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Abstract

We observe a classical data compression algorithm due to Lempel and Ziv, well-known
to achieve asymptotically optimal compression on a wide family of sources (stationary and
ergodic), to perform reasonably well even on short inputs, provided the source is memoryless.
More precisely, given a discrete memoryless source with large alphabet and entropy bounded
away from zero, and a source sequence whose length is a fraction of the alphabet size, the
length of the compressed sequence approximates the entropy of the source, up to a constant
multiplicative factor.

1 Introduction

The universal compression scheme of Lempel and Ziv [10], also known as the ’LZ78’ algorithm,
is well known to compress any stationary and ergodic source down to the entropy rate of the
source per source symbol [9, 4], provided the input source sequence is sufficiently long. However,
the rate of convergence of this algorithm, as a function of input length, can be slow [8, 6].

In this short note we assume the source to be memoryless and have entropy bounded away
from zero, and observe that, even for a source sequence whose length is a fraction of the source
alphabet size, the length of the compressed sequence provides an estimate of the entropy of the
source, up to a constant multiplicative factor.

A word on our motivation. Most of the research in information theory concentrated on
additive approximation of entropy [5, 1]. This approximation is tighter, but impossible for
small input length [2, 7]. Multiplicative approximation was introduced and investigated in [2]
from the point of view of sub-linear algorithms, and further studied in [3]. The question of
multiplicative approximation achieved by classical compression schemes such as LZ78 was not,
to the best of our knowledge, addressed before.

We will try to adhere to the terminology and notation of [4]. We also refer to [4] for wider
background and the description and analysis of the compression scheme. Let X = (Xi)

∞
i=1 be

a discrete memoryless source on alphabet of size q. The alphabet size is assumed to be large.
Given a source sequence (x1...xn), let l (x1...xn) denote the length of the compressed sequence
(in bits).
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Theorem 1.1: Assume H(X ) ≥ 1. There exists a constant clz such that, for any 0 < α < 1,
and n = qα, holds(

1− o(1)
) α

(1 + α)
· 1
n
l (X1...Xn)− clz − o(1) ≤ H(X ) ≤ 1

n
l (X1...Xn) + o(1)

with probability 1− o(1).

The asymptotic notation is w.r.t. q →∞. The constants hidden in the asymptotic notation
are easily computable and small. We may take clz = 2.

Example 1.2: Taking α = 1
2 in the theorem shows LZ78 to approximate the entropy within a

multiplicative factor of 3 on a sample of size
√
q.

2 Proof of the theorem

Recall that Lempel-Ziv encoding parses the input sequence (x1...xn) into c distinct phrases,
and the length of the encoding is l (x1...xn) = c(log c+ log q).

Let p denote the distribution of X = X1. That is H(X ) = H(X) = H(p). The analysis of
LZ78 in [4], Chapter 12, implies that for any source sequence (x1...xn), parsed into c phrases,
holds

− 1
n

n∑
i=1

log p (xi) ≥
c log c
n
− clz

Consider the random variable Y = − log(X). The expectation of Y is H(p). A simple con-
strained optimization argument shows EY 2 ≤ log2(q). Let us assume here and (implicitly)
below that q is sufficiently large, so that, in particular, n = qα ≥ log3 q. Then, by Chebyshev’s
inequality, − 1

n

∑n
i=1 log p (xi) is (1/ log q) close to H(p) with probability at least 1 − 1/ log q.

Therefore

Pr
{
H(X ) ≥ c log c

n
− clz − o(1)

}
≥ 1− 1/ log q (1)

For the other direction, we have the following lemma.

Lemma 2.1: With probability at least 1− 2/ log q holds

H(X ) ≤ 1
n
l (X1...Xn) + o(1) (2)

Proof: Let xn denote a source sequence (x1...xn). Let δ = 1/ log2 q + (log log q)/n − 2/n.
Consider the following two events.

A =
{
xn : − 1

n
log p (xn)−H(X ) < − 1

log q

}
and B =

{
xn :

1
n
l (xn) < H(X )− δ

}
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We will show Pr{B} < 2/ log q. This will suffice to prove the lemma, since for all xn outside
B holds (1/n) · l (xn) ≥ H(X )− δ ≥ H(X )− o(1).

Indeed, assume this is not so. By Chebyshev’s inequality, as above, Pr{A} < 1/ log q. That
is, Pr{B \A} ≥ 1/ log q. In particular, the set B \A is not empty.

Consider the effect of LZ compression on the random variable (X1...Xn) =: Xn conditioned
on B \A. Let p′ denote the conditional distribution. On one hand, clearly,

E
(

1
n
l (Xn)

∣∣∣ B \A) ≤ H(X )− δ

On the other hand, Lempel-Ziv encoding is a prefix code on [q]n, and therefore, by ([4], Theo-
rem 5.3.1),

E
(

1
n
l (Xn)

∣∣∣ B \A) ≥ 1
n
H(p′)

We will claim the entropy of p′ is larger than n(H(X )− δ), providing the contradiction.

For all xn 6∈ A holds (−1/n) · log p (xn) ≥ H(X )− 1/ log q, that is p(x) ≤ 2−n(H(X )−1/ log q).
Therefore, for xn ∈ B \A holds

p′ (xn) =
1

Pr{B \A}
· p (xn) ≤ log q · 2−n(H(X )−1/ log q)

The last thing to observe is that the entropy of a distribution of all whose atom weights are at
most ε, is at least log (1/ε)−1. Hence (1/n) ·H(p′) ≥ H(X )− (1/ log q + (log log q)/n+ 2/n) >
H(X )− δ, completing the proof.

Now, we can complete the proof of the theorem. Assume both (1) and (2) hold, which
happens with probability 1− o(1).

The upper bound on H(X ) in the theorem is given by (2).

As to the lower bound, we start with a simple calculation which shows (2) implies log c ≥(
1− o(1)

)
· α log q.

Indeed, if (2) holds, then c(log c + log q) ≥ n(H(X ) − o(1)) ≥
(

1 − o(1)
)
· n (since, by

assumption, H(X ) ≥ 1).

Since c ≤ n ≤ q, this means c ≥
(

1/2− o(1)
)
· n/ log q, that is log c ≥

(
1− o(1)

)
· log n ≥(

1− o(1)
)
· α log q.

Hence,

c log c
n
≥
(

1− o(1)
) α

(1 + α)
· c log c+ c log q

n
=
(

1− o(1)
) α

(1 + α)
· 1
n
l (X1...Xn) ,

and the lower bound on H(X ) in the theorem follows directly from (1).
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