
Learning and smoothed analysis

Adam Tauman Kalai
Microsoft Research

New England

Alex Samorodnitsky∗

The Hebrew University
of Jerusalem

Shang-Hua Teng†

Microsoft Research
New England

Abstract— We give a new model of learning motivated by
smoothed analysis (Spielman and Teng, 2001). In this model,
we analyze two new algorithms, for PAC-learning DNFs and
agnostically learning decision trees, from random examples
drawn from a constant-bounded product distributions. These
two problems had previously been solved using membership
queries (Jackson, 1995; Gopalan et al, 2005). Our analysis
demonstrates that the “heavy” Fourier coefficients of a DNF
suffice to recover the DNF. We also show that a structural
property of the Fourier spectrum of any boolean function over
“typical” product distributions.

In a second model, we consider a simple new distribution
over the boolean hypercube, one which is symmetric but is not
the uniform distribution, from which we can learn O(logn)-
depth decision trees in polynomial time.

1. INTRODUCTION

The core machine learning task of efficient binary classifi-
cation from random training examples was crisply formulated
in Valiant’s PAC model [15] and follow-up models such as
Agnostic learning [9]. Yet polynomial-time PAC and agnostic
learning of simple Boolean concepts have defied the best
efforts of researchers in computational learning theory, even
for simple functions f ∶ {−1,1}n → {0,1} such as Juntas,
functions that depend on a few, e.g. log log logn, bits (let
alone decision trees or DNFs), and even when the input is
assumed to be uniform over {−1,1}n. Nonetheless, children
and small animals are capable of learning concepts, such as
classifying images of cats and dogs, that seem much more
advanced than DNFs.

In a stronger interactive model, Jackson [6] showed how
to learn DNFs over product distributions using membership
queries, black-box evaluations of the target function f at poly-
nomially many arbitrary inputs x, chosen by the algorithm.
However, in many real-world situations, one would like to
learn from random examples alone.

The basic setup for learning from random examples is as
follows. An algorithm is given polynomially many training
examples ⟨(xi, f(xi))⟩mi=1 for some unknown target function1

f ∶ {−1,1}n → {0,1}, where the examples xi are drawn in-
dependently from some distribution D on {−1,1}n. The goal

∗This work was performed while visiting Microsoft Research New
England

†Starting in September 2009, the author is at the University of
Southern California.

1We implicitly assume that multiple occurrences of the same
example x will share the same label. However, this is a simplifying
assumption and any algorithm which agnostically learns in this model
can be generalized to learn from joint distributions over x × {0,1}
(see, e.g., [5]).

is to output a hypothesis h ∶ {−1,1}n → {0,1} with low error
err(h) = Prx∼D[h(x) ≠ f(x)] on future examples from the
same distribution. Learning is with respect to a concept class
C of g ∶ {−1,1}n → {0,1}. Define opt = ming∈C err(g). A
polytime algorithm agnostically [9] learns C over D if for any
f ∶ {−1,1}n → {0,1}, with high probability over poly(1/ε)
many training examples, it outputs h with err(h) ≤ opt + ε.
If the algorithm succeeds only under the further assumption
that opt = 0 (i.e., assuming f ∈ C), then it PAC learns C over
D [15].

In the original distribution-free formulation of PAC and
agnostic learning, learners must succeed for any distribution
D. However, a natural simplifying assumption is that the bits
of x are independent. Let us require that the distribution over
x ∈ {−1,1}n is a (constant-bounded) product distribution Dµ
with parameter µ ∈ [c − 1,1 − c]n i.e., the individual bits xi
are independent and µi = Ex∼Dµ[xi] ∈ [c− 1,1− c] for some
constant c > 0.

Since learning theory lacks efficient algorithms that learn
interesting classes of functions over product distributions, it
is natural to try to relax these assumptions somehow. Using
special properties that hold for random decision trees, with
high probability, Jackson and Servedio [7] show how to PAC-
learn random log-depth decision trees over the uniform distri-
bution. We achieve stronger results regarding arbitrary target
functions, by considering nonuniform product distributions.

1.1. Smoothed product distributions
Motivated by smoothed analysis [13], we define learning

C with respect to smoothed product distributions as follows.
Again an arbitrary function f ∶ {−1,1}n → {0,1} is chosen,
but a product distribution is chosen whose parameters are
specified only up to a proscribed accuracy. Formally, for some
constant c, µ is chosen from uniformly at random from a cube
of side 2c, µ ∈ µ̄ + [−c, c]n, where µ̄ may be arbitrary. The
algorithm must succeed for any (f, µ̄) (in the case of PAC
learning, it is further assumed f ∈ C), with high probability
over the chosen µ and polynomially many i.i.d. samples from
Dµ. Section 1.5 provides formal definitions.

Unfortunately, learning with respect to arbitrary (f, µ)
requires learning with respect to adversarial pairs, as well.
Since many real-world learning problems are not actually
adversarial, it is arguably reasonable to assume that the parties
selecting f and µ are not completely coordinated – they may
be correlated but not to high precision.2 Put another way, for

2In fact, it is common in machine learning to assume a friendly
coordination between f and D via “margin” assumptions that state
that there is no data near the boundary between positive and negative
examples.

any f the set of “hard” distributions Dµ, or at least those
where our algorithms fail, are few and far between in the
sense that there cannot be too many of them on the whole
or even many concentrated in any small region. We give
two polynomial-time algorithms for learning over smoothed
product distributions, one that PAC learns DNFs (Theorem 7)
and one that agnostically learns decision trees (Theorem 9).

1.2. Overview of the approach
For any product distribution µ ∈ (−1,1)n, every function

f ∶ {−1,1}n → R can be written uniquely as,

f(x) =∑
S

f̂µ(S)χS,µ(x), where χS,µ(x) =∏
i∈S

xi − µi√
1 − µ2

i

.

With standardized coordinates, zi = (xi − µ)(1 − µ2
i)−1/2

(mean 0 and variance 1), f̂µ(S) is simply the coefficient of
∏i∈S zi in multilinear polynomial f(x) = ∑S f̂µ(S)∏i∈S zi.
An appealing property of this “Fourier” representation is that
f̂µ(x) = Ex∼Dµ[f(x)χS,µ(x)]. The first challenge is finding
the important or so-called “heavy” coefficients of the target
function, namely the sets S such that ∣f̂µ(S)∣ is large. This
is the standard first step in learning DNFs and decision trees,
usually performed by the Kushilevitz-Mansour algorithm [10]
that employs membership queries. We analyze a simple feature
construction algorithm showing that it will succeed in finding
these heavy coefficients (at least on sets ∣S∣ = O(logn)), for
any bounded f , for most product distributions.

For some types of functions, such as polynomial-sized
decision trees, it is known that the coefficients of magnitude
∣f̂µ(S)∣ ≥ poly(ε/n) and size ∣S∣ < O(log(n/ε)) suffice
to ε-approximate f . However, for more complex functions
such as DNFs or agnostically learn decision trees, the heavy
coefficients are only weak learners and some time of boosting
is employed. Unfortunately, boosting is problematic in the
smoothed product distribution setting because the first weakly
accurate hypothesis h1 that is learned would depend on µ,
and further attempts to generate weakly accurate hypotheses
would fail to satisfy the independence between the new target
function and distribution.3

Instead, we show a new property about PAC learning of
DNFs and agnostic learning of decision trees. In particular,
the heavy coefficients of a DNF f are enough to recover a
good approximation to f directly (without further access to f)
and similarly, the heavy coefficients of any Boolean function
f suffice to match the error of the most accurate decision tree
approximation to f .
Finding heavy coefficients. As a simple example, consider the
polynomial f(x) = ∑i∈T xi (mod 2) = 1

2
− 1

2 ∏i∈S(−xi), the
parity of some unknown set of bits, T . Under the uniform dis-
tribution D0, there is only one nonzero coefficient, ∣f̂0(T)∣ =
1
2

(aside from the constant coefficient f̂0(∅)). On the other
hand, under a nonuniform product distribution, for instance
say each µi ∈ {−1/

√
2,1/

√
2}, then ∣f̂µ(S)∣ = 2−∣T ∣/2 for

each S ⊆ T and f̂µ(S) = 0 for each S /⊆ T . By estimating the
coefficients of singleton sets S = {xi}, it is easy to recover
T in polynomial time, for ∣T ∣ = O(logn)-sized parities.

3This is the general case and not pathological, otherwise every DNF
could be written as a majority of individual attributes, since boosting
produces a majority of weak hypotheses and our analysis shows that
there is almost always a weakly correlated bit xi.

More generally, we show the following structural Fourier
property of arbitrary bounded functions under smoothed prod-
uct distributions. For any f ∶ {−1,1}n → [−1,1], and any
µ̄ ∈ (2c−1,1−2c)n, with high probability over uniformly ran-
dom µ ∈ µ̄ + [−c, c]n, for each large coefficient ∣f̂µ(T)∣ ≥ β,
every S ⊆ T is large, ∣f̂µ(S)∣ ≥ α, as well. Here β > α
and both are of order c−O(∣T ∣), see Lemma 3. This gives a
simple method of finding all the heavy coefficients: starting
with S = {∅}, for each S ∈ S and i /∈ S, if ∣f̂µ(S ∪{i})∣ ≥ α,
then add S∪{i} to the collection S. This process repeats until
no further sets are added to S.

1.2.1. Learning from the heavy coefficients alone:
Let us first give some intuition about why the heavy co-
efficients information-theoretically suffice, and then roughly
describe the efficient learning algorithms. For simplicity, con-
sider the uniform distribution f̂0(S) = f̂(S) and χS(x) =
∏i∈S xi. Further, suppose we are given explicitly all coef-
ficients whose magnitude is at least ε, i.e., we are given
f>ε = ∑S∶∣f̂(S)∣>ε f̂(S)χS(x). By Parseval’s inequality, there
are at most 1/ε2 such coefficients and hence ∣f>ε(x)∣ ≤ 1/ε
for any x. Of course, we may not be able to estimate any
coefficient exactly, but we can estimate it to arbitrary preci-
sion. (The actual property we will use is that the coefficients
of the estimate are within ε of the true coefficient, since
∥f̂ − f̂>ε∥∞ = maxS ∣f̂(S) − f̂>ε(S)∣ ≤ ε.)

It is well-known that if C is a conjunction, such as
x1 ∧ ¬x3 ∧ x7 = 1+x1

2
1−x3

2
1+x7

2
, then ∥Ĉ∥1 = ∑S ∣Ĉ(S)∣ = 1

and that if g is a decision tree with t leaves (which can be
written as the sum of at most t conjunctions), ∥ĝ∥1 ≤ t.
Let f, g ∶ {−1,1}n → {0,1} be any binary functions. A
simple but useful observations is that one can approximate
err(g) = Pr[f ≠ g] using g and f>ε alone, without access to
f :

err(g) = E[(1 − f)g + (1 − g)f]
= E[f + g − 2fg]
= E[f>ε + g − 2f>εg] +E[f≤ε(1 − 2g)],

where f≤ε = f − f>ε. Note that, ∣f̂≤ε(S)∣ ≤ ε for any S,
E[f≤ε(x)] = f̂≤ε(∅), and,

∣E[f≤εg]∣ = ∣∑
S

f̂≤ε(S)ĝ(S)∣ ≤∑
S

ε∣ĝ(S)∣ = ε∥ĝ∥1.

Since 1+2g has L1 norm ≤ 1+2∥ĝ∥1, by the triangle inequality
err(g) is within an additive ε(1+2∥ĝ∥1) of E[g+f>ε−2f>εg],
a quantity which is possible to compute only from g and f>ε.

Lemma 1. Let f be a t-term DNF. Let ψ = C1∨C2∨ . . .∨Ct
be a DNF which minimizes,

E[f>ε − ψ] + 2
t

∑
i=1

E[(1 − f>ε)Ci].

Then err(ψ) ≤ 6εs.

In the analysis, we will need more refined lemmas due
to the fact that we are working over product distributions,
we only have estimates of coefficients, and we only can find
coefficients of log-degree terms. Most importantly, we need an
efficient algorithm as well. But the proof of the above lemma
is simple and also sheds light on the algorithm.

2

Proof: For any candidate DNF g = γ1(x) ∨ . . . ∨ γt(x),

err(g) = E[(1 − f)g + (1 − g)f]
= E[f − g] + 2 E[(1 − f)g]

≤ E[f − g] + 2
t

∑
i=1

E[(1 − f)γi],

where in the last step we have used the fact that the false
positive rate of g is at most the sum of the false positive rates
of the γi’s. Next, define proxy errors e1, e2, by,

e1(g) = E[f − g] + 2
t

∑
i=1

E[(1 − f)γi]

e2(g) = E[f>ε − g] + 2
t

∑
i=1

E[(1 − f>ε)γi]

∣e1(g) − e2(g)∣ = ∣E[(f − f>ε)(1 + 2∑γi)]∣
≤ ∥f − f>ε∥∞∥ ̂1 + 2∑γi∥1 ≤ ε(1 + 2s)

In the above we have used the fact that u ⋅ v ≤ ∥u∥∞∥v∥1 and
that ∥γi∥1 = 1. We also note that err(g) ≤ e1(g), e1(f) = 0,
and ∣e1(g) − e2(g)∣ ≤ ε(1 + 2s) for all s-term DNFs. These
together imply that err(ψ) ≤ e1(ψ) ≤ 2ε(1 + 2s) ≤ 6εs.

A similar statement shows that, for any Boolean function
f , the best decision tree can be approximated from its heavy
Fourier coefficients.
Efficient approximation from heavy coefficients. Gopalan
et al apply a gradient projection method for optimization over
functions with low L1 norm, a relaxation of decision trees
and conjunctions. Such functions can always be approximated
by sparse polynomials and hence succinctly represented. We
employ the same approach here. For learning DNFs, we
combine the optimization with the “reliable” DNF learning
approach of Kalai et al [8]. The idea is to do a relaxation to
a convex set of functions. Consider the set of functions,

G = {g ∶ {−1,1}n → [0,1] ∣ ∥ĝ∥1 ≤ t} .

Now, in the case of decision trees, the goal will be to
minimize, E[f>ε + g − 2f>εg] over G. The key properties of
such an optimization problem are (1) the objective function
is a convex function of g (in fact it is linear), (2) the set G
is a convex set, and (3) (approximate) membership in G can
be determined efficiently. This last point is somewhat subtle.
Given an explicit sparse polynomial represented by its list of
nonzero coefficients, it is easy to check if ∑S ∣ĝ(S)∣ ≤ t. It is
more difficult to check that g is bounded in [0,1]. However,
for learning, it suffices that g is nearly bounded which can
be verified in polynomial time. In analogy with the fact
that convex functions can often be efficiently minimized over
convex sets, the convex objective function (of functions) can
be approximately minimized over something approximating G.
Interestingly, the reliable approach to learning DNF resembles
recent work in complexity theory on fooling DNF [2].

1.3. Part II: Learning from diversity
Many distributions have dependencies among the bits re-

sulting from an underlying “diversity” in a population. For
example, consider a medical problem such as predicting
whether someone will get diabetes from an attribute vector,
including, say, age, height, and weight. It is clear that an
individual’s attributes will be correlated – children tend to be

younger, shorter and lighter than adults. As a second example,
consider classifying email as SPAM or not based on a {0,1}n
vector which indicates the absence or presence of n different
words in an email. There is a large variance in email length
and the number of distinct words in an email. On the other
hand, if the data were coming from the uniform distribution,
most examples would have a 1/2 ± n−1/2 fraction of 1’s.
Hence, in many situations there is an underlying diversity in
the population which may be quantified by a single parameter,
e.g., age or size, and this diversity leads to dependencies
between attributes.

As a simplified model of this phenomenon, consider the
following distribution ρc on x ∈ {0,1}n, for any constant
c ∈ (0,1/2].

ρc(x) =
1

2c ∫
1
2+c

1
2−c

p∣x∣(1 − p)n−∣x∣dp, ∣x∣ =∑xi.

To generate an example from this type of distribution, first a
p ∈ [1/2 − c,1/2 + c] is chosen uniformly at random. Then
an example x ∈ {0,1}n is chosen from the p-biased product
distribution νp (the product distribution in which Ex∼νp[xi] =
p for each i). We give an algorithm that PAC-learns depth-
O(logn) trees over ρc. Interestingly, the distribution ρ1/2,
a distribution with many appealing mathematical properties,
has recently been used to simplify the proof of the density
Hales-Jewett Theorem [11].

The distribution ρc is not completely realistic, but it cap-
tures one aspect of real (nonuniform) distributions. We start
with this simple distribution, but extensions to other related
distributions (e.g., not centered around bias 1/2) are likely
possible. The main result here is the following.

Theorem 2. Fix any constant c > 0. Then there is a
polynomial M such that, for any δ ∈ (0,1), n, d ≥ 1, and any
depth-d decision tree f , for m ≥ M(2dn log 1/δ) examples
(xi, f(xi)) where each xi is chosen independently from ρc,
with probability ≥ 1 − δ, the algorithm described in Section
2.4 outputs a polynomial exactly equivalent to f and runs in
time poly(m).

The first step in our algorithm is to reduce this model to
a related model suggested earlier and independently by Arpe
and Mossel [1], in which it is assumed that one has access
to k different example oracles representing samples from
different p-biased distributions. If one reinterprets their results
in our setting, then in polynomial time one can learn k =
O (logn

log logn
)-Juntas, i.e., arbitrary functions that depend on

only k relevant bits. Note that O(logn)-depth decision trees
include O(logn)-Juntas as a special case. More generally, our
algorithm learns sparse, low degree integer polynomials.

1.4. Organization
We first focus on learning from smoothed product distribu-

tions. Section 1.5 gives preliminaries for this problem. Section
1.7 gives an algorithm for finding the “heavy” Fourier coeffi-
cients in the smoothed product distribution model. Section 1.8
gives an algorithm for approximating a DNF from its heavy
coefficients. Section 1.9 gives an algorithm for approximating
any function as well as the best decision tree, i.e., agnostically
learning decision trees, from its heavy Fourier coefficients.
Note that these latter two sections are not specific to any
smoothed analysis – they simply show how to learn from

3

heavy coefficients alone. For example, it could be used to
replace boosting in Jackson’s DNF learning algorithm (though
our algorithm is not simpler).

Section 2 discusses the model of learning from diversity
and is self-contained.

1.5. Preliminaries
Let N = {1,2, . . . , n}. We consider examples (x, y) with

x ∈ {−1,1}n and y ∈ {0,1}. A product distribution Dµ over
{−1,1}n is parameterized by its mean vector µ ∈ [−1,1]n,
where µi = Ex∼Dµ[xi] and the bits are independent. The
uniform distribution is D0. We say Dµ is c-bounded if
µi ∈ [c − 1,1 − c] for all i.

We denote Prx∼Dµ by Prµ and Ex∼Dµ by Eµ for brevity.
Let χS,µ(x) = ∏i∈s(xi − µi)/

√
1 − µ2

i . This normalization
gives Eµ[χ{i},µ(x)] = 0 and E[χ2

{i},µ(x)] = 1, and hence
by independence E[χS,µ(x)] = 0 and E[χ2

S,µ(x)] = 1 for
S ≠ ∅. When µ is understood from context, we write χS(x).

Define the inner product ⟨f, g⟩µ = Eµ[f(x)g(x)]. By inde-
pendence ⟨χS,µ, χT,µ⟩µ = 0 for S ≠ T and ⟨χS,µ, χS,µ⟩µ = 1.
Hence, the 2n different χS’s form an orthonormal basis for
the set of real-valued functions on {−1,1}n with respect to
⟨⟩µ. We define the Fourier coefficient (relative to µ), for any
S ⊆ N ,

f̂µ(S) = Eµ[f(x)χS,µ(x)]. (1)

Also observe that f̂0(S) is the standard Fourier coefficient
over the uniform distribution, and that, for any µ ∈ [−1,1]n,

f(x) = ∑
S⊆N

f̂µ(S)χS,µ(x).

When µ is understood from context we write simply f̂ = f̂µ.
Henceforth we write ∑S to denote ∑S⊆N and ∑∣S∣=d to

denote the sum over S ⊆ N such that ∣S∣ = d. Similarly
for ∑∣S∣>d, and so forth. It can be shown that ⟨f, g⟩µ =
∑S⊆N f̂(S)ĝµ(S), and Parseval’s equality,

⟨f, f⟩µ = ∑
S⊆N

f̂2
µ(S) = Eµ[f2(x)].

This implies that for any f ∶ {−1,1}n → [−1,1], ∑S f̂2
µ(S) ≤

1. It is also useful for bounding Eµ[(f(x) − g(x))2] =
∑S(f̂(S) − ĝµ(S))2.

It will also be helpful to think of f̂ ∈ R2n as a vector in 2n-
dimensional Euclidean space, and we will use the following
quantities: ∥f̂∥2 =

√
∑S f̂2(S), ∥f̂∥1 = ∑S ∣f̂(S)∣, ∥f̂∥∞ =

maxS ∣f̂(S)∣, and ∥f̂∥0 = ∣{S ∣ f̂(S) ≠ 0}∣.
Fix any constant c ∈ (0,1/2). We assume we have some

fixed 2c-bounded product distribution µ̄ ∈ [2c − 1,1 − 2c]n
and that a perturbation ∆ ∈ [−c, c]n is chosen uniformly at
random and the resulting product distribution has µ = µ̄ +∆.
Note that Dµ is c-bounded.

A disjunctive normal form (DNF) formula is an OR of
ANDs, e.g., f(x) = (x1 ∧ ¬x3) ∨ (x2 ∧ x3 ∧ x10) ∨ x4.
The negation of a DNF is a conjunctive normal form (CNF)
formula, e.g.,(¬x1 ∨x3)∧ (¬x2 ∨¬x3 ∨¬x10)∧¬x4. For the
definition of a binary decision trees, see, e.g., [10]. The size
of a decision tree is defined to be the number of leaves.

1.6. Smoothed product distributions: Fourier structure
The following lemmas show that, with high probability, for

every coefficient f̂µ(S) that is sufficiently large, say ∣f̂(S)∣ >
β, it is very likely that all subterms T ⊆ S have ∣f̂(T)∣ > α,
for some α < β. In other words, with high probability, all
sub-coefficients of large f̂(S) will be pretty large.

Lemma 3. Let f ∶ {−1,1}n → [−1,1]. Let α,β ≥ 0, d ∈ N.
Let c ∈ (0,1/2), µ̄ ∈ [2c−1,1−2c]n, and µ = µ̄+∆ where ∆ ∈
[−c, c]n is chosen uniformly at random. Then, with probability
at most α1/2β−5/2(2/c)2d, there exists T ⊆ U ⊆ N such that
∣U ∣ ≤ d ∧ ∣f̂µ(T)∣ ≤ α ∧ ∣f̂µ(U)∣ ≥ β.

The proof of this lemma is omitted due to space constraints.
In order to prove it, we give a continuous variant of Schwartz-
Zippel lemma. This lemma states that a nonzero degree-d
multilinear function cannot be too close to 0 (or any other
value) too often over x ∈ [−1,1]n. In particular, this is
a nonconcentration bound saying that a nonzero multilinear
polynomial cannot be concentrated near 0 (or it’s mean or
any real value).

Lemma 4. Let g ∶ Rn → R be a degree-d multilinear
polynomial, g(x) = ∑∣S∣≤d ĝ(S)∏i∈S xi. Suppose that there
exists S ⊆ N with ∣S∣ = d and ∣ĝ(S)∣ ≥ 1. Then for a uniformly
chosen random x ∈ [−1,1]n, and for any ε > 0,

Prx∈[−1,1]n [∣g(x)∣ ≤ ε] ≤ 2d
√
ε.

Proof: WLOG let say ĝ(D) = 1 for D = {1,2, . . . , d} for
we can always permute the terms and rescale the polynomial
so that this coefficient is exactly 1. We first establish that,

Prx∈[−1,1]n[∣g(x)∣ ≤ ε] ≤ Prx∈[−1,1]n [∣∏
i∈D

xi∣ ≤ ε] . (2)

In other words, the worst case is a monomial. To see this,
write,

g(x) = x1g1(x2, x3, . . . , xn) + g2(x2, x3, . . . , xn).

Now, by independence imagine picking x by first picking
x2, x3, . . . , xn (later we will pick x1). Let γi = gi(x2, . . . , xn)
for i = 1,2. Then, consider the two sets I1 = {x1 ∈ R ∶
∣x1γ1+γ2∣ ≤ ε} and I2 = {x1 ∈ R ∶ ∣x1γ1∣ ≤ ε}. These are both
intervals, and they are of equal width. However, I2 is centered
at the origin. Hence, since x1 is chosen uniformly from
[−1,1], we have that for any fixed γ1, γ2, Prx1∈[−1,1][x1 ∈
I1] ≤ Prx1∈[−1,1][x1 ∈ I2], because I2 ∩ [−1,1] is at least as
wide as I1 ∩ [−1,1]. Hence it suffices to prove the lemma for
those functions where ĝ(S) = 0 for all S for which 1 ∉ S.
(In fact, this is the worst case.) By symmetry, it suffices to
prove the lemma for those functions where ĝ(S) = 0 for all
S for which i ∉ S, for i = 1,2, . . . , d. After removing all
terms S that do not contain D we are left with the function
xD , establishing (2). Now, for a loose bound, one can use
Markov’s inequality:4

Pr[∣xD ∣ ≤ ε] = Pr [∣xD ∣−
1
2 ≥ ε−

1
2] ≤ E[∣∏D xi∣−

1
2]

ε−
1
2

= ε
1
2 2d.

4A tight bound, Pr[∣x1 . . . xd∣ ≤ ε] = ε∑d−1i=0 logi 1
ε
, follows from

Pr[∣x1x2 . . . xi+1∣ ≤ ε] = ∫ 1
0 Pr[∣x1x2 . . . xi∣ ≤ ε

t
]dt and induction.

4

In the last step, E[∣∏D xi∣−
1
2] = E[∣x1∣−

1
2]d by independence

and symmetry, and a simple calculation based on the fact that
∣x1∣ is uniform from [0,1] gives E[∣x1∣−

1
2] = 2.

An interesting property of this bound is that it does not
hold for inputs chosen over the discrete hypercube {−1,1}n.
For example, the function f(x) = 1 + x1 is 0 on half of the
discrete hypercube but 0 on a measure-0 fraction of the solid
cube. This lemma is also a bit stronger than what holds for
(non-multilinear) polynomials [3], [4] – here one can see that
the polynomial xd1 is too concentrated for our purposes.

1.7. Finding the heavy coefficients
For simplicity, we suppose that the algorithms have exact

knowledge of µ. In general, these parameters can be estimated
to any desired inverse-polynomial accuracy in polynomial
time. The algorithm is below.

Algorithm Greedy feature construction.
Inputs: (x1, y1), (x2, y2), . . . , (xm, ym) ∈ Rn × {−1,1},
degree d ≥ 1, and µ ∈ (−1,1)n.
1. Let S0 ∶= {∅}.
2. For k = 1,2, . . . , d ∶

1) Let

Sk ∶= Sk−1 ∪
⎧⎪⎪⎨⎪⎪⎩
S ∪ {i} ∣ S ∈ Sk−1∧

∧
RRRRRRRRRRR

1

m

m

∑
j=1

yjχS∪{i},µ(xj)
RRRRRRRRRRR
≥m−1/3

⎫⎪⎪⎬⎪⎪⎭
.

2) If ∣Sk ∣ >m then abort and output FAIL.
3. Output the following polynomial p ∶ {−1,1}n → R,

p(x) = ∑
S⊆Sn

⎛
⎝

1

m

m

∑
j=1

yjχS∪{i},µ(xj)
⎞
⎠
χS,µ(x).

A “heavy” coefficient is simply one with large magnitude
∣f̂(S)∣. A “large” set is one for which ∣S∣ is large, and a
small set has ∣S∣ small. We now claim (proof omitted) that the
GREEDY FEATURE CONSTRUCTION (GFC) algorithm finds
all heavy coefficients on small sets S.

Lemma 5. For any constant c > 0, there exists a univariate
polynomial u, such that for any ε, δ > 0, n, d ≥ 1, µ̄ ∈ [2c −
1,1−2c], and any f ∶ {−1,1}n → [−1,1], the GFC algorithm
run with m = u(log(n)2d/εδ) samples, with probability ≥ 1−
δ, outputs degree-d polynomial p(x) with ∣p̂µ(S)−f̂µ(S)∣ ≤ ε
for each S with ∣S∣ ≤ d, and such that p̂µ(S) = 0 for each S
with ∣f̂µ(S)∣ ≤ ε/2. GFC is a polynomial-time algorithm.

1.8. Learning CNF from heavy coefficients
In this section, fix a constant-bounded product distribution

µ ∈ [c − 1,1 − c]n. It will be slightly easier to describe the
algorithm in terms of learning CNFs, f(x) = D1(x) ∧ . . . ∧
Dt(x), where each Di(x) is a disjunction, e.g., x3 ∨ ¬x7.
Since the negation of a DNF is a CNF of the same size,
learning CNFs and learning DNFs are equivalent problems.
The algorithm for learning CNF from heavy coefficients is
given below.

We define a penalty function for being outside of the range
[0,1], Φ ∶ R→ R,

Φ(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x − 1 if x > 1

0 if x ∈ [0,1]
−x if x < 0

φ(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if x > 1

0 if x ∈ [0,1]
−1 if x < 0

.

It will be helpful to try to find a function h ∶ {−1,1}n →
[0,1], and this penalty will be useful in approximately achiev-
ing this goal. Note that Φ is convex. It will also be helpful
to consider the φ. While Φ is not differentiable, it is easy
to verify that φ(x) ∈ ∇Φ(x) is a subgradient of Φ, which
formally means,

Φ(x) −Φ(x0) ≥ φ(x0)(x − x0), (3)

for any x0, x ∈ R.
Let target function f(x) =D1(x)D2(x) . . .Ds(x), where

s is known to the algorithm5 and each Di(x) ∈ {0,1} is a
disjunction, e.g., (x3∨¬x7∨x9). Our goal is to find a function
h ∶ {−1,1}n → {0,1} such that Prµ[h(x) ≠ f(x)] ≤ ε.

For this algorithm, we assume that we begin with an
approximation of the heavy coefficients of f . In particular,
we suppose that we start with a polynomial p such that
maxS∶∣S∣≤d ∣p̂(S) − f̂(S)∣∞ ≤ τ and such that ∥p̂∥0 ≤ 8/τ2,
which the previous section explains how to find. It turns out
that this will be enough and we will not need direct access to
f , however one must consider f for the purposes of analysis.

DefineKd = {g ∶ {−1,1}→ R ∣ deg(g) ≤ d and ∥ĝ∥1 ≤ 1} .
In Section 1.11, we give the projection algorithm which
computes projµ,Kd(g) = arg minh∈Kd ∥ĥµ − ĝµ∥2.

Algorithm CNF Appx.
Input: n, d, T,R,Λ1,Λ2 ≥ 1, η, τ,G > 0, µ ∈ (−1,1)n,
black-box access to polynomial p ∶ {−1,1}n → R.

For i = 1,2, . . . ,R:
1) Let Hi = h1h2⋯hi−1 (H1 = 1)
2) Let g1

i = 0.
3) For j = 1,2, . . . , T :

gj+1i = projµ,Kd(EKMµ(gji − η(Hi −Λ1p +Λ2φ(gji)),

1 + ηG, τ, δ/(RT))).

4) Let function hi be hi(x) = I[1
T ∑

T
j=1 g

j
i (x) ≥ 1

2
].

Output hypothesis h(x) = h1h2⋯hR.

Theorem 6. Let c ∈ (0,1) be a constant. Let µ ∈ [c − 1,1 −
c]n. Let f ∶ {−1,1}n → {0,1} compute an s-term DNF. Let
ε, δ,B > 0. Take R = 6s/ε, Λ1 = 36R/ε, Λ2 = 40Λ2

1R/ε,
d = log(20s/ε)/c, ε0 = ε/(20sΛ1) = ε3/(4320s2), G = 1 +
Λ1B+Λ2, τ = (ε0Λ1/16)2, T = (4Gε0Λ1)2, and η =

√
T /G.

Let p ∶ {−1,1}n → [−B,B] be such that ∣f̂µ(S)−p̂µ(S)∣ ≤ ε0
for all sets of size ∣S∣ ≤ d and p̂(S) = 0 for ∣S∣ > d. Then
with probability ≥ 1 − δ, the CNF Appx algorithm outputs h
with Prµ[h(x) ≠ f(x)] ≤ ε. The runtime of the algorithm
is polynomial in nB log(1/δ)/ε times the amount of time to
evaluate p.

5A standard “doubling trick” can be applied to generalize to the
case when s is not known.

5

The proof of this theorem is omitted, but, using it, we are
now able to analyze our DNF learning algorithm.

Theorem 7. For any constant c > 0, there is a univariate
polynomial u such that, for any DNF f ∶ {−1,1}n → {0,1}
of size s terms, any ε, δ > 0, and any µ̄ ∈ [2c − 1,1 − 2c]n,
there is an algorithm that takes at most u(ns/(εδ)) examples
from Dµ with uniformly random µ ∈ µ̄+[−c, c]n, runs in time
u(ns/(εδ)), and, with probability ≥ 1−δ, outputs a hypothesis
h with Prµ[h(x) ≠ f(x)] ≤ ε. The probability here is taken
over the random choice of µ and m i.i.d. samples from product
distribution Dµ.

Proof: We describe an algorithm for learning a CNF. The
reduction is trivial – replace f and h with 1 − f and 1 − h,
respectively.

Let ε0 = ε3/(4320s2), δ0 = δ/2. The algorithm first calls
the Greedy Feature Construction algorithm with degree d =
log(20s/ε)/c and m = poly(log(n)2d/(ε0δ0)), so that, with
probability ≥ 1− δ0, we get an estimate p such that ∣p̂µ(S)−
f̂µ(S)∣ ≤ ε0 for each S with ∣S∣ ≤ d, and such that p̂(S) = 0
for each S with ∣f̂(S)∣ ≤ ε0/2. By Parseval, there can be
at most 4/ε20 different coefficients of magnitude greater than
∣f̂(S)∣ > ε/2. For each of these ∣p̂(S)∣ ≤ 1 + ε0. Hence,

∣p(x)∣ ≤ ∑
∣S∣≤d

∣p̂µ(S)∣ ⋅ ∣χµ,S(x)∣ ≤
4

ε20
(1 + ε0) (

2

c
)
d

.

In the above, we have used ∣χS,µ(x)∣ ≤ (2/c)∣S∣, which
follows from the fact that ∣χ{i},µ(x)∣ ≤ 2−c√

1−(1−c)2
≤ 2/c for

any i ∈ N , and x ∈ {−1,1}n, by the definition of χ. Let
B = 4

ε20
(1+ε0) (2

c
)d = poly(s/ε). Next we run the CNF Appx

algorithm on p with the parameters ε, δ0,B and those given
in Theorem 6. With probability ≥ 1−δ/2, this will succeed in
outputting a hypothesis with error at most ε. Both the Greedy
Feature Construction and the CNF Appx algorithms run in
polynomial time.

1.9. Agnostically learning decision trees from heavy
coefficients

At this point, it will be helpful to define Kdt,

Kdt = {g ∶ {−1,1}→ R ∣ deg(g) ≤ d and ∥ĝ∥1 ≤ t} .
Note that Kd =Kd1, for our earlier definition of Kd.

Algorithm DT Appx.
Input: n, d, t, T,Λ ≥ 1, η, τ,G > 0, µ ∈ (−1,1)n, black-box
access to polynomial p ∶ {−1,1}n → R.

1) Let g1 = 0.
2) For j = 1,2, . . . , T :

gj+1 = projµ,Kdt(EKMµ(gj − η(Λφ(gji)) − p,

1 + ηG, τ, δ/T)).

3) Let g = 1
T ∑

T
j=1 g

j .
4) Draw m samples x1, x2, . . . , xm from Dµ.
5) Choose θ ∈ [0,1] so as to minimize
∑mi=1 (I[g(xi) ≥ θ](1 − p(xi)) + I[g(xi) < θ]p(xi)).
6) Output hypothesis h(x) = I[g(x) ≥ θ].

Theorem 8. Let c ∈ (0,1) be a constant. Let s, n ≥ 1, ε, δ,B >
0, and µ ∈ [c−1,1−c]n. Let f ∶ {−1,1}n → {0,1} be a binary
function. Take d = 2

c
log 8s

ε
, t = 4d, Λ = 33

ε
, G = 1+2B+Λ, η =

G−1T −1/2, ε0 = ε
60t

, T = 16G2

ε20
, τ = ε20

256t
, and m = 8

ε3
log2 1

δ
.

Let p ∶ {−1,1}n → [−B,B] be such that ∣f̂µ(S)−p̂µ(S)∣ ≤ ε0
for all sets of size ∣S∣ ≤ d and p̂(S) = 0 for ∣S∣ > d. Then with
probability ≥ 1 − δ, the CNF Appx algorithm outputs h with
err(h) ≤ opt + ε. The runtime of the algorithm is polynomial
in nB log(1/δ)/ε times the amount of time to evaluate p.

The proof of this theorem is omitted due to space limi-
tations. However, using it, we are now able to analyze our
agnostic decision tree learning algorithm.

Theorem 9. For any constant c > 0, there is a univariate
polynomial u such that, for any f ∶ {−1,1}n → {0,1} and
any s ≥ 1, ε, δ > 0, and any µ̄ ∈ [2c − 1,1 − 2c]n, there is
an algorithm that takes at most u(ns/(εδ)) examples from
Dµ with uniformly random µ ∈ µ̄ + [−c, c]n, runs in time
u(ns/(εδ)), and, with probability ≥ 1−δ, outputs a hypothesis
h with err(h) ≤ opt + ε. The probability here is taken over
the random choice of µ and m i.i.d. samples from product
distribution Dµ.

Proof: Let ε0 = ε
60t

, δ0 = δ/2. The algorithm first
calls the Greedy Feature Construction algorithm with degree
d = 2

c
log 8s

ε
and m = poly(log(n)2d/(ε0δ0)), so that,

with probability ≥ 1 − δ0, we get an estimate p such that
∣p̂µ(S) − f̂µ(S)∣ ≤ ε0 for each S with ∣S∣ ≤ d, and such
that p̂(S) = 0 for each S with ∣f̂(S)∣ ≤ ε0/2. Exactly as
in the proof of Theorem 7, ∣p(x)∣ ≤ 4

ε20
(1 + ε0) (2

c
)d . Let

B = 4
ε20

(1+ ε0) (2
c
)d = poly(s/ε). Next we run the DT Appx

algorithm on p with the parameters ε, δ0,B and those given
in Theorem 6. With probability ≥ 1−δ/2, this will succeed in
outputting a hypothesis with error at most ε. Both the Greedy
Feature Construction and the CNF Appx algorithms run in
polynomial time.

1.10. Fourier gradient descent

Both our DNF and agnostic decision tree learners can
be viewed in a common framework as a general Fourier
“gradient descent” algorithm of a convex loss function L(f)
over an arbitrary fixed product distribution Dµ, which is a
generalization of the algorithm of Gopalan et al [5]. Let
R{−1,1}n denote the set of functions from {−1,1}n to R.
Again note that Kd = Kd1, for our earlier definition of Kd.
Note that 0 ∈Kdt and ∥f̂∥2 ≤ ∥f̂µ∥1 ≤ t for each f ∈Kdt. We
also suppose that the product distribution parameters µ have
been fixed.

Let L ∶ R{−1,1}n → R denote a convex loss function,
meaning that for any λ ∈ [0,1] and g, h ∶ {−1,1}n → R,
L(λg + (1 − λ)h) ≥ λL(g) + (1 − λ)L(h). The goal is to
(approximately) minimize the loss over Kdt, minf∈Kdt L(f).
Since we do not assume that L is differentiable, we consider
a subgradient descent type of algorithm. We suppose we have
access to two things. First, we assume we have black-box
access to a bounded “sugradient” function Γ ∶ R{−1,1}n ×
{0,1}n → [−G,G], for some G ≥ 0. By subgradient, we

6

mean:

∀f, g ∶ {−1,1}n → R L(g) ≥ L(f)+Eµ[Γ(f, x)(g(x)−f(x))].
(4)

This is similar to the gradient bound for convex differentiable
u on Euclidean space, where u(x′) ≥ u(x)+∇u(x) ⋅(x′−x).
Let Γf(x) = Γ(f, x). This connection can be made precise
when one considers f̂ ∈ R2n as a vector in Euclidean space
and Γf as the gradient of L(f̂). More generally, L may not be
differentiable and any subgradient (tangent plane lying below
L) will do.

Second, we assume we have access to a projection oracle,
which when given a function f , finds the closest g ∈ Kdt to
f ,

projµ,Kdt(f) = arg min
g∈Kdt

∥ĝ − f̂∥2,

which returns the closest function in Kdt to f . The projection
routine is described in Section 1.11. It is probably easiest
to first understand the algorithm at its conceptual level,
ignoring runtime and efficient representation. One may even
think of the functions being represented by their 2n different
Fourier coefficients. However, we will shortly describe how
to implement it efficiently.

The gradient projection method [12] (sometimes called
the projected subgradient method) in this context, chooses a
sequence of functions, starting with an arbitrary f1 ∈Kdt and
then taking f (i+1) = projµ,Kdt(f

i − ηΓfi), where η > 0 is a
step size. However, in order to be efficient, we will need an
explicit sparse representation of f i and Γfi . In particular, the
f i’s are represented by a list of nonzero Fourier coefficients.
As we will see, the projection operation never increases the
number of nonzero coefficients, i.e., ∥projµ,Kdt(f)∥0 ≤ ∥f̂∥0.
The projection operation is described in Section 1.11. Finally,
in order to represent Γfi succinctly, we will use an extension
of the Kushilev-Mansour routine for extracting heavy coef-
ficients of a function. The extension, omitted due to space
limitations, handles product distributions.

Algorithm Fourier gradient descent.
Inputs: T ≥ 1, ε, δ, η,G > 0, black-box Γ ∶ R{−1,1}n →
[−G,G], black box projK ∶ R{−1,1}n →K. Output: h ∈K.

1) Let f1 = 0
2) For i = 1,2, . . . , T ∶

f i+1 = projµ,Kdt (EKMµ(f i − ηΓfi , t + ηG, ε, δ))

3) Output h = 1
T ∑

T
i=1 f

i

Lemma 10. Let µ ∈ [−1,1]n, δ,G, t ≥ 0, T ≥ 1. Let loss
L ∶ R{−1,1}n → R and subgradient Γ ∶Kdt → [−G,G] satisfy
(4). Take η = G−1T −1/2. Then, with probability ≥ 1 − Tδ, the
Fourier gradient descent algorithm outputs h ∈K with

L(h) ≤ min
f∈Kdt

L(f) + 2
tG√
T
+ 8ε

1
2 t

3
2 .

This Lemma is a more general presentation of the approach
used by Gopalan et al, which was based on Zinkevich’s
analysis of a general gradient projection algorithm [16]. We
give a proof in the full version of the paper.

The definition and analysis of the EKM algorithm is
omitted, but satisfies the following.

Lemma 11. For any n ≥ 1, B, ε, δ > 0, µ ∈ (−1,1)n,
f ∶ {−1,1}n → [−B,B], given m = poly(n,B/ε, log(1/δ))
calls to f , with probability ≥ 1 − δ, the Extended Kushilevitz-
Mansour EKMµ(f,B, ε, δ) algorithm outputs a polynomial
p ∶ {−1,1}n → R such that,

∥p̂µ − f̂µ∥∞ ≤ ε,

and ∥p̂∥0 ≤ 8B2/ε2. The runtime of EKM is polynomial in m.

We now generalize a procedure used by Gopalan et al [5]
to keep the coefficients of a polynomial bounded in L1 norm.

1.11. Projection
The projection operation is defined with respect to a product

distribution µ, which determines the Fourier basis. (Alterna-
tively, it could be defined simply for vectors in R2n .) Consider
the following function.

Definition 1. Given a function f and ` ≥ 0, define
soft-threshold(f, µ, d, `) as the function g where

ĝµ(S) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

f̂µ(S) − `, if f̂µ(S) and ∣S∣ ≤ d ≥ `
f̂µ(S) + `, if f̂µ(S) ≤ −` and ∣S∣ ≤ d
0, otherwise.

(5)

This procedure is sometimes referred to as soft thresh-
olding in practice. As we will show, projµ,Kdt(f) =
soft-threshold(f, µ, d, `) for the smallest ` ≥ 0 such that
∥ soft-threshold(f, `))∥1 ≤ t. This is equivalent to the follow-
ing continuous procedure. If ∥f̂µ∥1 ≤ t output f . Otherwise,
a) Start decreasing the magnitudes of all nonzero Fourier

coefficients of f by equal amounts.
b) If some coefficient reaches 0, it then stays at 0.
c) Continue this till we reach a g where ∥ĝ∥1 = t.
Lemma 12. If f is represented by a list of nonzero
coefficients, projµ,Kdt(f) can be computed in time
O(∥f̂∥0 log ∥f̂∥0) [5].

Proof: We first argue that projµ,Kdt(f) =
soft-threshold(f, µ, d, `) for the smallest ` ≥ 0 such
that ∥ soft-threshold(f, µ, d, `)∥1 ≤ t. We then argue that
this can be computed efficiently.

Let f ∶ {−1,1}n → R and let g = projµ,Kdt(f). By
compactness of Kdt, and by strict convexity of ∥f̂ − ĝ∥2, g
exists and is unique. By definition of Kdt, ĝ(S) = 0 for all
S of size ∣S∣ > d. Hence, ∥f̂ − ĝ∥2

2 = ∑∣S∣≤d(f̂(S)− ĝ(S))2 +
∑∣S∣>d f̂

2(S). Since the latter sum does not depend on g,
WLOG we may assume f̂(S) = 0 for all sets of size ∣S∣ > d.
We may also assume WLOG that f̂(S) ≥ 0 for each S, in
which case it is easy to see that ĝ(S) ∈ [0, f̂(S)].

Now, suppose there exist two sets S,T such that f̂(S) −
ĝ(S) > f̂(T) − ĝ(T). Then, because y = x2 is a strictly
convex function, for sufficiently small ε > 0, the quantity
(f̂(S) − ĝ(S))2 + (f̂(T) − ĝ(T))2 would strictly decrease
if we decreased ĝ(T) by ε and increased ĝ(S) by ε. Since g
minimizes ∥f̂−ĝ∥2 over Kdt, it must be that this change would
cause g to no longer be in Kdt. However, notice that this
decrease/increase by ε does not increase ∥ĝ∥1 unless ε > ĝ(T).

7

Put another way, if ĝ(T) > 0, then we can modify g by a
sufficiently small ε to decrease ∥f̂−ĝ∥2 while keeping g ∈Kdt,
which would be a contradiction. Therefore, we conclude that

f̂(S) − ĝ(S) > f̂(T) − ĝ(T)⇒ ĝ(T) = 0.

This implies that for some ` ≥ 0, for all S either f̂(S) −
ĝ(S) = ` or f̂(S)− ĝ(S) < ` and ĝ(S) = 0, which means that
g = soft-threshold(f, µ, d, `).

The algorithm can be implemented in exactly the same
manner as that of Gopalan et al, except that we first zero
out all f̂(S) for ∣S∣ > d. After that, if ∥f̂∥1 ≤ t, the answer
is simply projµ,Kdt(f) = f = soft-threshold(f, µ, d,0).
Otherwise, let k = ∥f̂∥0 and sort the sets so that 0 <
∣f̂(S1)∣ ≤ ∣f̂(S2)∣ ≤ . . . ≤ ∣f̂(Sk)∣, which can be done in
time O(k log k). For each i ≤ k, let ai = (k − i)∣f̂(Si)∣ +
∑j≤i ∣f̂(Si)∣. It is easy to see that ai is nondecreasing,
that all k ai’s can be computed in one linear-time pass
through the nonzero coefficients of f , and that ai = ∥f̂∥1 −
∥ soft-threshold(f, µ, d, f̂(Si))∣1. Also, it is easy to see that
the desired ` satisfies ∥f̂∥1 − ∥ soft-threshold(f, µ, d, `)∣1 =
∥f̂∥1 − t. Hence, if ai ≤ ∥f̂∥1 − t ≤ aj , then the desired ` is
in [∣f̂(Si)∣, ∣f̂(Sj)∣]. After finding the range ` ∈ [ai, aj), the
exact value of ` is determined by a simple formula. Finally,
the soft-threshold(f, d, µ, `) is computed in linear time.

Another useful property shown by Gopalan et al is that
two functions which are close in L∞ norm become close in
L2 norm after projection onto the L1 ball. In our context, we
use the following modification for the degree-d constrained
L1 ball.

Lemma 13. Let f, g ∶ {−1,1}n → R be functions such that
∥f̂ − ĝ∥∞ ≤ ε. Then,

∥projµ,Kdt(f) − projµ,Kdt(g)∥
2
2 ≤ 4εt.

Proof: Again, WLOG, suppose f̂(S) = ĝ(S) = 0
for all sets S of size ∣S∣ > d. Now, suppose that
a = projµ,Kdt(f) = soft-threshold(f, d, µ, `1) and b =
projµ,Kdt(g) = soft-threshold(g, d, µ, `2). WLOG suppose
`1 ≤ `2. Next, let c = soft-threshold(g, d, µ, `1). Next, we
claim ∥a − c∥∞ ≤ ∥f̂ − ĝ∥∞. This is because, on a term by
term basis, moving any two real numbers f̂(S) and ĝ(S) both
a distance ` closer to 0 can only decrease the distance between
the two numbers. Notice that b = soft-threshold(c, d, µ, `2 −
`1). Next, we claim that ∥b − c∥∞ ≤ ε. The reason is that we
know that c is within L∞ distance ε of b, which has L1 norm
at most t. Hence, if we move all coordinates ε closer to 0, the
resulting function will certainly be within Kdt. Finally,

∥a−b∥2
2 ≤ ∥a−b∥1⋅∥a−b∥∞ ≤ (∥a∥1−∥b∥1)⋅∥a−b∥∞ ≤ 2t∥a−b∥∞.

Using ∥a − b∥∞ ≤ ∥a − c∥∞+ ∥b − c∥∞ ≤ ε + ε completes the
proof.

2. PART II: LEARNING FROM DIVERSITY

Let us first return to the setting of learning from diversity.
We use a different notation more suitable for this part.

2.1. Preliminaries
For x ∈ {0,1}n and S ⊆ [n] = {1,2, . . . , n}, let

x[S] = ∏i∈S xi denote a conjunction. We consider t-sparse,
degree-d, B-bounded, integer multilinear polynomials f(x) =
∑ti=1 bix[Si], where the sets Si ⊆ [n] are distinct, bi ∈ Z,
∣bi∣ ≤ B, and ∣Si∣ ≤ d. We say f is in canonical form if the sets
are arranged in order of size, breaking ties lexicographically.
The constant coefficient is the coefficient in front of the term
x[∅], e.g., 17+ 3x1 + 7x8 + 9x1x11 + 17x3x5 is in canonical
form and the constant coefficient is 17. Let the mindegree of
the polynomial be ∣S1∣. The mindegree terms are those terms
whose degree equals ∣S1∣. We similarly define the mindegree
of a univariate polynomial to be the smallest degree of a
nonzero term, e.g., the min-degree of 3x2 + 17x4 + x9 is 2.

Let ∣x∣ = ∑i ∣xi∣ and the p-biased product distribu-
tion be denoted by νp(x) = p∣x∣(1 − p)∣x∣. Let ρc(x) =
1
2c ∫

1/2+c
1/2−c νp(x)dp. We may abuse notation and say that a

polynomial is degree-d when it is degree ≤ d or t-sparse when
it is ≤ t-sparse.

The size of a decision tree is defined to be the number of
leaves. We define the depth of the root of the tree to be 0. Thus
a depth-d tree computes a degree-d multilinear polynomial. It
is easy to see that a depth-d decision tree f ∶ {0,1}n →
{−1,1} computes a degree-d, 3d-sparse, 2d-bounded integer
multilinear polynomial.

2.2. Intuition
Suppose that the function to be learned was a parity on

logn bits, f(x) = ∏i∈S(2xi − 1). If we restrict ourselves
to examples which have a 1/2 − c fraction of 1’s, then a
simple argument shows that the bits in S will be correlated
with f while the other bits will not. More generally, it can
be shown that for any O(log(n))-Junta, there will be some
p ∈ [1/2 − c,1/2 + c] such that among examples with pn
1’s, at least one of the relevant bits will have an inverse-
polynomial correlation. Once one finds a relevant bit, one can
recursively solve the Junta problem using divide and conquer.
This intuition is misleadingly simple, however, because an
actual depth-O(log(n)) tree can in general depend on all n
bits. Hence, it is not enough to identify the relevant bits.

To illustrate our approach, consider the two functions
below.

f1(x) = x1 − x2x3x4

f2(x) = x1x2 − x2x3 + x3x4 − x4x1

As mentioned, the first step is to use the model of multiple
random sources (as in [1]): we can simulate draws from any
p-biased distribution we want, for p ∈ [1/2−c,1/2+c]. This is
done by (somewhat carefully) partitioning the examples based
on the number of 1’s. Now notice that,

g1(p) = Ex∼νp[f1(x)] = p − p3

g2(p) = Ex∼νp[f2(x)] = 0

The above polynomials g1, g2 may be estimated by inter-
polation. In the case of f1, g1 reveals that there are degree-1
and degree-3 terms (and perhaps others) in f1. To find one,
we can further look at Ex∼νp[f1(x)∣xi = 1] for some i –if
we pick a relevant bit i, then the interpolated function will

8

change (for example i = 1 gives a conditional expectation
of 1 − p3). By conditioning on further variables, we can find
degree-d terms in time and sample complexity exponential in
d. However, f2 illustrates that the approach just described is
not enough, because Ex∼νp[f2(x)∣xi = 1] = 0 for all i.

The key “trick” is to look at Ex∼νp[f2(x)]. Note that
for any x ∈ {0,1}n (using x2

i = xi), f2
2 (x) = x1x2 +

x2x3 + x3x4 + x4x1 − 3x1x2x3 + The point is that
now there all degree-2 terms have the same sign, and hence
Ex∼νp[f2

2 (x)] = 4p2 + . . ., so cancelation cannot make the
polynomial 0. Intuition is coming from the fact is if f is
nonconstant yet the mean of f is constant across all p-
biased distributions, then the variance cannot be constant. In
statistics, the term heteroscedasticity refers to the fact that the
variance of a function may be different on different regions
of the input. This is essentially what we are taking advantage
of here. Interestingly, the (nonorthogonal) representation of
polynomials over {0,1}n, e.g., f(x) = x1x2x3 as a mono-
mial, is used for this part due to certain appealing properties
not possessed by the more common Fourier representation.

2.3. Algorithm
The algorithm learns sparse low-degree integral polynomi-

als. For simplicity, we assume that that the algorithm is given
all of the relevant parameters, c, n, t,B as input (we take them
to be global variables). If c is not known in advance, it may
be estimated to any sufficient inverse polynomial accuracy in
polynomial time. The assumption that t and B are known may
be removed using the doubling trick (run the algorithm starting
with a low estimates – each time it fails, double them and
restart). We prove the following generalization of Theorem 1.

Theorem 14. Fix any constant c > 0. Then there is a
polynomial M such that, for any δ ∈ (0,1), n, d, t,B ≥ 1,
and any t-sparse B-bounded degree-d integer polynomial
f ∶ {0,1}n → Z, for m ≥ M(2dntB log 1/δ) examples
(xi, f(xi)) where each xi is chosen independently from ρc,
with probability ≥ 1 − δ, the algorithm described in section
2.4 outputs a polynomial exactly equivalent to f and runs in
time poly(m).

2.4. Algorithm description and analysis
As mentioned in the introduction, a useful trick in recov-

ering a polynomial over {0,1}n is squaring it, because the
mindegree coefficients all are squared.

Observation 15. Let f(x) = ∑i aix[Si] be a multilinear
polynomial in canonical form. Let f2(x) = ∑i bix[Ti] be the
canonical representation of f2(x). Then S1 = T1 and bi > 0
for all mindegree terms, i.e., terms where ∣Si∣ = ∣S1∣.

The above observation follows from the fact that x2
i = xi

and hence x[S]x[T] = x[S ∪ T].
The algorithm learns the decision tree as a polynomial. Let

f(x) = ∑ti=1 aix[Si] be a integer polynomial in canonical
form. Say it is degree ≤ d and B-bounded. We assume that we
are given as input m samples (xi, f(xi)), for i = 1,2, . . . ,m,
where xi are independently drawn from ρc. The goal is to
output exactly the same polynomial in canonical form. We
will do this by identifying the nonzero coefficients one at a
time, in canonical order.
Computing the first coefficient. The first useful fact is
that if we are told the first nonzero canonical set, i.e., S1,

then we can compute its coefficient a1 using samples and
time exponential in d. Even this is not obvious (as opposed
to the standard Fourier representation). In particular, it is
not clear how to do this for polynomial-sized decision trees
(as opposed to O(logn)-depth trees). Roughly speaking, the
coefficient estimation is done by clustering the examples based
on the different fractions of 1’s and using interpolation. More
precisely, in Section 2.5, we give more general procedure that
does what we call T -interpolation.

Definition 2. For a multilinear polynomial g(x) = ∑i aix[Si]
and T ⊆ [n], let the T -interpolation of g be the polynomial,

g⟨T ⟩(p) =∑
i

aip
∣Si∖T ∣

It is clear that the constant coefficient of f⟨S1⟩(p) is equal
to a1. Hence, given the first set with nonzero coefficient for
any function, we can estimate that coefficient. The algorithm
for efficiently performing T interpolation is given in Section
2.5, but we state its guarantee here.

Lemma 16. For any constant c ∈ (0,1/2), there is a polyno-
mial M such that, for any δ ∈ (0,1), n, t, d,B ≥ 1, T ⊆ [n]
with ∣T ∣ ≤ d, and any degree-d t-sparse B-bounded integer
multilinear polynomial g, using m ≥M(2dtBn log(1/δ)) ex-
amples (x1, g(x1)), . . . , (xm, g(xm)), with probability ≥ 1−
δ, algorithm T -INTERPOLATION outputs the T -interpolation
polynomial g⟨T ⟩(p).

Define the jth residual fj(x) = ∑ti=j aix[Si]. By the
above, it suffices to identify the sets Si in canonical order,
because we can then estimate aj as the constant coefficient
of fj⟨Sj⟩. Notice that once we have computed (ai, Si) for
i = 1,2, . . . , j − 1, we can evaluate the jth residual fj(xi) =
f(xi)−∑j−1k=1 akx

i[Sk] and thus translate samples (xi, f(xi))
to samples (xi, fj(xi)). So it remains to describe how we find
the canonically first term in the j residual, i.e., Sj .

Finding the canonically first set. We begin, as suggested
by Observation 15, by computing the ∅-interpolation of f2

j ,
f2
j⟨∅⟩(p), from the data, using algorithm T -INTERPOLATION.

The result is a degree ≤ 2d integer polynomial in p. If it is
identically 0, we output the polynomial fj−1 and we are done.
Otherwise, let d′ be the mindegree of f2

j⟨∅⟩. By Observation
15, we have that d′ is equal to the mindegree of f2

j and
fj . This follows directly from the fact that all coefficients of
mindegree terms of f2

j are positive – there is no cancelation
when substitute xi = p for all i. Let Sj = {i1, i2, . . . , id′}
with i1 < i2 < . . . < id′ . Notice that i1 ∈ [n] is the
smallest index such that the mindegree of f2

j⟨{i1}⟩ is d′ − 1,
i2 ∈ {i1 + 1, i1 + 2, . . . , n} is the smallest index such that the
mindegree of f2

j⟨{i1,i2}⟩ is d′ − 2, and so forth. This gives
a means for identifying the set Sj using at most n calls to
T -INTERPOLATION.

To complete the description of the algorithm, we need to
describe the T -Interpolation algorithm. A formal analysis of
runtime and proof of Theorem 14 is omitted due to lack of
space.

9

2.5. T -Interpolation algorithm

Algorithm T -interpolation.
Input: T ⊆ [n] and (x1, y1), (x2, y2), . . . , (xm, ym) ∈
{0,1}n × Z.
(also assumes knowledge of n, d ≥ 1, and c ∈ (0,1/2))

1) For i ∶= 0,1,2, . . . , d:
a) Let pi ∶= 1

2
− c + i 2c

d
b) Let Di ∶= ∅. (* FILTER DATA SUBSET Di ⊆

{1,2, . . . ,m} *)
c) For j = 1,2, . . . ,m:

If xj[T] = 1 then with probability
νpi (x

j)
8nρc(xj)

, let
Di ∶=Di ∪ {j}.

d) Let yi ∶= 1
∣Di ∣ ∑j∈Di y

j .
2) Lagrange interpolation: Let r ∶ R→ R be,

r(p) =
d

∑
i=0
yi∏
j≠i

p − pj
pi − pj

.

3) Collect terms to write r(p) = ∑dk=0 ckpk.
4) Round each coefficient of r to the nearest integer and

output the resulting polynomial.

Steps (b) and (c) create a subset of the data, with indices
Di which appears to be drawn from the distribution νpi
conditioned on the fact that all bits in T are 1. This is
done by rejection sampling. In order to see that the algorithm
is well-defined, one must verify that

νpi (x
j)

8nρc(xj)
∈ [0,1], the

proof of which is omitted. Second, we need to explain how
one computes this ratio. It is easy to compute νpi(xj) =
p
∑k x

j
k

i (1 − pi)∑k 1−xj
k exactly. Computing ρc(x) exactly

involves the straightforward expansion and integration of a
univariate degree-n polynomial.

3. CONCLUSIONS

We have made progress on the problems of learning DNF
and decision trees from random examples, by introducing
algorithms and new models in which to analyze them. From a
practical point of view, perhaps the most limiting assumption
from ours and prior work is that the distribution is a product
distribution. It would be interesting to see if the smoothed
analysis paradigm could be extended beyond product distri-
butions.

Interestingly, the Greedy Feature Construction algorithm is
similar to (and could likely be replaced by) such as Feature
Construction algorithms [14] that learn sparse polynomials.
Our analysis shows that such algorithm PAC-learn decision
trees over product distributions, in a smoothed analysis model.
We also generalize to DNF and agnostically learning decision
trees with more elaborate algorithms.

REFERENCES

[1] J. Arpe and E. Mossel, “Multiple random oracles are
better than one,” CoRR, vol. abs/0804.3817, 2008.

[2] L. Bazzi, “Polylogarithmic independence can fool dnf
formulas,” in FOCS. IEEE Computer Society, 2007,
pp. 63–73.

[3] J. Bourgain, “On the distribution of polynomials on
high-dimensional convex sets,” in Geometric aspects
of functional analysis (1989–90), ser. Lecture Notes in
Math. Berlin: Springer, 1991, vol. 1469, pp. 127–137.

[4] A. Carbery and J. Wright, “Distributional and Lq norm
inequalities for polynomials over convex bodies in Rn,”
Math. Res. Lett., vol. 8, no. 3, pp. 233–248, 2001.

[5] P. Gopalan, A. T. Kalai, and A. R. Klivans, “Agnostically
learning decision trees,” in Proceedings of the 40th
annual ACM symposium on Theory of computing. New
York, NY, USA: ACM, 2008, pp. 527–536.

[6] J. Jackson, “An efficient membership-query algorithm
for learning DNF with respect to the uniform distribu-
tion,” Journal of Computer and System Sciences, vol. 55,
pp. 414–440, 1997.

[7] J. Jackson and R. Servedio, “Learning random log-
depth decision trees under the uniform distribution,” in
Proceedings of the 16th Annual Conf. on Computational
Learning Theory and 7th Kernel Workshop, 2003, pp.
610–624.

[8] A. T. Kalai, V. Kanade, and Y. Mansour, “Reliable
agnostic learning,” in Proc. Conf. on Learning Theory
(COLT’09), 2009.

[9] M. Kearns, R. Schapire, and L. Sellie, “Toward Efficient
Agnostic Learning,” Machine Learning, vol. 17, no. 2/3,
pp. 115–141, 1994.

[10] E. Kushilevitz and Y. Mansour, “Learning decision trees
using the Fourier spectrum,” SIAM Journal of Comput-
ing, vol. 22(6), pp. 1331–1348, 1993.

[11] D. Polymath, “A new proof of the density hales-jewett
theorem,” 2009, presentation by Ryan O’Donell at Mi-
crosoft Research New England.

[12] J. B. Rosen, “The gradient projection method for non-
linear programming. part i. linear constraints,” Journal
of the Society for Industrial and Applied Mathematics,
vol. 8, no. 1, pp. 181–217, 1960.

[13] D. A. Spielman and S.-H. Teng, “Smoothed analysis
of algorithms: Why the simplex algorithm usually takes
polynomial time,” J. ACM, vol. 51, no. 3, pp. 385–463,
2004.

[14] R. S. Sutton and C. J. Matheus, “Learning polynomial
functions by feature construction,” in ML, 1991, pp. 208–
212.

[15] L. Valiant, “A theory of the learnable,” Communications
of the ACM, vol. 27, no. 11, pp. 1134–1142, 1984.

[16] M. Zinkevich, “Online convex programming and gener-
alized infinitesimal gradient ascent,” in Proc. 20th Intl.
Conf. on Machine Learning (ICML’03), 2003, pp. 928–
936.

10

