficient constructions of message-
authentication codes exist with keys and authentication tags of length O(log n+log(1/ϵ))
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bits, where n is the length of the authenticated message and ϵ is the security parameter.
Using our non-malleable extractor we can set its seed Y to be of length O(log n +

log(1/ϵ)) bits. Then, one can instantiate the strong extractor Ext with any explicit
construction, where we choose the one provided by Guruswami, Umans and Vadhan
[GUV09] (see Theorem 3.4). It extracts (1/2 + δ)n − O(log n + log(1/ϵ)) bits from the
weak source W using a seed S of length O(log2 n + log n · log(1/ϵ)) bits. When dealing
with a very small security parameter ϵ one can instead use the extractor provided by
the leftover hash lemma (see Theorem 3.2) for extracting the same number of bits using
a seed of length n bits. Thus, our protocol has entropy loss O(log n + log(1/ϵ)), and
communication complexity O(min

{
log2 n+ log n · log(1/ϵ), n

}
).

3 Preliminaries

The logarithm in this paper is always taken base 2. For every natural number n ≥ 1,
define [n] = {1, 2, . . . , n}. We assume for simplicity that the min-entropy b of an (n, b)-
source is always an integer ≤ n. We sometimes abuse notation and syntactically treat
random variables and their distribution as equal, specifically, we denote by Um a random
variable which is uniformly distributed over {0, 1}m, and that is independent of all other
random variables in context.

3.1 Flat Sources

Let X be an (n, b)-source. We say that the source X is flat if it is uniformly distributed
over a set SX ⊆ {0, 1}n of size 2b. The following lemma, proved by Chor and Goldre-
ich [CG88], shows that the distribution of any (n, b)-source is a convex combination of
distributions of flat (n, b)-sources. Hence, in most cases, it will be enough to consider flat
sources rather than general weak sources.

Lemma 3.1. The distribution of any (n, b)-source is a convex combination of distribu-
tions of flat (n, b)-sources.

3.2 Explicit Constructions of Strong Seeded-Extractors

For instantiating our privacy amplification protocol we rely on the following explicit con-
structions of strong seeded-extractors. The first is known as the leftover hash lemma due
to Impagliazzo, Levin and Luby [ILL89], and the second and third are due to Guruswami,
Umans and Vadhan [GUV09].

Theorem 3.2 ([ILL89]). For all integers n ≥ k > m > 0 and for any ϵ > 0 such
that m ≤ k − 2 log(1/ϵ), there is an explicit construction of a strong (k, ϵ)-extractor
Ext : {0, 1}n × {0, 1}d → {0, 1}m, where d = O(n).

Theorem 3.3 ([GUV09]). For every constant β > 0, for all integers n ≥ k > m > 0
such that m ≤ (1 − β)k, and for any ϵ > 0, there is an explicit construction of a strong
(k, ϵ)-extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m, where d = O(log n+ log(1/ϵ)).

Theorem 3.4 ([GUV09]). For all integers n ≥ k > m > 0, and for any ϵ > 0 such that
m ≤ k − 2 log(1/ϵ) − O(1), there is an explicit construction of a strong (k, ϵ)-extractor
Ext : {0, 1}n × {0, 1}d → {0, 1}m, where d = log n+O(log k · log(k/ϵ)).
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3.3 Fooling Linear Tests of Bounded Size

A random variable Z over {0, 1} is ϵ-biased if bias(Z) =
∣∣Pr[Z = 0]−Pr[Z = 1]

∣∣ ≤ ϵ, that
is, if its distribution is ϵ-close to uniform. A sequence of 0-1 random variables Z1, . . . , ZN

is ϵ-biased for linear tests of size k if the exclusive-or of any nonempty set of cardinality
at most k of these variables is ϵ-biased, that is, for any nonempty τ ⊆ [N ], such that
|τ | ≤ k, the random variable Zτ =

⊕
i∈τ Zi is ϵ-biased. We say in this case, that the

sequence Z1, . . . , ZN ϵ-fools linear tests of size k.
Explicit constructions of small probability spaces on N random variables that are ϵ-

biased for linear tests of size k were given in [NN93], [AGHP92]. In particular, [AGHP92]
showed that for every k, N ≥ 2, variables Z1, . . . , ZN as above can be explicitly con-
structed using 2 · ⌈log(1/ϵ) + log k + log logN⌉ random bits.

3.4 Privacy Amplification Protocols

Our definition of a privacy amplification protocol (also known as an information-theoretic
key-agreement protocol) follows that of Dodis and Wichs [DW09]. In a privacy amplifi-
cation protocol, two parties, Alice and Bob, begin by sharing a weak secret W ∈ {0, 1}n,
that is, a string sampled from a weak-sourceW . The parties interact over a public commu-
nication channel in the presence of an adversary, Eve, and would like to securely agree on
a nearly uniform secret R ∈ {0, 1}m. In this paper we consider the information-theoretic
setting of the problem where no computational assumptions are made (in particular, Eve
is assumed to be computationally unbounded), and the weak secret W may be sampled
from any publicly known distribution subject to a pre-specified min-entropy rate. In ad-
dition, we assume that Eve is an active adversary that fully controls the communication
channel between the parties.

At the beginning of the protocol Alice and Bob each have candidate keys RA and
RB, respectively, which are initially set to the special value ⊥. At some point during
the execution of the protocol one party can reach a KeyDerived state and the other party
can reach a KeyConfirmed state. Upon reaching either of these states, a party sets its
candidate key to some m-bit value and does not modify it afterwards. Informally, the
KeyDerived and KeyConfirmed states should be interpreted as follows:

1. If Alice reaches the KeyDerived state, then she possesses a uniformly random candi-
date key RA, which remains private no matter how Eve acts during the remainder
of the protocol execution. However, she is not sure if her key is shared with Bob,
or if Bob is even involved in the protocol execution at all.

2. If Bob reaches the KeyConfirmed state and obtains a candidate key RB, then Alice
must have been involved in the protocol execution, she must have reached the
KeyDerived state, and the two parties share the same key RA = RB which is nearly
uniform from Eve’s point of view.

For formally defining the security of privacy amplification protocols, we first introduce
the following random variables for any adversary Eve:

• We denote by KeyDerivedA and KeyDerivedB the indicators of the events in which
Alice and Bob reach the KeyDerived state, respectively.

• We denote by KeyConfirmedA and KeyConfirmedB the indicators of the events in
which Alice and Bob reach the KeyConfirmed state, respectively.
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• We denote by VE the random variable corresponding to the transcript of the pro-
tocol’s execution as seen by Eve (i.e., Eve’s view).

Definition 3.5 (Privacy amplification protocol). In an (n, k,m, ϵ)-privacy amplification
protocol Alice and Bob share a weak secret W ∈ {0, 1}n and have candidate keys RA, RB ∈
{0, 1}m∪{⊥}, respectively. We require that for any n-bit weak secret W with min-entropy
at least k the protocol satisfies the following properties:

1. Correctness: If Eve is passive then one party must reach the KeyDerived state, the
other party must reach the KeyConfirmed state, and RA = RB ∈ {0, 1}m.

2. Privacy for Alice: For any adversary Eve, if Pr [KeyDerivedA] > 0 then

SD ((RA, VE | KeyDerivedA) , (Um, VE | KeyDerivedA)) ≤ ϵ.

3. Privacy for Bob: For any adversary Eve, if Pr [KeyDerivedB] > 0 then

SD ((RB, VE | KeyDerivedB) , (Um, VE | KeyDerivedB)) ≤ ϵ.

4. Authenticity: For any adversary Eve it holds that

Pr [(KeyConfirmedA ∨ KeyConfirmedB) ∧RA ̸= RB] ≤ ϵ.

Given an (n, k,m, ϵ)-privacy amplification protocol we refer to k −m as its entropy
loss, and to ϵ as its security parameter. We now elaborate and explain the different
requirements in the above definition.

• First, the correctness requirement naturally asks that whenever the protocol is
executed without any adversarial interference, then Alice and Bob output the same
key (i.e., RA = RB) and this key is indeed an m-bit value (and not the symbol
⊥). Note that at this point the definition does not ask for the resulting key to be
uniformly distributed (it will follow from the privacy requirements that in this case
the key is ϵ-close to uniform).

• Next, the privacy requirements for Alice and Bob ask that when focusing on execu-
tions in which Alice (respectively, Bob) derives a key RA (respectively, RB), then
from Eve’s point of view, this key is ϵ-close to an independently and uniformly sam-
pled m-bit key. In particular, in such executions, Eve may be able to completely
determine the key of the other party, but she learns essentially nothing about the
(essentially uniform) key of the party that reached the KeyDerived state.

• Finally, the authenticity requirement asks that if one of the parties reaches the
KeyConfirmed state, then the parties output the same key (i.e., RA = RB) except
with probability at most ϵ. For understanding this requirement, assume without
loss of generality that Alice is the party that reaches the KeyConfirmed state. By the
semantics of privacy amplification protocols, as discussed above, Bob may either
reach the KeyDerived state, or output RB = ⊥. In the first case (i.e., when Bob
reaches the KeyDerived state), the privacy requirement for Bob states that from
Eve’s point of view, their resulting key is ϵ-close to an independently and uniformly
sampled m-bit key. In the second case (i.e., when Bob outputs ⊥), both Alice
and Bob output ⊥ and therefore they are both aware of the fact that Eve tried to
interfere.
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3.5 Message Authentication Codes

One-time message authentication codes (MACs) provide assurance to the receiver of a
message that it was sent by a specified legitimate sender, even in the presence of an active
and computationally unbounded adversary who controls the communication channel. A
message-authentication code for messages of length n, keys of length ℓ, and authentica-
tion tags of length τ is defined via a family of deterministic and efficiently computable
functions {MACkey : {0, 1}n → {0, 1}τ}key∈{0,1}ℓ . In terms of security the requirement is
that any adversary that obtains an authentication tag on a single message m of her choice
with respect to a uniform key, should have only a negligible probability of computing a
valid authentication tag on a different message with respect to the same key.

Definition 3.6. A family {MACkey : {0, 1}n → {0, 1}τ}key∈{0,1}ℓ of deterministic and ef-
ficiently computable functions is an ϵ-secure one-time message authentication code if for
any message m ∈ {0, 1}n and function A : {0, 1}τ → {0, 1}n × {0, 1}τ it holds that

Pr
key←{0,1}ℓ

[MACkey(m
′) = σ′ ∧ m ̸= m′ | (m′, σ′) = A (MACkey(m)) ] ≤ ϵ .

For the construction of our privacy amplification protocol we rely on the existence of
message-authentication codes with the following parameters (see, for example, [KR09]):

Theorem 3.7. For any integer n and ϵ > 0 there exists an explicit ϵ-secure message-
authentication code {MACkey : {0, 1}n → {0, 1}τ}key∈{0,1}ℓ, where τ ≤ log n+ log(1/ϵ) and
ℓ ≤ 2τ .

3.6 Basic Claims in Probability Theory

The following simple claims will be used in our proofs. Claim 3.8 is a simple Markov-like
inequality.

Claim 3.8. Let X be a random variable over the real interval [0, 1]. Let µ = E[X]. Then,
Pr[X ≥ µ/2] ≥ µ/2.

Proof.

µ = E[X] ≤ µ

2
· Pr[X < µ/2] + 1 · Pr[X ≥ µ/2] ≤ µ

2
+ Pr[X ≥ µ/2].

Therefore, Pr[X ≥ µ/2] ≥ µ/2.

Claim 3.9. Let X be a random variable over {0, 1}m. Let Y, Z be two random variables.
Then,

∥ (X,Y, Z)− (Um, Y, Z) ∥1 = Ez∼Z
∥∥(X,Y ) |Z=z −(Um, Y ) |Z=z

∥∥
1
.

Proof.

∥ (X, Y, Z)− (Um, Y, Z) ∥1 =∑
x,y,z

∣∣∣Pr ((X, Y, Z) = (x, y, z)
)
− Pr

(
(Um, Y, Z) = (x, y, z)

)∣∣∣ =∑
x,y,z

Pr(Z = z) ·
∣∣∣Pr ((X,Y ) = (x, y) | Z = z

)
− Pr

(
(Um, Y ) = (x, y) | Z = z

)∣∣∣ =∑
z

Pr(Z = z) ·
∑
x,y

∣∣∣Pr ((X,Y ) = (x, y) | Z = z
)
− Pr

(
(Um, Y ) = (x, y) | Z = z

)∣∣∣ =
Ez∼Z

∥∥(X,Y ) |Z=z −(Um, Y ) |Z=z

∥∥
1
.
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The following is a standard lemma regarding conditional min-entropy (see, for exam-
ple, [NZ96, MW97]):

Lemma 3.10. Let X and Y be random variables, and let Y denote the support of Y .
Then, for any ϵ > 0 it holds that

Pr
y←Y

[H∞(X|Y = y) ≥ H∞(X)− log |Y| − log(1/ϵ)] ≥ 1− ϵ .

4 A Central Lemma from [Raz05]

The following lemma is one of the main components that were used in the construction
of two-sources-extractors in [Raz05]. We state the lemma for the special case of seeded-
extractors, and prove it for completeness.

Lemma 4.1. Let D = 2d. Let Z1, . . . , ZD be 0-1 random variables that are ϵ-biased for
linear tests of size k′ that are constructed using n random bits. Define Ext(1) : {0, 1}n ×
{0, 1}d → {0, 1} by Ext(1)(w, s) = Zs(w), that is, Ext

(1)(w, s) is the random variable Zs,
when using w as the value of the n bits needed to produce Z1, . . . , ZD. Then, for any
0 < δ < 1/2 and even integer k ≤ k′ such that k · (1/ϵ)1/k ≤ D1/2, the function Ext(1) is
a ((1/2 + δ) · n, γ)-seeded-extractor, with

γ =
(
ϵ · 2(1/2−δ)n+1

)1/k
.

Proof. Let W be a (n, (1/2+δ) ·n)-source. Let S be a random variable that is uniformly
distributed over {0, 1}d and is independent of W . We will show that the distribution of
Ext(1)(W,S) is γ-close to uniform. As in [CG88], it is enough to consider the case where
W is uniformly distributed over a set W ′ ⊆ {0, 1}n of size 2(1/2+δ)n. For every w ∈ {0, 1}n
and s ∈ {0, 1}d denote

e(w, s) = (−1)Zs(w).

Claim 4.2. For any r ∈ [k] and any different s1, . . . , sr ∈ {0, 1}d,

∑
w∈{0,1}n

r∏
j=1

e(w, sj) ≤ ϵ · 2n.

Proof. ∑
w∈{0,1}n

r∏
j=1

e(w, sj) =
∑

w∈{0,1}n

r∏
j=1

(−1)Zsj (w) =
∑

w∈{0,1}n
(−1)Zs1 (w)⊕···⊕Zsr (w),

and since Zs1(w)⊕ · · · ⊕ Zsr(w) is ϵ-biased, the last sum is at most ϵ · 2n.

Denote by γ(W,S) the expectation of e(W,S). We will show that |γ(W,S)| ≤ γ.
Obviously, this means that Ext(1)(W,S) is γ-close to uniform, as required.

By the definition

2(1/2+δ)n · 2d · γ(W,S) =
∑
w∈W ′

∑
s∈{0,1}d

e(w, s).
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Hence, by a convexity argument and since k is even,

2(1/2+δ)n ·
(
2d · γ(W,S)

)k ≤ ∑
w∈W ′

 ∑
s∈{0,1}d

e(w, s)

k

≤

∑
w∈{0,1}n

 ∑
s∈{0,1}d

e(w, s)

k

=
∑

w∈{0,1}n

∑
s1,...,sk∈{0,1}d

k∏
j=1

e(w, sj)

=
∑

s1,...,sk∈{0,1}d

∑
w∈{0,1}n

k∏
j=1

e(w, sj).

We will break the sum over s1, . . . , sk ∈ {0, 1}d into two sums. The first sum is over
s1, . . . , sk ∈ {0, 1}d such that at least one sj is different than all other elements in
{s1, . . . , sk}, and the second sum is over s1, . . . , sk ∈ {0, 1}d such that every sj is identical
to at least one other element in {s1, . . . , sk}. The number of summands in the first sum
is trivially bounded by 2d·k, and by Claim 4.2 each summand is bounded by 2n · ϵ. The
number of summands in the second sum is bounded by 2d·k/2 · (k/2)k, and each summand
is trivially bounded by 2n. Hence,

2(1/2+δ)·n · 2d·k · γ(W,S)k ≤ 2n · ϵ · 2d·k + 2n · 2d·k/2 · (k/2)k

≤ 2 · 2n · ϵ · 2d·k,

where the last inequality follows by the assumption that k · (1/ϵ)1/k ≤ D1/2. That is,

|γ(W,S)| ≤
(
ϵ · 2(1/2−δ)n+1

)1/k
.

5 A Simple Lemma about Graphs

The following simple lemma about graphs is another ingredient we need for the proof of
the main theorem.

Lemma 5.1. Let G = (V,E) be a directed graph without self-loops. Assume that the
out-degree of each vertex is exactly t, where parallel edges are allowed. Let w : V → R be
a weight function on the vertices of G. Denote by ω the average vertex weight, that is,
ω = 1

|V | ·
∑

v∈V w(v). Then, there exists a subset of the vertices V ′ ⊆ V , such that the

induced graph H = (V ′, E ′) of G by the set of vertices V ′ has the following properties:

1. H is acyclic,

2. The average vertex weight of H is at least ω/(t + 1), that is, 1
|V ′| ·

∑
v∈V ′ w(v) ≥

ω/(t+ 1),

3. |V ′| ≥ |V |/(t+ 1).

Proof. We construct H by a greedy algorithm. During the running of the algorithm,
every vertex in V has one of the following statuses: available, chosen or forbidden. We
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say that a vertex is available if it has an available status. Similarly, we say that a vertex is
chosen / forbidden if it has a chosen / forbidden status. For every vertex v ∈ V we denote
by status(v) the status of the vertex v. For every vertex v, let v+ = {u ∈ V : (v, u) ∈ E}.
The greedy algorithm is defined as follows:

1. For every vertex v ∈ V initialize status(v)← available.

2. While there exists an available vertex,

(a) Let v be an available vertex such that w(v) ≥ w(v′) for any available vertex
v′.

(b) Set status(v)← chosen.

(c) For every vertex v′ ∈ v+, if status(v′) = available set status(v′)← forbidden.

3. Return V ′ = {v : status(v) = chosen}.

Assume for contradiction that H contains a cycle C, that is, C is a cycle of chosen
vertices. Let v be the first chosen vertex in C. Let v′ ∈ v+ be the vertex that follows v
in C. At the time v was chosen, v′ was available, and so the algorithm set the status of
v′ to forbidden. A contradiction is then met as a forbidden vertex is never chosen and so
v′ cannot be in C.

We now prove property 2. Once the algorithm terminates, the status of every vertex
is either chosen or forbidden. For every chosen veretx v, let vA ⊆ v+ be the set of
vertices that were available at the time v was chosen. The vertices of the graph G can
be partitioned as follows:

V =
∪
v∈V ′

(
{v} ∪ vA

)
. (5.1)

By Equation (5.1) and by the fact that all (at most t) vertices in vA have a weight which
is no more than w(v), we get∑

v∈V

w(v) =
∑
v∈V ′

(
w(v) +

∑
v′∈vA

w(v′)
)

≤
∑
v∈V ′

(
w(v) + w(v) · |vA|

)
≤ (t+ 1)

∑
v∈V ′

w(v).

Hence,

1

|V ′|
·
∑
v∈V ′

w(v) ≥ 1

|V ′|
· 1

t+ 1
·
∑
v∈V

w(v)

≥ 1

t+ 1
· 1

|V |
·
∑
v∈V

w(v)

=
ω

t+ 1
.

This proves property 2. By Equation (5.1)

|V | =
∑
v∈V ′

(
1 + |vA|

)
≤

∑
v∈V ′

(
1 + t

)
= (t+ 1) · |V ′|,

which proves property 3.
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6 A Conditional Parity Lemma

The following lemma is a generalization of the Parity Lemma (usually attributed to
Vazirani. See for example [NN93]). A similar lemma appears in [DLWZ11a]. Let Z be a
random variable over {0, 1}m+n. Lemma 6.1 states that given the suffix of length n of Z,
one can bound the statistical distance between the remaining length m prefix of Z and
the uniform distribution in terms of appropriate biases. Setting n = 0 yields the Parity
Lemma.

Lemma 6.1. Let X be a random variable over {0, 1}m. Let Y be a random variable over
{0, 1}n. Then, ∥∥(X,Y )− (Um, Y )

∥∥
1
≤

( ∑
∅≠σ⊆[m]
τ⊆[n]

bias(Xσ ⊕ Yτ )
2
)1/2

,

where Xσ =
⊕

i∈σ Xi and Yτ =
⊕

i∈τ Yi.

We derive two corollaries from Lemma 6.1.

Corollary 6.2. Let X be a random variable over {0, 1}m. Let Y be a random variable
over {0, 1}n. Then, ∥∥(X, Y )− (Um, Y )

∥∥
1
≤

∑
∅≠σ⊆[m]
τ⊆[n]

bias(Xσ ⊕ Yτ ).

Corollary 6.3. Let X be a random variable over {0, 1}m. Let Y be a random variable
over {0, 1}n. Then,∥∥(X, Y )− (Um, Y )

∥∥
1
≤ ((2m − 1) · 2n)1/2 · max

∅̸=σ⊆[m]
τ⊆[n]

bias(Xσ ⊕ Yτ ).

Deriving both corollaries from Lemma 6.1 can be done by applying basic norms in-
equalities.

Proof of Lemma 6.1. Let D ∈ R2m+n
. We index the entries of D by strings of length

m+ n bits. For x ∈ {0, 1}m and y ∈ {0, 1}n, we define

D(xy) = Pr((X,Y ) = (x, y))− Pr((Um, Y ) = (x, y)),

where xy is the concatenation of x and y. By Parseval and basic norms inequalities,∥∥(X,Y )− (Um, Y )
∥∥2

1
=

( ∑
x∈{0,1}m
y∈{0,1}n

∣∣Pr((X, Y ) = (x, y))− Pr((Um, Y ) = (x, y))
∣∣)2

=
( ∑

x∈{0,1}m
y∈{0,1}n

|D(xy)|
)2

≤ 2m+n ·
∑

x∈{0,1}m
y∈{0,1}n

D(xy)2 (6.1)

= 2m+n · ∥D∥22 = 22(m+n) · ∥D̂∥22, (6.2)

where D̂ is the Fourier transform of D (we refer the reader to the book of O’Donnell [O’D]
for information regarding Fourier analysis of Boolean functions).
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Claim 6.4. For every σ ⊆ [m] and τ ⊆ [n]9,

|D̂(στ)| =
{

2−(m+n) · bias(Xσ ⊕ Yτ ), σ ̸= ∅;
0, σ = ∅.

Proof. For every σ ⊆ [m] and τ ⊆ [n],

D̂(στ) =
1

2m+n
·

∑
x∈{0,1}m
y∈{0,1}n

(−1)⟨στ,xy⟩ ·D(xy)

=
1

2m+n
·

∑
x∈{0,1}m
y∈{0,1}n

(−1)⟨στ,xy⟩ · Pr ((X, Y ) = (x, y))

− 1

2m+n
·

∑
x∈{0,1}m
y∈{0,1}n

(−1)⟨στ,xy⟩ · Pr ((Um, Y ) = (x, y)).

We note that∑
x∈{0,1}m
y∈{0,1}n

(−1)⟨στ,xy⟩ · Pr((Um, Y ) = (x, y)) =
∑

y∈{0,1}n
(−1)⟨τ,y⟩ · Pr(Y = y) · 1

2m

∑
x∈{0,1}m

(−1)⟨σ,x⟩.

For σ ̸= ∅, it holds that
∑

x∈{0,1}m (−1)⟨σ,x⟩ = 0. Hence, for σ ̸= ∅,

|D̂(στ)| =
∣∣∣ 1

2m+n
·

∑
x∈{0,1}m
y∈{0,1}n

(−1)⟨στ,xy⟩ · Pr((X, Y ) = (x, y))
∣∣∣

=
1

2m+n
· bias(Xσ ⊕ Yτ ).

For σ = ∅, it holds that
∑

x∈{0,1}m (−1)⟨σ,x⟩ = 2m. Therefore, for σ = ∅,

D̂(στ) =
1

2m+n
·

∑
x∈{0,1}m
y∈{0,1}n

(−1)⟨τ,y⟩ · Pr((X, Y ) = (x, y))

− 1

2m+n
·

∑
y∈{0,1}n

(−1)⟨τ,y⟩ · Pr(Y = y)

=
1

2m+n
·

∑
y∈{0,1}n

(−1)⟨τ,y⟩
 ∑

x∈{0,1}m
Pr((X, Y ) = (x, y)) − Pr(Y = y)


= 0.

By Equation (6.1) and Claim 6.4,∥∥(X, Y )− (Um, Y )
∥∥2

1
≤ 22(m+n) · ∥D̂∥22 = 22(m+n) ·

∑
σ⊆[m]
τ⊆[n]

D̂(στ)2

=
∑

∅≠σ⊆[m]
τ⊆[n]

bias(Xσ ⊕ Yτ )
2,

9We slightly abuse notation and identify sets in [m] with their characteristic vectors over {0, 1}m.
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which concludes the proof of the lemma.

7 Proof of Main Theorem

To ease the reading we restate the main theorem.

Theorem 7.1 (Theorem 1.7 – Restated). For any integers n, d, m and t, and for any
0 < δ < 1/2 such that

d ≥23

δ
· tm+ 2 log n,

n ≥160

δ
· tm,

δ ≥10 · log (nd)
n

,

there exists an explicit ((1/2 + δ) · n, 2−m)-t-non-malleable extractor nmExt : {0, 1}n ×
{0, 1}d → {0, 1}m.

Proof of Theorem 7.1. Let D = m · 2d. Let k′ = ⌈δn/8⌉. Let ϵ = 2−n/2+r, where r =
1+log(k′)+ log log(D). The explicit construction we present is the extractor constructed
in [Raz05]. We now describe it. Let Z1, . . . , ZD be 0-1 random variables that are ϵ-biased
for linear tests of size k′ that are constructed using n random bits. It is easy to verify
that

n ≥ 2 · ⌈log(1/ϵ) + log k′ + log logD⌉,
and so by [AGHP92] (see Section 3.3) such a construction is indeed possible.

We think of the set of indices [D] as the set {(i, s) : i ∈ [m], s ∈ {0, 1}d}. We define
Ext : {0, 1}n × {0, 1}d → {0, 1}m by Exti(w, s) = Z(i,s)(w), where Exti(w, s) denotes the
ith bit of Ext(w, s). In other words, w is used to choose the point in the probability space
and i, s are used to choose the variable from Z1, . . . , ZD that we evaluate.

Let S be a random variable uniformly distributed over {0, 1}d. Assume for con-
tradiction that Ext is not a ((1/2 + δ) · n, 2−m)-t-non-malleable-extractor. Then, there
exists a source W of length n and min-entropy (1/2 + δ) · n, and a t-adversarial-function
A : {0, 1}d → {0, 1}td such that,

∥
(
Ext(W,S),Ext(W,A1(S)), . . . ,Ext(W,At(S)), S

)
(7.1)

−
(
Um,Ext(W,A1(S)), . . . ,Ext(W,At(S)), S

)
∥1 > 2−m.

As in [CG88], we may assume that W is uniformly distributed over a set W ′ ⊆ {0, 1}n
of size 2(1/2+δ)·n.

For every s ∈ {0, 1}d let Xs be the random variable Ext(W, s). By Equation (7.1) and
Claim 3.9,

Es∼S

[
∥
(
Xs, XA1(s), . . . , XAt(s)

)
−
(
Um, XA1(s), . . . , XAt(s)

)
∥1
]
> 2−m.

Hence, by Corollary 6.2,∑
∅≠σ⊆[m]

τ1,...,τt⊆[m]

Es∼S

[
bias

(
(Xs)σ ⊕

(⊕
i∈[t]

(XAi(s))τi
))]

> 2−m.
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Let σ∗, τ ∗1 , . . . , τ
∗
t ⊆ [m] be the indices of (one of) the largest summands in the above

sum. For every s ∈ {0, 1}d, let

Ys = (Xs)σ∗ ⊕
(⊕

i∈[t]

(XAi(s))τ∗i
)
.

Then,

Es∼S
[
bias(Ys)

]
> 2−(t+2)m.

Let G = (V,E) be a directed graph with V = {0, 1}d and E = {(s,Aj(s)) : s ∈
V, j ∈ [t]}. Since A is a t-adversarial-function, G has no self-loops. Equip G with a
weight function on the vertices w : V → R that is defined as follows: For every s ∈ V ,
w(s) = bias(Ys).

By Lemma 5.1, there exists a subset V ′ ⊆ V such that the induced graph, H, of G
by V ′ has the properties mentioned in that lemma. In particular, by properties 2 and 3,

µ , 1

|V ′|
·
∑
s∈V ′

bias(Ys) >
2−(t+2)m

t+ 1
,

and

|V ′| ≥ |V |
t+ 1

=
2d

t+ 1
.

By Claim 3.8, there exists a subset S ′ ⊆ V ′ such that

|S ′| ≥ µ

2
· |V ′| ≥ 2d−(t+2)m−1

(t+ 1)2
,

and for all s ∈ S ′

bias(Ys) ≥
µ

2
>

2−(t+2)m−1

t+ 1
.

Let S ′0 = {s ∈ S ′ : Pr[Ys = 0] ≥ 1/2}. Let S ′1 = S ′ \ S ′0. There exists b ∈ {0, 1} such that
|S ′b| ≥ |S ′|/2. Denote S ′b by S ′′. Then,

|S ′′| ≥ |S
′|
2
≥ 2d−(t+2)m−2

(t+ 1)2
,

and for all s ∈ S ′′

Pr(Ys = b)− Pr(Ys ̸= b) >
2−(t+2)m−1

t+ 1
. (7.2)

Define a random variable YS′′ over {0, 1} as follows: To sample a bit from YS′′ , uni-
formly sample a string s from S ′′, and then independently sample a string w uniformly
from W ′. The sampled value is Ys(w). We have that

bias(YS′′) = |Pr(YS′′ = 0)− Pr(YS′′ = 1)|

=
1

|S ′′|
·
∣∣∣ ∑
s∈S′′

Pr(Ys = 0)− Pr(Ys = 1)
∣∣∣ (7.3)

=
1

|S ′′|
·
∑
s∈S′′

∣∣Pr(Ys = 0)− Pr(Ys = 1)
∣∣

>
2−(t+2)m−1

t+ 1
,
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where the inequality and equality before it follow by Equation (7.2).
For every s ∈ S ′′, let

Y ′s =

(⊕
j∈σ∗

Z(j,s)

)
⊕
(⊕

i∈[t]

(⊕
j∈τ∗i

Z(j,Ai(s))

))
.

Claim 7.2. The set of random variables {Y ′s}s∈S′′ ϵ-fools linear tests of size k′/((t+1)m).

Proof. Let A ⊆ S ′′ be a nonempty set of size at most ℓ , k′/((t + 1)m), and let
YA =

⊕
s∈A Y ′s . We note that YA is a linear combination of random variables from

(Z(i,s))i∈[m],s∈{0,1}d , composed of at most k′ summands. Since (Z(i,s))i∈[m],s∈{0,1}d ϵ-fools
linear tests of size k′, it is enough to show that this linear combination is non-trivial, that
is, it is suffices to prove that YA is not the constant 0 random variable.

Assume for contradiction that YA = 0. Let e be an arbitrary element in σ∗. Such an
element exists as σ∗ ̸= ∅. Let s1 be an arbitrary element in A. Such an element exists as
A ̸= ∅. The random variable Z(e,s1) is therefore a summand in YA.

By the assumption that YA = 0, Z(e,s1) must appear an even number of times as a
summand in YA. In particular, Z(e,s1) must appear at least one more time as a summand
in YA. Therefore, there exists some s2 ∈ A and i2 ∈ [t] such that Ai2(s2) = s1.

Since A is an adversarial-function, s2 ̸= s1 and so the random variable Z(e,s2) is a
summand in YA which is different than Z(e,s1). Following the same logic as above, since
YA = 0, the random variable Z(e,s2) must appear an even number of times as a summand
in YA. In particular, it must appear at least one more time. Hence, there exists some
s3 ∈ A and i3 ∈ [t] such that Ai3(s3) = s2.

We continue this way to get a sequence s1, s2, s3, . . . of elements of A until two elements
in the sequence are equal. Since A is finite, this is bound to happen. However, in such
case, a directed cycle in the graph H is implied, contradicting its acyclicity.

Let k be the largest even integer that is not larger than k′/((t+ 1)m).

Claim 7.3.
1

10
· δn

(t+ 1)m
≤ k ≤ 1

5
· δn

(t+ 1)m

Proof. As k is the largest even integer that is not larger than k′/((t+ 1)m),

k ∈
{⌊

k′

(t+ 1)m

⌋
− 1,

⌊
k′

(t+ 1)m

⌋}
.

Therefore,

k ≤
⌊

k′

(t+ 1)m

⌋
≤ k′

(t+ 1)m
=
⌈δn/8⌉
(t+ 1)m

≤ 1

8
· δn

(t+ 1)m
+

1

(t+ 1)m
≤ 1

5
· δn

(t+ 1)m
,

where the last inequality follows by the assumption that δ ≥ 160 · tm/n ≥ 40/(3 · n). As
for the lower bound on k,

k ≥
⌊

k′

(t+ 1)m

⌋
− 1 ≥ k′

(t+ 1)m
− 2 =

⌈δn/8⌉
(t+ 1)m

− 2 ≥ 1

8
· δn

(t+ 1)m
− 2 ≥ 1

10
· δn

(t+ 1)m
,

where, again, the last inequality follows by the assumption that

δ ≥ 160 · tm
n
≥ 80(t+ 1)m

n
.
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We apply Lemma 4.1 on the random variables {Y ′s}s∈S′′10. The following claim con-
firms that the assumption of Lemma 4.1 is indeed met with the k defined above.

Claim 7.4.

k ·
(
1

ϵ

)1/k

≤
(
2d−(t+2)m−2

(t+ 1)2

)1/2

. (7.4)

Proof. Taking the log(·) of both sides of Equation (7.4) and rearranging the terms, we
see it is enough to prove that

d ≥ (t+ 2)m+ 2 log k +
2

k
log

1

ϵ
+ 2 log (t+ 1) + 2. (7.5)

By Claim 7.3
2

k
· log 1

ϵ
=

2

k
·
(n
2
− r

)
≤ n

k
≤ 10(t+ 1)m

δ
, (7.6)

and

log k ≤ log

(
δn

5(t+ 1)m

)
≤ log

( n

20

)
. (7.7)

By Equations (7.5), (7.6) and (7.7), it is enough to show that

d ≥
(
10(t+ 1)

δ
+ t+ 2

)
m+ 2 log n+ 2 log (t+ 1) + 2− 2 log 20.

Since for all t ≥ 1
22

δ
· t ≥ 10(t+ 1)

δ
+ t+ 2

and
2 log t ≥ 2 log (t+ 1) + 2− 2 log 20,

it is enough to prove that

d ≥ 22

δ
· tm+ 2 log n+ 2 log t.

The above equation holds as we assume

d ≥ 23

δ
· tm+ 2 log n.

Consider the weak-source W . By Lemma 4.1, the distribution of Ext(1)(W,S ′′) is γ-
biased, for γ = (ϵ · 21+(1/2−δ)n)1/k = 2(1+r−δn)/k. However, we note that Ext(1)(W,S ′′) has
the same distribution as YS′′ . In particular, both random variables have the same bias.
Equation (7.3) yields that

2(1+r−δn)/k ≥ bias(Ext(1)(W,S ′′)) = bias(YS′′) >
2−(t+2)m−1

t+ 1
. (7.8)

We conclude the proof of Theorem 7.1 by the following claim, that stands in contradiction
to Equation (7.8).

10For simplicity of presentation we assume |S′′| is a power of 2. The exact same result can be obtained
regardless of this assumption.
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Claim 7.5.

2(1+r−δn)/k <
2−(t+2)m−1

t+ 1
.

Proof. It is enough to prove that

δn

k
> (t+ 2)m+ log

(
4(t+ 1)

)
+

r

k
.

By Claim 7.3, it is enough to show that

(4t+ 3)m > log
(
4(t+ 1)

)
+

r

k
.

Since for all n ≥ 2 (indeed n ≥ 160 · tm/δ ≥ 320),

k′ =

⌈
δn

8

⌉
≤ n

2
,

we have that

r = 1 + log k′ + log logD = log (2k′(d+ logm)) ≤ log (ndm). (7.9)

By Equation (7.9) and Claim 7.3 we have that

r

k
≤ 10(t+ 1)m

log (ndm)

δn
.

It is therefore enough to prove that

(4t+ 3)m > log
(
4(t+ 1)

)
+ 10(t+ 1)m

log (ndm)

δn
. (7.10)

To prove Equation (7.10) for all t ≥ 1, it is enough to show that

m ≥ 3

7
+

20

7
·m · log (ndm)

δn
,

which holds if

n ≥ 5

δ
· log (ndm). (7.11)

Sincem < n (indeed, by the second assumption of Theorem 7.1,m ≤ δn/(160t) ≤ n/320),
Equation (7.11) holds by the third assumption of Theorem 7.1.

8 The Privacy Amplification Protocol

In the section we present the protocol that is obtained by instantiating the Dodis-Wichs
protocol [DW09] with our non-malleable extractor. Given the length n of the weak source
and parameters k, ϵ′, ϵnmExt, ϵExt, and ϵMAC that we will fix later, the protocol relies on
the following building blocks:

1. A non-malleable (k, ϵnmExt)-extractor nmExt : {0, 1}n × {0, 1}d1 → {0, 1}ℓ (see Defi-
nition 1.3).
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2. A strong (k − (d1 + ℓ)− log(1/ϵ′), ϵExt)-extractor Ext : {0, 1}n × {0, 1}d2 → {0, 1}m
(see Definition 1.1).

3. An ϵMAC-secure message authentication code
{
MACkey : {0, 1}d2 → {0, 1}τ

}
key∈{0,1}ℓ

(see Definition 3.6).

The protocol is described in Figure 1. The following theorem was proved in [DW09],
and we provide here its proof for completeness.

Theorem 8.1. Let nmExt, Ext and MAC be as specified above. Then for any integers n
and k < n, the protocol in Figure 1 is a 2-round (n, k,m, ϵ)-privacy amplification protocol,
with communication complexity d1 + d2 + τ , where ϵ = max{ϵ′ + ϵExt, ϵnmExt + ϵMAC}.

For obtaining explicit protocols we instantiate the building blocks nmExt, and MAC
with those provided by Theorem 1.6, and Theorem 3.7, respectively. In addition, we
instantiate the strong extractor Ext by either one of those provided by Theorem 3.2,
Theorem 3.3, or Theorem 3.4. We obtain the following two theorems:

Theorem 8.2. For any integer n, constant δ > 0, and security parameter ϵ = 2−O(n),
there exists an explicit and efficient 2-round (n, (1/2 + δ)n,m, ϵ)-privacy amplification
protocol with entropy loss O(log n+ log(1/ϵ)), and communication complexity
O(min

{
log2 n+ log n · log(1/ϵ), n

}
).

Theorem 8.3. For any integer n, constants δ and β such that 1/2 + δ > β > 0, and
security parameter ϵ = 2−O(n), there exists an explicit and efficient 2-round (n, (1/2 +
δ)n,m, ϵ)-privacy amplification protocol with entropy loss βn + O(log n + log(1/ϵ)), and
communication complexity O(log n+ log(1/ϵ)).

Shared input: Alice and Bob share a sample from an (n, k)-source W .

The protocol:

1. Alice samples Y ← {0, 1}d1 uniformly at random, sends it to Bob, and computes key =
nmExt(W,Y ).

2. Denote by Y ′ the value received by Bob, who then computes key′ = nmExt(W,Y ′).

3. Bob samples S′ ← {0, 1}d2 uniformly at random, computes σ′ = MACkey′(S
′), and sends

the pair (S′, σ′) to Alice.

4. Bob reaches the KeyDerived state and outputs RB = Ext(W,S′).

5. Denote by (S, σ) the pair received by Alice. If σ = MACkey(S) then Alice reaches the
KeyConfirmed state and outputs RA = Ext(W,S). Otherwise, Alice outputs RA = ⊥.

Figure 1: The Dodis-Wichs privacy amplification protocol.

In the remainder of this section we prove Theorems 8.1, 8.2, and 8.3.

Proof of Theorem 8.1. The correctness of the protocol and the parameters specified
in the theorem follow directly from the description of the protocol. Thus, it only remains
to argue the privacy and authenticity properties of the protocol. Since no assumptions
are made on the computational capabilities of Eve, we assume without loss of generality
that Eve is deterministic. Specifically, this implies that the value Y ′ is a deterministic
function of the value Y , and then the pair (S, σ) is a deterministic function of the vector
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(Y, S ′, σ′). Therefore, without loss of generality, we refer to the view of Eve in the protocol
as the vector VE = (Y, S ′, σ′).

We argue the privacy property of the protocol in Lemma 8.4 and the authenticity
property of the protocol in Lemma 8.5. For arguing the privacy of the protocol note that
Bob always reaches the KeyDerived state and Alice never reaches the KeyDerived state
(i.e., Pr [KeyDerivedA] = 0 and Pr [KeyDerivedB] = 1). Therefore we only need to bound
SD ((RB, VE | KeyDerivedB) , (Um, VE | KeyDerivedB)).

Lemma 8.4 (Privacy). It holds that

SD ((RB, VE | KeyDerivedB) , (Um, VE | KeyDerivedB)) ≤ ϵ′ + ϵExt .

Proof. The protocol specifies that Bob always reaches the KeyDerived state and outputs
the value RB = Ext(W,S ′). In addition, recall that Eve’s view consists of VE = (Y, S ′, σ′).
Therefore,

SD ((RB, VE | KeyDerivedB) , (Um, VE | KeyDerivedB))
= SD ((RB, VE) , (Um, VE))

= SD ((Ext(W,S ′), Y, S ′, σ′) , (Um, Y, S
′, σ′))

≤ SD ((Ext(W,S ′), Y, S ′, key′) , (Um, Y, S
′, key′)) ,

where the last inequality follows from the fact that the value σ′ is a deterministic function
of the values S ′ and key′. Thus, since the value S ′ is uniformly distributed and indepen-
dent of W , Y , and key′, in order to complete the argument we only need to prove that
with high probability W has sufficient min-entropy given the pair (Y, key′). This follows
from the fact that the latter pair (Y, key′) is of total length d1 + ℓ bits. Formally, Lemma
3.10 implies that with probability 1− ϵ′ over the choice of (y, κ′)← (Y, key′) it holds that

H∞ (W | Y = y, key′ = κ′) ≥ H∞(W )− (d1 + ℓ)− log(1/ϵ′)

≥ k − (d1 + ℓ)− log(1/ϵ′) .

In turn, the fact that Ext is a strong (k − (d1 + ℓ)− log(1/ϵ′), ϵExt)-extractor yields

SD ((RB, VE | KeyDerivedB) , (Um, VE | KeyDerivedB))
≤ SD ((Ext(W,S ′), Y, S ′, key′) , (Um, Y, S

′, key′))

≤ ϵ′ + ϵExt .

Lemma 8.5 (Authenticity). It holds that

Pr [(KeyConfirmedA ∨ KeyConfirmedB) ∧ (RA ̸= RB)] ≤ ϵnmExt + ϵMAC .

Proof. The protocol specifies that only Alice may reach the KeyConfirmed state, and
therefore

Pr [(KeyConfirmedA ∨ KeyConfirmedB) ∧ (RA ̸= RB)] = Pr [KeyConfirmedA ∧ (RA ̸= RB)] .

We now consider two cases: one in which S = S ′ (i.e., Eve does not modify S ′) and the
other in which S ̸= S ′ (i.e., Eve does modify S ′).
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Case 1: S = S′. In this case Alice either reaches the KeyConfirmed state and outputs
RA = Ext(W,S) = Ext(W,S ′) = RB or does not reach the KeyConfirmed state and
outputs RA = ⊥. This implies that

Pr [KeyConfirmedA ∧ (RA ̸= RB) | S = S ′] = 0 .

Case 2: S ̸= S′. For Alice to reach the KeyConfirmed state Eve must compute a valid
authentication tag σ on S with respect to the authentication key key. This implies
that

Pr [KeyConfirmedA ∧ (RA ̸= RB) | S ̸= S ′] ≤ Pr [KeyConfirmedA | S ̸= S ′]

≤ Pr [σ = MACkey(S) | S ̸= S ′]

For analyzing this case we consider two subcases: one in which Y ′ = Y (i.e., Eve
does not modify Y ) and the other in which Y ′ ̸= Y (i.e., Eve does modify Y ). We
show that

Pr [σ = MACkey(S) | S ̸= S ′ ∧ Y ′ = Y ] ≤ ϵnmExt + ϵMAC

Pr [σ = MACkey(S) | S ̸= S ′ ∧ Y ′ ̸= Y ] ≤ ϵnmExt + ϵMAC .

Case 2.1: Y = Y ′. In this case Alice and Bob share the same authentication key
key = nmExt(W,Y ) = nmExt(W,Y ′) = key′, which we will show to be statistically-
close to a uniform authentication key due to the fact that the view, VE, of Eve cannot
significantly reduce the min-entropy of W . Therefore, the security of the message
authentication code guarantees that even after viewing the authentication tag σ′ =
MACkey(S

′) she has only a negligible probably of computing a valid authentication
tag σ = MACkey(S) for any S ̸= S ′.

Formally, the facts that: (1) nmExt is in particular a strong (k, ϵnmExt)-extractor,
(2) S ′ is independent of W and Y , and (3) Y is uniformly distributed, guarantee
that

SD ((key, Y, S ′) , (Uℓ, Y, S
′)) ≤ ϵnmExt .

Therefore, the probability that Eve (after viewing σ′ = MACkey(S
′)) computes a

valid authentication tag σ on any S ̸= S ′ with respect to authentication key key
differs by at most ϵnmExt from the probably ϵMAC that Eve computes a valid authen-
tication tag σ for any S ̸= S ′ with respect to a uniformly and independently chosen
authentication key:

Pr [σ = MACkey(S) | S ̸= S ′ ∧ Y ′ = Y ] ≤ ϵnmExt + ϵMAC .

Case 2.2: Y ̸= Y ′. In this case Eve views an authentication tag σ′ = MACkey′(S
′)

with respect to the authentication key key′ = nmExt(W,Y ′), and has to compute an
authentication tag σ = MACkey(S) for some S ̸= S ′ with respect to the authentica-
tion key key = nmExt(W,Y ). The property of the non-malleable extractor nmExt
guarantees that even if Eve was in fact given the authentication key key′ then from
her point of view, the authentication key key is ϵnmExt-close to an independently and
uniformly chosen key. For such a key Eve can compute such an authentication tag
σ with probability at most ϵMAC (and this in fact holds even if S = S ′).
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Formally, the facts that: (1) nmExt is a non-malleable (k, ϵnmExt)-extractor, (2) S
′ is

independent of W , Y , and key′, and (3) Y is uniformly distributed, guarantee that

SD ((key, Y, key′, S ′) , (Uℓ, Y, key
′, S ′)) ≤ ϵnmExt

which implies

Pr [σ = MACkey(S) | S ̸= S ′ ∧ Y ′ ̸= Y ] ≤ ϵnmExt + ϵMAC .

Combining cases 2.1 and 2.2 we obtain

Pr [σ = MACkey(S) | S ̸= S ′] ≤ ϵnmExt + ϵMAC .

Proof of Theorem 8.2. Given the length n of the weak source, the constant δ, and the
security parameter ϵ, we let ϵ′ = ϵExt = ϵnmExt = ϵMAC = ϵ/2, and instantiate our protocol
with the following explicit constructions:

1. Theorem 1.6 guarantees a non-malleable ((1/2 + δ)n, ϵnmExt)-extractor nmExt :
{0, 1}n × {0, 1}d1 → {0, 1}ℓ, where d1 = Θ(log n + log(1/ϵ)) and ℓ = Θ(log n +
log(1/ϵ)).

2. Theorem 3.2 guarantees a strong ((1/2 + δ)n − (d1 + ℓ) − log(1/ϵ′), ϵExt)-extractor
Ext : {0, 1}n × {0, 1}d2 → {0, 1}m, where d2 = Θ(n) and m = (1/2 + δ)n −
Θ(log n + log(1/ϵ)). In addition, Theorem 3.4 guarantees such a strong extrac-
tor where d2 = Θ(log2 n + log n · log(1/ϵ)), and therefore we in fact have d2 =
Θ(min

{
log2 n+ log n · log(1/ϵ), n

}
)

3. Theorem 3.7 guarantees an ϵMAC-secure MAC
{
MACkey : {0, 1}d2 → {0, 1}τ

}
key∈{0,1}ℓ

where τ = Θ(log n+ log(1/ϵ)) and ℓ = Θ(log n+ log(1/ϵ)).

By combining the above explicit constructions, the resulting privacy amplification proto-
col has security parameter max{ϵ′+ϵExt, ϵnmExt+ϵMAC} = ϵ, entropy loss (1/2+δ)n−m =
Θ(log n+ log(1/ϵ)), and communication complexity

d1 + d2 + τ = Θ(min
{
log2 n+ log n · log(1/ϵ), n

}
).

Proof of Theorem 8.3. The proof is identical to the proof of Theorem 8.2, where the
only difference is that we instantiate the strong extractor Ext using the one provided
by Theorem 3.3. Specifically, for any constants δ and β such that 1/2 + δ > β > 0,
Theorem 3.3 guarantees a strong ((1/2 + δ)n − (d1 + ℓ) − log(1/ϵ′), ϵExt)-extractor Ext :
{0, 1}n × {0, 1}d2 → {0, 1}m, where d2 = Θ(log n+ log(1/ϵ)) and

m =

(
1− β

1/2 + δ

)
((1/2 + δ)n− (d1 + ℓ)− log(1/ϵ′)) .

In turn, the resulting privacy amplification protocol has entropy loss (1/2 + δ)n −m =
βn+Θ(log n+log(1/ϵ)), and communication complexity d1+d2+τ = Θ(log n+log(1/ϵ)).
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