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Abstract

Cuckoo hashing is a highly practical dynamic dictionary: it provides amortized constant
insertion time, worst case constant deletion time and lookup time, and good memory utilization.
However, with a noticeable probability during the insertion of n elements some insertion requires
Ω(log n) time. Whereas such an amortized guarantee may be suitable for some applications, in
other applications (such as high-performance routing) this is highly undesirable.

Kirsch and Mitzenmacher (Allerton ’07) proposed a de-amortization of cuckoo hashing using
queueing techniques that preserve its attractive properties. They demonstrated a significant
improvement to the worst case performance of cuckoo hashing via experimental results, but left
open the problem of constructing a scheme with provable properties.

In this work we present a de-amortization of cuckoo hashing that provably guarantees con-
stant worst case operations. Specifically, for any sequence of polynomially many operations,
with overwhelming probability over the randomness of the initialization phase, each operation
is performed in constant time. In addition, we present a general approach for proving that
the performance guarantees are preserved when using hash functions with limited independence
instead of truly random hash functions. Our approach relies on a recent result of Braverman
(CCC ’09) showing that poly-logarithmic independence fools AC0 circuits, and may find addi-
tional applications in various similar settings. Our theoretical analysis and experimental results
indicate that the scheme is highly efficient, and provides a practical alternative to the only other
known approach for constructing dynamic dictionaries with such worst case guarantees, due to
Dietzfelbinger and Meyer auf der Heide (ICALP ’90).
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1 Introduction

A dynamic dictionary is a fundamental data structure used for maintaining a set of elements under
insertions and deletions, while supporting membership queries. The performance of a dynamic
dictionary is measured mainly by its update time, lookup time, and memory utilization. Extensive
research has been devoted over the years for studying dynamic dictionaries both on the theoretical
side by exploring upper and lower bounds on the performance guarantees, and on the practical side
by designing efficient dynamic dictionaries that are suitable for real-world applications.

The most efficient dictionaries, in theory and in practice, are based on various forms of hashing
techniques. Specifically, in this work we focus on cuckoo hashing, a hashing approach introduced by
Pagh and Rodler [PR04]. Cuckoo hashing is an efficient dynamic dictionary with highly practical
performance guarantees. It provides amortized constant insertion time, worst case constant deletion
time and lookup time, and good memory utilization. Additional attractive features of cuckoo
hashing are that no dynamic memory allocation is performed, and that the lookup procedure
queries only two memory entries which are independent and can be queried in parallel.

Although the insertion time of cuckoo hashing is essentially constant, with a noticeable proba-
bility during the insertion of n elements into the hash table, some insertion requires Ω(log n) time.
Whereas such an amortized performance guarantee is suitable for a wide range of applications, in
other applications this is highly undesirable. For these applications, the time per operation must
be bounded in the worst case, or at least, the probability that some operation requires a significant
amount of time must be negligible. For example, Kirsch and Mitzenmacher [KM07] considered the
context of router hardware, where hash tables implementing dynamic dictionaries are used for a
variety of operations, including various network measurements and monitoring tasks (see also the
work of Broder and Mitzenmacher [BM01] that focuses on the specific task of IP address lookups).
In this setting, routers must keep up with line speeds and memory accesses are at a premium.

Clocked adversaries. An additional motivation for the construction of dictionaries with worst
case guarantees on the time it takes to perform operations was first suggested by Lipton and
Naughton [LN93]. One of the basic assumptions in the analysis of probabilistic data structures
(first suggested by Carter and Wegman [CW79]) is that the elements that are inserted into the
data structure are chosen independently of the randomness used by the data structure. This
assumption is violated when the set of elements inserted might be influenced by the time it took
the data structure to complete previous operations. Such timing information may reveal sensitive
information on the randomness used by the data structure. For example, if the data structure is
used for an operating system, then the time a process took to perform an operation affects which
process is scheduled and that in turns affects the values of the inserted elements.

This motivates considering “clocked adversaries” – adversaries that can measure the exact time
for each operation. Lipton and Naughton actually showed that several dynamic hashing schemes are
susceptible to attacks by clocked adversaries, and demonstrated that clocked adversaries can identify
elements whose insertion results in poor running time. The concern regarding timing information
is even more acute in a cryptographic environment with an active adversary who might use timing
information to compromise the system. The adversary might use the timing information to figure
out sensitive information on the identity of the elements inserted, or as in the Lipton-Naughton
case, to come up with a bad set of elements where even the amortized performance is bad. Note
that timing attacks have been shown to be quite powerful and detrimental in cryptography (see,
for example, [Koc96, OST06] and the references therein). To combat such attacks, at the very least
we want the data structure to devote a fixed amount of time for each operation. There are further
concerns like cashing effects, but these are beyond the scope of this paper. Having a fixed upper
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bound on the time each operation (insert, delete, and lookup) takes, and an exact clock we can, in
principle, make the response for each operation be independent of the input and the randomness
used.

Dynamic real-time hashing. Dietzfelbinger and Meyer auf der Heide [DMadH90] constructed
the first dynamic dictionary with worst case time per operation and linear space (the construction is
based on the dynamic dictionary of Dietzfelbinger et al. [DKM+94]). Specifically, for any constant
c > 0 (determined prior to the initialization phase) and for any sequence of operations involving
n elements, with probability at least 1 − n−c each operation is performed in constant time (that
depends on c). While this construction is a significant theoretical contribution, it may be unsuitable
for highly demanding applications. Most notably, it suffers from hidden constant factors in its
running time and memory utilization, and from an inherently hierarchal structure. We are not
aware of any other dynamic dictionary with such provable performance guarantees which is not
based on the approach of Dietzfelbinger and Meyer auf der Heide (but see Section 1.2 for a discussion
on the hashing scheme of Dalal et al. [DDM+05]).

De-amortized cuckoo hashing. Motivated by the problem of constructing a practical dynamic
dictionary with constant worst-case operations, Kirsch and Mitzenmacher [KM07] recently sug-
gested an approach for de-amortizing the insertion time of cuckoo hashing, while essentially pre-
serving the attractive features of the scheme. Specifically, Kirsch and Mitzenmacher suggested an
approach for limiting the number of moves per insertion by using a small content-addressable me-
mory (CAM) as a queue for elements being moved. They demonstrated a significant improvement
to the worst case performance of cuckoo hashing via experimental results, but left open the problem
of constructing a scheme with provable properties.

1.1 Our Contributions

In this work we construct the first practical and efficient dynamic dictionary that provably supports
constant worst case operations. We follow the approach of Kirsch and Mitzenmacher [KM07] for
de-amortizing the insertion time of cuckoo hashing using a queue, while preserving many of the
attractive features of the scheme. Specifically, for any polynomial p(n) and constant ε > 0 the
parameters of our dictionary can be set such that the following properties hold1:

1. For any sequence of p(n) insertions, deletions, and lookups, in which at any point in time at
most n elements are stored in the data structure, with probability at least 1 − 1/p(n) each
operation is performed in constant time, where the probability is over the randomness of the
initialization phase2.

2. The memory utilization is essentially 50%. Specifically, the dictionary utilizes 2(1 + ε)n + nε

words.

An additional attractive property is that we never perform rehashing. In general, rehashing is
highly undesirable in practice for various reasons, and in particular, it significantly hurts the worst
case performance. We avoid rehashing by following the approach of Kirsch, Mitzenmacher and

1This is the same flavor of worst case guarantee as in the dynamic dictionary of Dietzfelbinger and Meyer auf der
Heide [DMadH90].

2We note that the non-constant lower bound of Sundar for the membership problem in deterministic dictionaries
implies that this type of guarantee is essentially the best possible (see [Sun91], and also the survey of Miltersen
[Mil99] who reports on [Sun93]).
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Wieder [KMW08] who suggested an augmentation to cuckoo hashing: exploiting a secondary data
structure for “stashing” problematic elements that cannot be otherwise stored. We show that in
our case, this can be achieved very efficiently by implicitly storing the stash inside the queue.

We provide a formal analysis of the worst-case performance of our dictionary, by generalizing
known results in the theory of random graphs. In addition, our analysis involves an application
of a recent result due to Braverman [Bra09], to prove that polylog(n)-wise independent hash func-
tions are sufficient for our dictionary. We note that this is a rather general technique, that may
find additional applications in various similar settings. Our extensive experimental results clearly
demonstrate that the scheme is highly practical. This seems to be the first dynamic dictionary that
simultaneously enjoys all of these properties.

1.2 Related Work

Cuckoo hashing. Several generalizations of cuckoo hashing circumvent the 50% memory uti-
lization barrier: Fotakis et al. [FPS+05] suggested to use more than two hash functions; Panigrahy
[Pan05] and Dietzfelbinger and Weidling [DW07] suggested to store more than one element in each
entry. These generalizations led to essentially optimal memory utilization, while preserving the
efficiency in terms of update time and lookup time.

Kirsch, Mitzenmacher and Wieder [KMW08] provided an augmentation to cuckoo hashing in
order to avoid rehashing. Their idea is to exploit a secondary data structure, referred to as a stash,
for storing elements that cannot be stored without rehashing. Kirsch et al. proved that for cuckoo
hashing with overwhelming probability the number of stashed elements is a very small constant.
This augmentation was a crucial ingredient in the work of Naor, Segev, and Wieder [NSW08], who
constructed a history independent variant of cuckoo hashing.

Very recently, Dietzfelbinger and Schellbach [DS09] showed that two natural classes of hash
functions, the multiplicative class and the class of linear functions over a prime field, lead to
large failure probability if applied in cuckoo hashing. This is in contrast to the positive result
of Mitzenmacher and Vadhan [MV08], who showed that pairwise independent hash functions are
sufficient, provided that the keys are sampled from a block source with sufficient Renyi entropy.

On the experimental side, Ross [Ros07] showed that optimized versions of cuckoo hashing
outperform optimized versions of quadratic probing and chained-bucket hashing (the latter is a
variant of chained hashing) on the Pentium 4 and Cell processors. Zukowski, Héman and Boncz
[ZHB06] compared between cuckoo hashing and chained-bucket hashing on the Pentium 4 and
Itanium 2 processors in the context of database workloads, also showing that cuckoo hashing is
superior.

Dictionaries with constant worst-case guarantees. Dalal et al. [DDM+05] suggested an
interesting alternative to the scheme of Dietzfelbinger and Meyer auf der Heide [DMadH90] by
combining the two-choice paradigm with chaining. For each entry in the table there is a doubly-
linked list and each element appears in one of two linked lists. In some sense the lists act as queues
for each entry. Their scheme provides worst case constant insertion time, and with high probability
lookup queries are performed in worst case constant time as well. However, their scheme is not fully
dynamic since it does not support deletions, has memory utilization lower than 20%, allows only
short sequences of insertions (no more than O(n log n), if one wants to preserve the performance
guarantees), and requires dynamic memory allocation. Since lookup requires traversing two linked
lists, it appears less practical than cuckoo hashing and its variants.

Demaine et al. [DMadHP+06] proposed a dynamic dictionary with memory consumption that
asymptotically matches the information-theoretic lower bound (i.e., n elements from a universe
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of size u are stored using O(n log(u/n)) bits instead of O(n log u) bits), where each operation is
performed in constant time with high probability. Their construction extends the dynamic dictio-
nary of Dietzfelbinger and Meyer auf der Heide [DMadH90], and is the first dynamic dictionary
that simultaneously provides asymptotically optimal memory consumption together with constant
time operations with high probability (in fact, when u ≥ n1+α for some constant α > 0, the
memory consumption of the dynamic dictionary of Dietzfelbinger and Meyer auf der Heide is al-
ready asymptotically optimal since in this case O(n log u) = O(n log(u/n)), and therefore Demaine
et al. only had to address the case u < n1+α). Note, however, that asymptotically optimal me-
mory consumption does not necessarily imply a practical memory utilization due to large hidden
constants.

1.3 Paper Organization

The remainder of this paper is organized as follows. In Section 2 we provide a high-level overview of
our construction. In Section 3 we formally describe the data structure. We provide the performance
analysis of our dictionary in Section 4. In Section 5 we extend the analysis to hash functions that
are polylog(n)-wise independent. The proof of the main technical lemma underlying our analysis
is presented in Section 6. In Section 7 we present experimental results. In Section 8 we discuss
concluding remarks and open problems.

2 Overview of the Construction

In this section we provide an overview of our construction. We first provide a high-level description
of cuckoo hashing, and of the approach of Kirsch and Mitzenmacher [KM07] for de-amortizing it.
Then, we present our approach together with the main ideas underlying its analysis.

Cuckoo hashing. Cuckoo hashing uses two tables T0 and T1, each consisting of r = (1 + ε)n
entries for some constant ε > 0, and two hash functions h0, h1 : U → {0, . . . , r − 1}. An element
x ∈ U is stored either in entry h0(x) of table T0 or in entry h1(x) of table T1, but never in both.
The lookup procedure is straightforward: when given an element x ∈ U , query the two possible
memory entries in which x may be stored. The deletion procedure deletes x from the entry in which
it is stored. As for insertions, Pagh and Rodler [PR04] proved that the “cuckoo approach”, kicking
other elements away until every element has its own “nest”, leads to a highly efficient insertion
procedure. More specifically, in order to insert an element x ∈ U we first query entry T0[h0(x)]. If
this entry is not occupied, we store x in that entry. Otherwise, we store x in that entry anyway, thus
making the previous occupant “nestless”. This element is then inserted to T1 in the same manner,
and so forth iteratively. We refer the reader to [PR04] for a more comprehensive description of
cuckoo hashing.

De-amortization using a queue. Although the amortized insertion time of cuckoo hashing is
constant, with a noticeable probability during the insertion of n elements into the hash table, some
insertion requires moving Ω(log n) elements before identifying an unoccupied entry. We follow the
approach of Kirsch and Mitzenmacher [KM07] for de-amortizing cuckoo hashing by using a queue.
The main idea underlying the construction of Kirsch and Mitzenmacher is as follows. A new element
is always inserted to the queue. Then, an element x is chosen from the queue, according to some
queueing policy, and is inserted into the tables. If this is the first insertion attempt for the element
x (i.e., x was never stored in one of the tables), then we store it in entry T0[h0(x)]. If this entry
is not occupied, we are done. Otherwise, the previous occupant y of that entry is inserted into the
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queue, together with an additional information bit specifying that the next insertion attempt for
y should begin with table T1. The queueing policy then determines the next element to be chosen
from the queue, and so on. To fully specify a scheme in the family suggested by [KM07] one then
needs to specify two issues: the queuing policy and the number of operations that are performed
upon the insertion of a new element. In their experiments, Kirsch and Mitzenmacher loaded the
queue with many insert operations, and let the system run. The number of operations that are
performed upon the insertion of a new element depends on the success (small queue size) of the
experiment.

Our approach. In this work we propose a de-amortization of cuckoo hashing that provably
guarantees worst case constant insertion time (with overwhelming probability over the randomness
of the initialization phase). Our insertion procedure is parameterized by a constant L, and is
defined as follows. Given a new element x ∈ U , we place the pair (x, 0) at the back of the queue
(the additional bit 0 indicates that the element should be inserted to table T0). Then, we carry out
the following procedure as long as no more than L moves are performed in the cuckoo tables: we
take the pair from the head of the queue, denoted (y, b), and place y in entry Tb[hb(y)]. If this entry
was unoccupied then we are done with the current element y, this is counted as one move and the
next element is fetched from the head of the queue. However, if the entry Tb[hb(y)] was occupied,
we place its previous occupant z in entry T1−b[h1−b(z)] and so on, as in the above description of
the standard cuckoo hashing. After L elements have been moved, we place the current “nestless”
element at the head of the queue, together with a bit indicating the next table to which it should
be inserted, and terminate the insertion procedure (note that it may take less than L moves, if the
queue becomes empty).

The deletion and lookup procedures are naturally defined by the property that any element x
is stored in one of T0[h0(x)] and T1[h1(x)], or in the queue. However, unlike the standard cuckoo
hashing, here it is not clear that these procedures run in constant time. It may be the case that the
insertion procedure causes the queue to contain many elements, and then the deletion and lookup
procedures of the queue will require a significant amount of time.

The main property underlying our construction is that the constant L (i.e., the number of
iterations of the insertion procedure) can be chosen such that with overwhelming probability the
queue does not contain more than a logarithmic number of elements at any point in time. In this
case we show that simple and efficient instantiations of the queue can indeed support insertions,
deletions and lookups in worst case constant time. This is proved by considering the distribution
of the cuckoo graph, formally defined as follows:

Definition 2.1. Given a set S ⊆ U and two hash functions h0, h1 : U → {0, . . . , r − 1},
the cuckoo graph is the bipartite graph G = (L,R, E), where L = R = {0, . . . , r − 1} and
E = {(h0(x), h1(x)) : x ∈ S}.

The main idea of our analysis is to consider log n insertions each time, and to examine the
total number of moves in the cuckoo graph that these log n insertions require. Our main technical
contribution in this setting is proving that the sum of sizes of any log n connected components in the
cuckoo graph is upper bounded by O(log n) with overwhelming probability. This is a generalization
of a well-known bound in graph theory on the size of a single connected component. A corollary
of this result is that in the standard cuckoo hashing the insertion of log n elements takes O(log n)
time with high probability (ignoring the problem of rehashing, which is discussed below).

Avoiding rehashing. It is rather easy to see that a set S can be successfully stored in the cuckoo
graph using hash functions h0 and h1 if and only if no connected component in the graph has more
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edges then nodes. In other words, every component contains at most one cycle (unicyclic). It is
known, however, that even if h0 and h1 are completely random functions, then with probability
Θ(1/n) there will be a connected component with more than one cycle. In this case the given
set cannot be stored using h0 and h1. The standard solution for this scenario is to choose new
functions and rehash the entire data. This significantly hurts the worst case performance of the
data structure (and is highly undesirable in practice for various other reasons).

To overcome this difficulty, we follow the approach of Kirsch et al. [KMW08] who suggested an
augmentation to cuckoo hashing in order to avoid rehashing: exploiting a secondary data structure,
referred to as a stash, for storing elements that create cycles, starting from the second cycle of each
component. That is, whenever an element is inserted into a unicyclic component and creates an
additional cycle in this component, the element is stashed. Kirsch et al. showed that this approach
performs remarkably well by proving that for any fixed set S of size n, the probability that at least
k elements are stashed is O(n−k) (see Lemma 4.5 in Section 4). In our setting, however, where the
data structure has to support delete operations in constant time, it is not straightforward to use a
stash explicitly. Specifically, for the stash to remain of constant size, after every delete operation
it may be required to move some element back from the stash to one of the two tables. Otherwise,
the analysis of Kirsch et al. on the size of the stash no longer holds when considering long sequences
of operations on the data structure.

We overcome this difficulty by storing the stashed elements in the queue. That is, whenever we
identify an element that closes a second cycle in the cuckoo graph, this element is placed at the
back of the queue. Very informally, this guarantees that any stashed element is given a chance to
be inserted back to the tables after essentially log n invocations of the insertion procedure. This
implies that the number of stashed elements in the queue roughly corresponds to the number of
elements that close a second cycle in the cuckoo graph at any point in time (up to intervals of logn
insertions). We can then use the result of Kirsch et al. [KMW08] to argue that there is a very small
number of such elements in the queue at any point.

For detecting cycles in the cuckoo graph we implement a simple cycle detection mechanism
(CDM), as suggested by Kirsch et al. [KMW08]. When inserting an element we insert to the CDM
all the elements that are encountered in its connected component during the insertion process.
Once we identify that a component has more than one cycle we stash the current nestless element
(i.e., place it in the back of the queue), and reset the CDM to its initial configuration. We note that
in the classical cuckoo hashing cycles are detected by allowing the insertion procedure to run for
O(log n) steps, and then announcing failure (which is followed by rehashing). In our case, however,
it is crucial that a cycle is detected in time that is linear in the size of its connected component in
the cuckoo graph.

Using polylog(n)-wise independent hash functions. When analyzing the performance of
our scheme, we first assume the availability of truly random hash functions. Then, we apply
a recent result of Braverman [Bra09] and show that the same performance guarantees hold when
instantiating our scheme with hash functions that are only polylog(n)-wise independent (see [DW03,
OP03, Sie89] for efficient constructions of such functions with succinct representations and constant
evaluation time). Informally, Braverman proved that for any Boolean circuit C of depth d, size
m, and unbounded fan-in, and for any k-wise distribution X with k = (log m)O(d2), it holds that
E[C(Un)] ≈ E[C(X)]. That is, X “fools” the circuit C into behaving as if X is the uniform
distribution Un over {0, 1}n.

Specifically, in our analysis we define a “bad” event with respect to the hash values of h0 and
h1, and prove that: (1) this event occurs with probability at most n−c (for an arbitrarily large
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constant c) assuming truly random hash functions, and (2) as long as this event does not occur
each operation is performed in constant time. We show that this event can be recognized by a
Boolean circuit of constant depth, size m = nO(log n), and unbounded fan-in. In turn, Braverman’s
result implies that it suffices to use k-wise independent hash functions for k = polylog(n).

We note that applying Braverman’s result in such setting is quite a general technique and may
be found useful in other similar scenarios. In particular, our argument implies that the same holds
for the analysis of Kirsch et al. [KMW08], who proved the above-mentioned bound on the number
of stashed elements assuming that the underlying hash functions are truly random.

3 The Data Structure

As discussed in Section 2, our data structure uses two tables T0 and T1, and two auxiliary data
structures: a queue, and a cycle-detection mechanism. Each table consists of r = (1 + ε)n entries
for some small constant ε > 0. Elements are inserted into the tables using two hash functions
h0, h1 : U → {0, . . . , r− 1}, which are independently chosen at the initialization phase. We assume
that the auxiliary data structures satisfy the following properties (we emphasize that these data
structures will contain a very small number of elements with overwhelming probability, and in
Section 3.1 we propose simple instantiations):

1. The queue is constructed to store at most O(log n) elements at any point in time. It should
support the operations Lookup, Delete, PushBack, PushFront, and PopFront in worst-case
constant time (with overwhelming probability over the randomness of its initialization phase).

2. The cycle-detection mechanism is constructed to store at most O(log n) elements at any point
in time. It should support the operations Lookup, Insert and Reset in worst-case constant
time (with overwhelming probability over the randomness of its initialization phase).

An element x ∈ U can be stored in exactly one out of three possible places: entry h0(x) of
table T0, entry h1(x) of table T1, or the queue. The lookup procedure is straightforward: when
given an element x ∈ U , query the two tables and if needed, perform lookups in the queue. The
deletion procedure is also straightforward by first searching for the element, and then deleting it.
The insertion procedure was essentially already described in Section 2. A formal description of
these procedures is provided in Figure 1 and a schematic diagram of the whole data structure is
presented in Figure 2.

In Section 4 we analyze the performance of the data structure, and prove the following theorem:

Theorem 3.1. For any polynomial p(n) and constant ε > 0, the parameters of the dictionary can
be set such that the following properties hold:

1. For any sequence of at most p(n) insertions, deletions, and lookups, in which at any point in
time at most n elements are stored in the dictionary, with probability at least 1− 1/p(n) each
operation is performed in constant time, where the probability is over the randomness of the
initialization phase.

2. The dictionary utilizes 2(1 + ε)n + nε words.
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Initialize():

1: for i = 0 to r − 1 do
2: T0[i] ←⊥
3: T1[i] ←⊥
4: InitializeQueue()
5: InitializeCDM()

Lookup(x):

1: if T0[h0(x)] = x or T1[h1(x)] = x then
2: return true
3: if LookupQueue(x) then
4: return true
5: return false

Delete(x):

1: if T0[h0(x)] = x then
2: T0[h0(x)] ←⊥
3: return
4: if T1[h1(x)] = x then
5: T1[h1(x)] ←⊥
6: return
7: DeleteFromQueue(x)

Insert(x):

1: InsertIntoBackOfQueue(x, 0)
2: y ←⊥ // y denotes the current element we work with
3: for i = 1 to L do
4: if y =⊥ then // Fetching element y from the head of the queue
5: if IsQueueEmpty() then
6: return
7: else
8: (y, b) ← PopFromQueue()
9: if Tb[hb(y)] =⊥ then // Successful insert

10: Tb[hb(y)] ← y
11: ResetCDM()
12: y ←⊥
13: else
14: if LookupInCDM(y, b) then // Found the second cycle
15: InsertIntoBackOfQueue(y, b)
16: ResetCDM()
17: y ←⊥
18: else // Evict existing element
19: z ← Tb[hb(y)]
20: Tb[hb(y)] ← y
21: InsertIntoCDM(y, b)
22: y ← z
23: b ← 1− b
24: if y 6=⊥ then
25: InsertIntoHeadOfQueue(y, b)

Figure 1: The Initialize, LookUp, Delete and Insert procedures.
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Figure 2: A schematic diagram of our dictionary.

3.1 The Auxiliary Data Structures

We propose simple instantiations for the auxiliary data structures. Any other instantiations that
satisfy the above-mentioned properties are also possible.

The queue. In Section 4 we will argue that with overwhelming probability the queue contains
at most O(log n) elements at any point in time. Therefore, we design the queue to store at most
O(log n) elements, and allow the whole data structure to fail if the queue overflows. Although a
classical queue can support the operations PushBack, PushHead, and PopFront in constant time, we
also need to support the operations Lookup and Delete in constant time. One possible instantiation
is to use a constant number k arrays A1, . . . , Ak each of size nδ, for some δ < 1. Each entry of these
arrays consists of a data element, a pointer to the previous element in the queue, and a pointer
to the next element in the queue. In addition we maintain two global pointers: the first points to
the head of the queue, and the second points to the end of the queue. The elements are stored
using a function h chosen from a collection of pairwise independent hash functions. Specifically,
each element x is stored in the first available entry amongst {A1[h(1, x)], . . . , Ak[h(k, x)]}. For any
element x, the probability that all of its k possible entries are occupied when the queue contains
at most m = O(log n) elements is upper bounded by (m/nδ)k, which can be made as small as n−c

for any constant c by choosing an appropriate constant k.

The cycle-detection mechanism. As in the case of the queue, in Section 4 we will argue that
with overwhelming probability the cycle-detection mechanism contains at most O(log n) elements
at any point in time. Therefore, we design the cycle-detection mechanism to store at most O(log n)
elements, and allow the whole data structure to fail if the cycle-detection mechanism overflows.
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One possible instantiation is to use the above-mentioned instantiation of the queue together with
any standard augmentation that enables constant time resets (see, for example, [BT93]).

4 Performance Analysis

In this section we prove Theorem 3.1. In terms of memory utilization, each of the two tables T0

and T1 has (1 + ε)n entries, and the auxiliary data structures (as suggested in Section 3.1) require
sublinear space. Therefore, the memory utilization is essentially 50%, as in the standard cuckoo
hashing. In terms of running time, we say that the auxiliary data structures overflow if either
the queue or the cycle-detection mechanism contain more than O(log n) elements. We show that
as long as the auxiliary data structures do not fail or overflow, all operations are performed in
constant time. As suggested in Section 3.1, for any constant c the auxiliary data structures can be
constructed such that they fail with probability less than n−c, and therefore we only need to bound
the probability of overflow. We deal with each of the auxiliary data structures separately. For the
remainder of the analysis we introduce the following definition and notation:

Definition 4.1. A sequence π of insert, delete and lookup operations is n-bounded if at any point
in time during the execution of π the data structure contains at most n elements.

Notation 4.2. For an element x ∈ U we denote by CS,h0,h1(x) the connected component that
contains the edge (h0(x), h1(x)) in the cuckoo graph of the set S ⊆ U with functions h0 and h1.

We prove the following theorem:

Theorem 4.3. For any polynomial p(n) and any constant ε > 0, there exists a constant L such
that when instantiating the data structure with parameters ε and L the following holds: For any
n-bounded sequence of operations π of length at most p(n), with probability 1−1/p(n) over the coin
tosses of the initialization phase the auxiliary data structures do not overflow during the execution
of π.

We define two “good” events, and show that as long as these events occur, then the queue and
the cycle-detection mechanism do not overflow. Let π be an n-bounded sequence of p(n) operations.
Denote by (x1, . . . , xN ) the elements inserted by π in reverse order. Note that between any two
insertions π may perform several deletions, and therefore an element may appear more than once.
For any integer 1 ≤ j ≤ N/ log n, denote by Sj the set of elements that are stored in the data struc-
ture just before the insertion of x(j−1) log n+1, together with the elements {x(j−1) log n+1, . . . , xj log n}.
That is, the set Sj contains the result of executing π up to xj log n while ignoring any deletions that
occur between x(j−1) log n and xj log n. Note that since π is an n-bounded sequence, we have that
|Sj | ≤ n + log n for all j’s. In Section 6 we prove the following lemma, which is the main technical
tool in the proof of Theorem 4.3:

Lemma 4.4. For any constants ε, c1 > 0 and any integer T ≤ log n there exists a constant c2, such
that for any set S ⊆ U of size n and for any x1, . . . , xT ∈ S it holds that

Pr

[
T∑

i=1

|CS,h0,h1(xi)| ≥ c2T

]
≤ exp(−c1T ) ,

where the probability is taken over the random choice of the functions h0, h1 : U → {0, . . . , r − 1},
for r = (1 + ε)n.
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We now define the good events. Denote by E1 the event in which for every 1 ≤ j ≤ N/ log n it
holds that

log n∑

i=1

∣∣CSj ,h0,h1(x(j−1) log n+i)
∣∣ ≤ c2 log n .

An appropriate choice of the constant c1 in Lemma 4.4 and a union bound imply that the event
E1 occurs with probability at least 1 − n−c. A minor technical detail is that Lemma 4.4 is stated
for sets S of size at most n (for simplicity), whereas the Sj ’s are of size at most n + log n. This,
however, is easily fixed by replacing ε with ε′ = 2ε in the statement of the lemma.

In addition, denote by stash(Sj , h0, h1) the number of stashed elements (as discussed in Section
2) in the cuckoo graph of Sj with hash functions h0 and h1. Denote by E2 the event in which for
every 1 ≤ j ≤ N/ log n it holds that stash(Sj , h0, h1) ≤ k. The following lemma of Kirsch et al.
[KMW08] implies that the constant k can be chosen such that the probability of the event E2 is at
least 1− n−c (we note that the above comment on n vs. n + log n holds here as well).

Lemma 4.5 ([KMW08]). For any set S ⊆ U of size n, the probability that the stash contains at
least k elements is O(n−k), where the probability is taken over the random choice of the functions
h0, h1 : U → {0, . . . , r − 1}, for r = (1 + ε)n.

The following claims prove Theorem 4.3:

Claim 4.6. Let π be an n-bounded sequence of p(n) operations. Assuming that the events E1 and
E2 occur, then during the execution of π the queue does not contain more than 2 log n + k elements
at any point in time.

Claim 4.7. Let π be an n-bounded sequence of p(n) operations. Assuming that the events E1 and
E2 occur, then during the execution of π the cycle-detection mechanism does not contain more than
(c2 + 1) log n elements at any point in time.

Proof of Claim 4.6. We prove by induction on j, that at the time xj log n+1 is inserted into the
queue, there are no more than log n + k elements in the queue. This clearly implies that at any
point in time there are at most 2 log n + k elements in the queue.

For j = 1 we observe that there are at most log n elements in the data structure at that point
in time. In particular, there are at most log n elements in the queue.

Assume that the statement holds for some j, and we prove that it holds also for j + 1. The
inductive hypothesis states that at the time xj log n+1 is inserted, the queue contains at most log n+k
elements. In the worst case, these elements are {x(j−1) log n+1, . . . , xj log n} together with some
additional k elements. It is rather straightforward that the number of moves in the cuckoo graph
that are required for inserting an element is at most the size of its connected component. Therefore,
the event E1 implies that the elements {x(j−1) log n+1, . . . , xj log n} can be inserted in c2 log n moves,
and that each of the additional k elements can be inserted in at most c2 log n moves. Therefore,
these log n + k elements can be inserted in c2 log n + kc2 log n moves. By choosing the constant L
such that L log n ≥ c2 log n + kc2 log n it is guaranteed that by the time the element x(j+1) log n+1

is inserted, these log n + k elements will be inserted into the tables, and at most k of them with
be stored in the queue due to second cycles in the cuckoo graph (due to event E2). Thus, by
the time the element x(j+1) log n+1 is inserted, the queue contains (in the worst case) the elements
{xj log n+1, . . . , x(j+1) log n}, and some additional k elements.
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Proof of Claim 4.7. At any point in time the cycle-detection mechanism contains elements
from exactly one connected component in the cuckoo graph. Therefore, at any point in time the
number of elements stored in the cycle-detection mechanism is at most the number of element in the
maximal connected component. The event E1 guarantees that there is no set Sj with a connected
component containing more than c2 log n elements. Between the Sj ’s, at most log n elements are
inserted, and this guarantees that at any point in time the cycle-detection mechanism does not
contain more than (c2 + 1) log n elements.

5 Using polylog(n)-wise Independent Hash Functions

The proof provided in Section 4 for our main theorem relies on Lemmata 4.4 and 4.5 on the
structure of the cuckoo graph. These lemmata are the only part of the proof in which the amount
of independence of the hash functions h0 and h1 is taken into consideration. Briefly, Lemma 4.4
states that the probability that the sum of sizes of T connected components in the cuckoo graph
exceeds cT is exponentially small (for T ≤ log n), and in Section 6 we prove this lemma for truly
random hash functions. Lemma 4.5 states that for any set of n elements, the probability that the
stash contains at least k elements is O(n−k), and this Lemma was proved by Kirsch et al. [KMW08]
for truly random hash functions.

In this section we show that these two lemmata hold even if h0 and h1 are sampled from a
family of polylog(n)-wise independent hash functions. We apply a recent result of Braverman
[Bra09] (which is a significant extension of prior work of Bazzi [Baz09] and Razborov [Raz09]),
and note that this approach is quite a general technique and may be found useful in other similar
scenarios. Braverman proved that for any Boolean circuit C of depth d, size m, and unbounded
fan-in, and for any r-wise distribution X with r = (log m)O(d2), it holds that E[C(Un)] ≈ E[C(X)].
That is, X “fools” the circuit C into behaving as if X is the uniform distribution Un over {0, 1}n.
More formally, Braverman proved the following theorem:

Theorem 5.1 ([Bra09]). Let s ≥ log m be any parameter. Let F be a boolean function computed
by a circuit of depth d and size m. Let µ be an r-independent distribution where

r ≥ 3 · 60d+3 · (log m)(d+1)(d+3) · sd(d+3) ,

then
|Eµ[F ]− E[F ]| < ε(s, d) ,

where ε(s, d) = 0.82s · 15m.

In our analysis in Section 4 we defined two “bad” events with respect to the hash values of h0

and h1. The first event corresponds to Lemma 4.4 and the second event corresponds to Lemma
4.5:

Event 1: There exists a set S of T ≤ log n vertices in the cuckoo graph, such that the sum of sizes
of the connected components of the vertices in S is larger than cT , for some constant c (this
is the complement of the event E1 defined in Section 4).

Event 2: There exists a set S of at most n vertices in the cuckoo graph, such that the number
of stashed elements from the set S exceeds some constant k (this is the complement of the
event E2 defined in Section 4).

In what follows we show that these two events can be recognized by constant-depth and quasi-
polynomial size Boolean circuits, which will enable us to apply Theorem 5.1 to get the desired
result. The input wires of our circuits contain the values h0(x1), h1(x1), . . . , h0(xn), h1(xn) (where
the xi’s represent the elements inserted into the data structure).
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Identifying event 1. This event occurs if and only if the graph contains at least one forest from
a specific set of forests of the bipartite graph on [r]× [r], where r = (1 + ε)n. We denote this set of
forests by Fn, and observe that Fn is a subset of all forests with at most cT +1 = O(log n) vertices,
which implies that |Fn| = nO(log n). Therefore, the event can be identified by a constant-depth
circuit of size nO(log n) that simply enumerates all forests F ∈ Fn, and for every such forest F the
circuit checks whether it exists in the graph:

∨

F∈Fn

∧

(u,v)∈F

n∨

i=1

[(
h0(xi) = u ∧ h1(xi) = v

)
∨

(
h0(xi) = v ∧ h1(xi) = u

)]
(5.1)

Identifying event 2. For identifying this event we go over all subsets S′ ⊆ {x1, . . . , xn} of size k,
and for every such subset we check whether all of its elements are stashed. Note, however, that the
set of stashed elements is not uniquely defined: given a connected component with two cycles, any
element on one of the cycles can be stashed. Therefore, we find it natural to define a “canonical” set
of stashed elements, as suggested by Naor et al. [NSW08]: given a connected component with more
than one cycle we iteratively stash the largest edge that lies in a cycle (according to some ordering),
until the component contains only one cycle3. Specifically, given an element x ∈ S′ we enumerate
over all connected components in which the edge (h0(x), h1(x)) is stashed according to the canonical
rule above, and check whether the component exists in the cuckoo graph (as in Equation (5.1)).
Note that k is constant and that we can restrict ourselves to connected components with O(log n)
vertices (since we can assume that event 1 above does not occur). Therefore, the resulting circuit
is of constant depth and size nO(log n).

6 Proof of Lemma 4.4 – Size of Connected Components

In this section we prove Lemma 4.4 that states a property on the structure of the cuckoo graph.
Specifically, we are interested in bounding the sum of sizes of several connected components in the
graph.

Recall (Definition 2.1) that the cuckoo graph is a bipartite graph G = (L,R, E) with L = R = [n]
and (1 − ε)n edges, where each edge is chosen independently and uniformly at random from the
set L×R (note that the number of distinct edges may be less than (1− ε)n). The distribution of
the cuckoo graph is very close (in some sense that will be formalized later on) to the well-studied
distribution G(n, n, M) on bipartite graphs G = (L,R, E) where L = R = [n] and E is a set of
exactly M = (1− ε)n edges that is chosen uniformly at random from all subsets of size M of L×R.
Thus, the proof essentially reduces to consider the random graph model G(n, n, M).

Our proof is a generalization of a well-known proof for the size of a single connected component
(see, for example, [JÃLR00, Theorem 5.4]). We first prove a similar lemma for the distribution
G(n, n, p) on bipartite graphs G = ([n], [n], E) where each edge is independently chosen with pro-
bability p (Section 6.1). Then we apply a standard argument to show that the same holds for the
distribution G(n, n, M) (Section 6.2). Finally, we prove that the lemma holds for the distribution
of the cuckoo graph as well.

6.1 The G(n, n, p) Case

In what follows, given a graph G and a vertex v we denote by CG(v) the connected component of
v in G. We prove the following lemma:

3We emphasize that this is only for simplifying the analysis, and not to be used by the actual data structure.
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Lemma 6.1. Let np = c for some constant 0 < c < 1. For any integer T ≤ log n and any constant
c1 > 0 there exists a constant c2, such that for any vertices v1, . . . , vT ∈ L ∪R

Pr

[
T∑

i=1

|CG(vi)| ≥ c2T

]
≤ exp(−c1T ) ,

where the graph G = (L,R, E) is sampled from G(n, n, p).

We begin by proving a slightly weaker claim that bounds the size of the union of several
connected components:

Lemma 6.2. Let np = c for some constant 0 < c < 1. For any integer T ≤ log n and any constant
c1 > 0 there exists a constant c2, such that for any vertices v1, . . . , vT ∈ L ∪R

Pr

[∣∣∣∣∣
T⋃

i=1

CG(vi)

∣∣∣∣∣ ≥ c2T

]
≤ exp(−c1T ) ,

where the graph G = (L,R, E) is sampled from G(n, n, p).

Proof. We will look at the random graph process that led to our graph G. Specifically, we
will focus on the set S = {v1, . . . , vT } and analyze the process of growth of the components
CG(v1), CG(v2), . . . , CG(vT ) as G evolves.

Informally, we divide the evolution process of G into layers (where in every layer there is a
number of steps). The first layer consists of the vertices in S. The second layer consists of all the
vertices in G that are the neighbors of the vertices in S. In general, the ith layer consists of vertices
that are neighbors of all the vertices in the previous layer i−1 (excluding the vertices in layer i−2,
which are also the neighbors of layer i − 1, but were already accounted for). This is, in fact, the
BFS tree of the graph H ,

⋃T
i=1 CG(vi). See Figure 3.

v
1

v
T

...

...

Layer 1

Layer 2

..
.

Layer i

..
.

v
2

C(v
1
) C(v

T
)C(v

2
)

Figure 3: The layered view of our random graph evolution.
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So instead of developing each of the connected components CG(vi) separately, edge by edge, we
do it “in parallel” – layer by layer. We start with the set of T isolated vertices, which was denoted
by S, and develop the neighbors of every vi in turn: first we connect to v1 its neighbors in CG(v1)
(if they exist), then we connect to v2 its neighbors in CG(v2) (if they exist), and so on, concluding
with the neighbors of vT . At this point we are through with layer 2. Next, we go over the vertices
in layer 2, connecting each of them with their respective neighbors in layer 3. We finish the whole
process when we discover all of the vertices in H.

Whenever we add an edge to some vertex in the above process, there are two possibilities:

1. The added edge had contributed an additional vertex to exactly one of the components
CG(v1), CG(v2), . . . , CG(vT ). In this case we will add this vertex and increase the size of the
appropriate CG(vi) by one.

2. The added edge merged any two of the components CG(vi) and CG(vj). In this case we
will merge these components into a single component CG(vi) (without loss of generality) and
forget about CG(vj). Note that this means that we count each vertex in the set H exactly
once.

So formally, let us denote for every step i in the process

Xi ,
{
The number of new vertices we add in step i

}

Xi is dominated by a random variable Yi, where all Yi have the same binomial distribution
Bi(n, p). Yi are independent, since we never develop two components with a common edge in the
same step `, but rather merge them (if the common edge had appeared in some step j < `, the two
components would have been merged in step j, and if the common edge had appeared in step `,
then until that moment (inclusive) Y` and Yj still behave as two independent binomial variables).

The stochastic process described above is known as Galton-Watson process. The probability
that a given vertex v belongs to a component of size at least k = k(n) is bounded from above by
the probability that the sum of k random variables Yi is at least k − T . Formally,

Pr
[
|H| ≥ k

]
≤ Pr

[
k∑

i=1

Yi ≥ k − T

]

In our case k = c2T , and since
∑c2T

i=1 Yi ∼ Bi(c2Tn, p), the expectation of this sum is c2Tnp = c2Tc,
due to the assumption np = c. Consequently, we need to bound the following deviation from the
mean:

Pr

[
c2T∑

i=1

Yi ≥ c2T − T

]
= Pr

[
c2T∑

i=1

Yi ≥ c2Tc + (1− c)c2T − T

]

This deviation is positive if we choose c2 > 1
1−c . Using Chernoff bound we obtain:

Pr

[
c2T∑

i=1

Yi ≥ c2Tc + (1− c)c2T − T

]
≤ exp


− ((1− c)c2T − T )2

2
(
c2Tc + (1−c)c2T−T

3

)



An easy calculation shows that

exp


− ((1− c)c2T − T )2

2
(
c2Tc + (1−c)c2T−T

3

)

 ≤ exp (−c1T ) ,
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when choosing c2 ≥ max
{

1
1−c ,

c1+3/2
3c+3/2

}
.

Proof of Lemma 6.1. In general, a bound on
∣∣∣⋃T

i=1 CG(vi)
∣∣∣ does not imply a similar bound on

∑T
i=1 |CG(vi)|. In our case, however, for T ≤ log n we can argue that with high probability the two

are related up to a constant multiplicative factor.
For a constant c3, we denote by Same(c3) the event in which some c3 vertices from the set

{v1, . . . , vT } are in the same connected component. Then,

Pr

[
Same(c3)

∣∣∣∣∣

∣∣∣∣∣
T⋃

i=1

CG(vi)

∣∣∣∣∣ ≤ c2T

]
≤ T ·

(
T

c3

)
·
(

c2T

n

)c3

≤ (c2e)
c3 · T 2c3+1

cc3
3 · nc3

(6.1)

In the right-hand side of the first inequality, the first term comes from the union bound on the T
components, the second term counts the number of possible arrangements of the c3 vertices inside
the component, and the last term is the probability that all the c3 vertices fall into this specific
component. In addition,

Pr

[
T∑

i=1

|CG(vi)| > c2c3T

]
≤ Pr

[∣∣∣∣∣
T⋃

i=1

CG(vi)

∣∣∣∣∣ > c2T
∨

Same(c3)

]

≤ Pr

[∣∣∣∣∣
T⋃

i=1

CG(vi)

∣∣∣∣∣ > c2T

]
+ Pr

[
Same(c3)

∣∣∣∣∣

∣∣∣∣∣
T⋃

i=1

CG(vi)

∣∣∣∣∣ ≤ c2T

]
(6.2)

Combining the result of Lemma 6.2 with (6.1) yields:

(6.2) ≤ exp(−c1T ) +
(c2e)

c3 · T 2c3+1

cc3
3 · nc3

(6.3)

Therefore, for T ≤ log n there exist constants c4 and c5 such that

(6.3) ≤ exp(−c1T ) + exp(−c4T ) ≤ exp(−c5T )

6.2 The G(n, n, M) Case

The following claim is a straightforward generalization of the well-known relationship between
G(n, p) and G(n,M) (see, for example, [Bol85, Theorem II.2]):

Lemma 6.3. Let Q be any graph property and suppose 0 < p = M/n2 < 1. Then,

Pr
G(n,n,M)

[Q] ≤ e1/(6M)
√

2πp(1− p)n2 Pr
G(n,n,p)

[Q]

Proof. For any graph property Q the following holds:

Pr
G(n,n,p)

[Q]
=

n2∑

m=0

Pr
G(n,n,m)

[Q] ·
(

n2

m

)
pm(1− p)n2−m
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and by fixing m = M we get:

Pr
G(n,n,p)

[Q] ≥ Pr
G(n,n,M)

[Q] ·
(

n2

M

)
pM (1− p)n2−M (6.4)

By using the following inequality (for instance, cf. [Bol85, inequality (5) in I.1])

(
n2

M

)
≥ 1

e1/(6M)
√

2π

(
n2

M

)M (
n2

n2 −M

)n2−M
√

n2

M(n2 −M)

and the fact that p = M/n2 we get:

(6.4) ≥ PrG(n,n,M)

[Q]

e1/(6M)
√

2πp(1− p)n2

Lemma 6.1 and Lemma 6.3 yield the following corollary:

Corollary 6.4. Fix n and M such that M < n. For any integer T ≤ log n and any constant c1 > 0
there exists a constant c2, such that for any vertices v1, . . . , vT ∈ L ∪R

Pr

[
T∑

i=1

|CG(vi)| ≥ c2T

]
≤ exp(−c1T ) ,

where the graph G = (L,R, E) is sampled from G(n, n, M).

Proof of Lemma 4.4. The distribution of the cuckoo graph given the fact |E| = M ′ is identical
to the distribution of G(n, n, M ′). Let us sample the graph G1 from G(n, n, M ′) and the graph
G2 from G(n, n,M), such that M ′ ≤ M and assume that G1 and G2 were sampled such that they
both satisfy the conditions of Corollary 6.4. Then

Pr

[
T∑

i=1

|CG1(vi)| ≥ c2T

]
≤ Pr

[
T∑

i=1

|CG2(ui)| ≥ c2T

]
,

for vi ∈ V (G1) and ui ∈ V (G2) and under the conditions of Corollary 6.4. This is because the
probability, that the sum of sizes of connected components is larger than a certain threshold, grows
as we add edges to the graph in the course of the random graph process. Since in the cuckoo graph
there are at most (1− ε)n edges and L = R = [n], Lemma 4.4 follows.

7 Experimental Results

In this section we demonstrate via experiments that our data structure is indeed very efficient, and
can be used in practice. For simplicity, in our experiments we did not implement a cycle-detection
mechanism, and used a fixed threshold instead: whenever the “age” of an element exceeded the
threshold, we considered this element as a part of a second cycle in its connected component (this
policy was suggested by Kirsch at el. [KMW08]). We note that this approach can only hurt the
performance of our data structure, but our experimental results indicate that there is essentially
no loss in forcing this simple policy. For the hash functions we used the keyed variant of the
SHA-1 hash function, due to its good performance and freely available optimized versions. Figure
4 presents the parameters of our experiments.
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Parameter Meaning
n The number of elements
ε The stretch factor for each table

MaxIter The number of moves before stashing an element

L
The number of iterations we perform per insert
operation

NumOfRuns The number of times we repeat the experiment

Figure 4: The parameters of our experiments.
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Figure 5: The insertion time of classical cuckoo hashing vs. our dictionary for ε = 0.2.

Figure 5 presents a comparison between the insertion time of our scheme and the classical
cuckoo hashing. In both cases we created a pseudorandom permutation σ ∈ Sn, and executed n
insert operations, where in step i the element σ(i) was inserted. The insertion time is measured as
the length of the path that an element has traversed in the cuckoo graph. For the classical cuckoo
hashing we show three curves: the average insertion time, the maximal insertion time and the
average maximal insertion time. For our dictionary, the maximal insertion time is plotted, which
was set to 3. We used ε = 0.2, and NumOfRuns was 100000 for n = 10, . . . , 300000 and 1000
for n = 400000, . . . , 50000000 (the vertical line indicates the transition point). The drop after the
transition point in the curve of the maximal insertion time is explained, as we conjecture, by the
decrease in the NumOfRuns (similar remark applies also to Figure 6).
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Figure 6: The size of the queue in our dictionary for ε = 0.2.

Figure 6 shows the size of the queue in our dictionary for ε = 0.2. We show the average size, the
maximal size and the average maximum. As before, the vertical line indicates the transition point
in NumOfRuns. Note that the scale in the graphs is logarithmic (more precisely, log-lin scale),
since we wanted to show the results for the whole range of n’s.

We observed a connection between the average maximal size of the queue in our dictionary and
the average maximal insertion time in the classical cuckoo hashing: both behaved very close to
c log2 n for c < 2.3. Our experiments showed an excellent performance of our dictionary. After
trying different values of L we observed that a value as small as 3 is sufficient. This clearly
demonstrates that adding an auxiliary memory of small (up to logarithmic) size reduces the worst
case insertion time from logarithmic to a tiny constant.

8 Concluding Remarks

Clocked adversaries. The worst case guarantees of our dictionary are important if one wishes to
protect against “clocked adversaries”, as discussed in Section 1. In the traditional RAM model, such
guarantees are also sufficient for protecting against such attacks. However, for modern computer
architectures the RAM model has limited applicability, and is nowadays replaced by more accurate
hierarchical models (see, for example, [AAC+87]), that capture the effect of several cache levels.
Although our construction enables the “brute force” solution that measures the exact time every
operation takes (see Section 1), a more elegant solution is desirable, which will make a better
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utilization of the cache hierarchy. We believe that our dictionary is an important step in this
direction.

Memory utilization. Our construction achieves memory utilization of essentially 50%. More
efficient variants of cuckoo hashing [FPS+05, Pan05, DW07] circumvent the 50% barrier and achieve
better memory utilization by either using more than two hash functions, or storing more than one
element in each entry. As demonstrated by Kirsch and Mitzenmacher [KM07], queue-based de-
amortization performs very well in practice on these generalized variants, and it would be interesting
to extend our analysis to these variants.

Optimal memory consumption. The memory consumption of our dictionary is 2(1 + ε)n + nε

words, and each word is represented using log u bits where u is the size of the universe of ele-
ments (recall Theorem 3.1). As discussed in Section 1.2, when u ≥ n1+α for some constant
α > 0, this asymptotically matches the information-theoretic lower bound since in this case
O(n log u) = O(n log(u/n)). An interesting open problem is to construct a dynamic dictionary
with asymptotically optimal memory consumption also for u < n1+α that will provide a practical
alternative to the construction of Demaine et al. [DMadHP+06].
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