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Abstract

We consider the problem of approximating the entropy
of a discrete distribution P on a domain of size q, given
access to n independent samples from the distribution.
It is known that n ≥ q is necessary, in general, for a
good additive estimate of the entropy. A problem of
multiplicative entropy estimate was recently addressed
by Batu, Dasgupta, Kumar, and Rubinfeld. They show
that n = qα suffices for a factor-α approximation, α < 1.

We introduce a new parameter of a distribution
- its effective alphabet size qef (P ). This is a more
intrinsic property of the distribution depending only on
its entropy moments. We show qef ≤ Õ(q). When
the distribution P is essentially concentrated on a small
part of the domain qef � q. We strengthen the result
of Batu et al. by showing it holds with qef replacing q.

This has several implications. In particular the
rate of convergence of the maximum-likelihood entropy
estimator (the empirical entropy) for both finite and
infinite alphabets is shown to be dictated by the effective
alphabet size of the distribution. Several new, and some
known, facts about this estimator follow easily.

Our main result is algorithmic. Though the ef-
fective alphabet size is, in general, an unknown pa-
rameter of the distribution, we give an efficient pro-
cedure, with access to the alphabet size only, that
achieves a factor-α approximation of the entropy with

n = Õ
(
exp

{
α1/4 · log3/4 q · log1/4 qef

})
. Assuming

(for instance) log qef � log q this is smaller than any
power of q. Taking α → 1 leads in this case to efficient
additive estimates for the entropy as well. In particu-
lar, this result shows that for many natural scenarios, a
tight estimation of the entorpy may be achieved using
a sub-linear sample.

Several extensions of the results above are dis-
cussed.

1 Introduction

1.1 Background Stochastic sources and en-

tropy

Let X be a random variable with values in a finite
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or countable alphabet A. For a ∈ A, let pa be the
probability of the event X = a. The number H(X) =∑

a∈A pa log 1
pa

is called the Shannon entropy of X . 1

A stochastic, or random, source X is a sequence of
random variables X1, ...Xn, ... defined on a common al-
phabet A. The entropy of a random source X is defined
as limn→∞

1
nH(X1...Xn), if the limit exists. In this

paper we deal only with the simplest representative of
this family, for which all the variables Xi are indepen-
dent and identically distributed. In this case, clearly,
H(X ) = H(X1). Such a source is often called a discrete
memoryless source.
The setting

We are considering the black-box scenario in which
a random source is given as a sample (a1, ..., an) ∈ An

produced according to the (unknown) joint distribution
of X1...Xn. The goal is to estimate the entropy of
the source. Efficiency in this model means viewing the
smallest possible sample. Appropriate notions of quality
of approximation will be defined in the next subsection.
Motivation

Random sources model a large number of phenom-
ena in natural and life sciences. In many cases the
exact mechanism behind a specific source is not well-
understood and therefore a black-box scenario is appro-
priate. The entropy of a source is an important param-
eter, however computing it exactly might be infeasible
[2, 10, 13]. The realistic goal then is to approximate it
efficiently as possible.

Example. The following is the layman’s view of [9]. A
visual stimulus is applied to a blowfly. This generates a
neural spike train, i.e. a binary string of length k ≈ 30.
After a short time interval (a second) a new stimulus
is applied, and a new string is generated, and so on.
This produces a sequence of random variables on a
common alphabet of neural responses (binary strings
of length k). These random variables are presumed to
be identically distributed and independent if the time
intervals between stimuli are long enough. The entropy
of this random source is an important measure for the
complexity of the fly’s response to environment.

1All the logarithms in this paper are to base 2, unless stated
otherwise.



1.2 Approximation of entropy There are two nat-
ural notions of approximating an unknown quantity
H(X ). In both an efficiently computable functional
Ĥ of the sample ā = a1...an is constructed. Ĥ pro-
vides an additive approximation of H within a constant
c if Ĥ ≤ H ≤ Ĥ + c for most samples ā. Ĥ gives
a multiplicative approximation of H within factor c if
Ĥ ≤ H ≤ c · Ĥ for most samples ā.

Example. A sample ā = a1, ..., an defines an empirical

distribution p̂a = |{i : ai=a}|
n on the alphabet A. The

entropy of this distribution is a natural estimator for H .
We denote it by HMLE and refer to it as the maximum-
likelihood entropy estimator.

Most of the research in the area concentrated on
additive approximation. The two important parameters
are the alphabet size q and the sample size n. It is
convenient to present some of the results for memoryless
sources, classifying them according to relative sizes of q
and n. Most of the results here are for the maximum-
likelihood estimator. We mention that there are many
other entropy estimators. Some of them work better
for more general sources. Others arise naturally in
the context of data compression. Our discussion is by
necessity brief (see [6],[9],[10], [13] for more).

1. q is fixed and n → ∞. The maximum-likelihood
estimator HMLE converges to the entropy H with

asymptotic rate of O
(

1√
n

)
. In other words

|HMLE − H | ≤ O
(

1√
n

)
with probability tending

to 1 as n → ∞.

2. q grows with n, but n � q. The maximum-
likelihood estimator HMLE gives an o(1) additive
approximation of the entropy. Namely for any ε > 0
the probability of |HMLE − H | ≤ ε goes to 1 as n
goes to infinity.

3. q grows at the same rate as n. In this case,
the maximum-likelihood estimator HMLE fails to
achieve a vanishing additive error. In fact it is
known to have a constant negative bias. However
estimators with vanishing additive error are known
to exist, though so far the proofs of this fact are
existential [11].

4. n = qα for 0 < α < 1. In this case there are
no consistent additive estimators for the entropy
[10]. Batu, Dasgupta, Kumar, and Rubinfeld
[2] construct a multiplicative estimator achieving
(essentially) an α-approximation. Let us quote 2

2This is a streamlined version of Theorem 1 in [2].

the relevant result of [2] here, since we will need it
later on.

Theorem 1.1. [2] Let 0 < α < 1. Let ā = a1...an

be a sample from a discrete memoryless source with
distribution P . Let p̂ be the empirical distribu-
tion defined by the sample. Let q be the alphabet
size, and t = q−α. Define an entropy estimator
Ĥ =

∑
a: p̂a≥t p̂a log 1

p̂a
+log 1

t ·
∑

a: p̂a<t p̂a. Then,

assuming n ≥ Ω̃ (qα)

Ĥ ≤ H(P ) ≤ 1

α
Ĥ,

with high probability over the samples ā. (The Ω̃
notation hides poly-logarithmic in q factors.)

5. q = ∞, and n → ∞. This case is treated in
[1], [13]. Assuming the first two entropy moments
(see below) of the distribution are bounded, the
maximum-likelihood estimator HMLE converges to

the entropy H with asymptotic rate of O
(

1
log n

)
.

This is best possible for any sequence of universal
entropy estimators.

In all these cases, the sample size needed to obtain a
required entropy approximation is taken to be a function
of the alphabet size q. It seems reasonable to ask which
additional parameters of the distribution bear on the
required sample size. As an extremal example consider
a distribution on a large (even infinite) alphabet, which
is very concentrated, so that its entropy is small.

Example. The geometric distribution. Let 0 < p < 1.
Consider an integer-valued random variable X with
Pr(X = k) = p(1 − p)k−1, for k ≥ 1. The entropy

of X is H(p)
p . (Here H(x) = −x log x− (1−x) log(1−x)

is the binary entropy function.) Setting p = 1
4 yields

H(X) ≈ 3.25. This entropy is attained within an
additive error of 1

1000 by considering just the 28 most
frequent symbols of the distribution.

1.3 Our results Our point of view is that of sub-
linear algorithms. We are working in the same regime
as [2] assuming the alphabet size to be too large to allow
dealing with linear-size samples. It turns out however
that the alphabet size is not necessarily the most
appropriate measure for the difficulty of the problem,
and it is useful to consider other parameters of the
distribution.

We introduce the notion of effective alphabet size of
a distribution P . Its relevance will be demonstrated
by the results below (Theorems 1.2 and 2.1). Here
we offer a brief informal discussion of this notion,



relating it to the asymptotic equipartition property [3]
for memoryless sources. Let X = (Xi) be a memoryless
source. Let P = {pa}a∈A be the distribution of Xi.
Consider a random variable Y = log 1

Pr(X1)
taking

value log 1
pa

with probability pa. We need to estimate
the expectation of Y , which is the entropy of P . For
this purpose we would like to define a random variable
with the same expectation and a small variance. Let
H2(P ) =

∑
a∈A pa log2 1

pa
be the second moment of Y .

For a length-t sequence Xi...Xi+t−1, the distribution of
the logarithm of inverse probability log 1

Pr(Xi...Xi+t−1)

is that of a sum of t independent copies of Y . The
Chebyshev inequality for 1

t log 1
Pr(Xi...Xi+t−1) implies

that for t of order H2(P )/H2(P ), a typical value of this
random variable is close to H(P ). In other words, a
typical length-t sample of the source has probability

close to 2−tH(P ) ≈ 2−
H2(P )

H(P ) . We note that this is
precisely the asymptotic equipartition property for the
source. In order to sample this random variable with a
reasonable accuracy (i.e. to estimate the probability of
a a typical length-t sample) we need to look at as many

as 2
H2(P )

H(P ) typical sequences. Consider typical length-t

sequences as symbols in a new alphabet of size 2
H2(P )

H(P ) .
This is the typical subset of At. The typical subset
provides a comprehensive description of the source (e.g.
for the sake of data compression [3]). Here we show its
relevance to entropy approximation.

Definition 1.1. The effective alphabet size of a distri-

bution P is qef (P ) = 2
H2(P )

H(P ) .

Example. Let P be a uniform distribution on alphabet
of size q. Then qef (P ) = q.

The effective size of an alphabet is (essentially)
upper bounded by its real size.

Proposition 1.1. Let P be a distribution on alphabet
of size q, and assume 3 the entropy of P is at least 1.
Then qef (P ) ≤ q log2(q). 4

On the other hand, the effective size of an alphabet
could be much smaller than its real size.

Example. Let P be a geometric distribution with a
parameter p. Then

qef (P ) = 2
H2(p)+(1−p) log2(1−p)

pH(p)

3The assumption that the entropy of the sampled distribution
is bounded away from zero is necessary, even if we want only to
distinguish between this distribution and a 1-point distribution.
We will assume the entropy to be at least 1. This choice affects
only constants in the following discussion.

4It is not hard to construct distributions on q points with
qef (P ) ≥ Ω (q logc(q)), for some c > 0.

Taking p = 1
4 gives qef (P ) ≈ 16, while q = ∞.

The following claim is a special case of our main
technical result Theorem 2.1. It illustrates the relevance
of the notion of effective size of the alphabet.

Theorem 1.2. Let 0 < α ≤ 1
2 . Let ā = a1...an

be a sample from a discrete memoryless source with
distribution P . Let p̂ be the empirical distribution
defined by the sample. Let qe = qef (P ), and t = q−α

e .

Define an entropy estimator Ĥ =
∑

a: p̂a≥t p̂a log 1
p̂a

+

log 1
t ·∑a: p̂a<t p̂a. Then, assuming n ≥ Ω̃ (qα

e )

Ĥ ≤ H(P ) ≤ 1

α
Ĥ,

with high probability over the samples ā. (The Ω̃
notations hides polylogarithmic in qe factors.)

This result should be compared to Theorem 1.1. In
fact our investigation began as an attempt to under-
stand Theorem 1.1.

We replace the alphabet size with the effective al-
phabet size. By Proposition 1.1 this makes Theorem 1.2
at least as strong as Theorem 1.1 for α < 1

2 . If qef � q
Theorem 1.2 is a strengthening of Theorem 1.1.

For larger α < 1 the sample size has to grow or more
stringent assumptions on the distribution are required.

In [2] for α → 1 the assumption H(P ) ≥ Ω
(

1
1−α

)
is

made. Here we deal with this problem by increasing
the sample size. We will define an increasing sequence

of “effective alphabet sizes” q
(k)
ef (P ) so that qef (P ) =

q
(2)
ef (P ), and such that if we replace qef (P ) with q

(k)
ef (P )

the theorem holds for a larger range of approximation
factors 0 < α ≤ k−1

k . On the other hand, for k as high
as O (log q), the k-th effective alphabet size continues
to be upper bounded by the alphabet size. Thus the
claim of Theorem 1.1 is essentially recovered, without
requiring the entropy to grow.

This allows us to connect two relative scales of
sample size versus alphabet size. So far we have
considered sample sizes sublinear in the alphabet size.
Taking the sample size to be linear in the alphabet size,
we can take the approximation factor α close to 1, as

close as α = 1 − Õ
(

1
log q

)
. Therefore, given a linear

number of samples, the functional Ĥ in Theorem 1.2
becomes a very good multiplicative estimator for the
entropy.

We now turn to the maximum-likelihood entropy
estimator HMLE defined in Example 1.2. This estima-
tor calculates the entropy of the empirical distribution
defined by the sample. HMLE is a natural and a thor-
oughly investigated functional. Our methods allow us



to prove new properties of HMLE . The key step is the
simple observation that the two estimators Ĥ (in The-
orems 1.2 and 2.1) and HMLE are comparable. In fact
it is always true that Ĥ ≤ HMLE . On the other hand,
it is known (see Section 3) that HMLE is smaller than
the entropy (with high probability). This means that
HMLE lies between Ĥ and H(P ), and everything we
prove for Ĥ holds for HMLE . 5

Corollary 1.1. The convergence rate of the
maximum-likelihood estimator is dictated by the
effective alphabet size of the distribution.

The discussion so far provides a new glimpse into be-
havior of the maximum-likelihood estimator for sample
sizes linear in the alphabet size. It is important enough
to warrant stating it as a proposition.

Proposition 1.2. Let P be a distribution on alphabet
of size q, and let ā = a1...an be a sample from a discrete
memoryless source with distribution P . Then, assuming
n ≥ Ω(q),

HMLE ≤ H(P ) ≤
(

1 + Õ

(
1

log q

))
· HMLE ,

with high probability over the samples ā.

It is a well-established fact that HMLE is not a good
additive estimator when the sample size is linear in
the alphabet size. In this case it has a constant
negative bias [10]. In fact several variations of this
estimator [4, 5, 8, 12] were constructed to resolve this
problem. However none of them seems to work for
all distributions. Here we suggest another point of
view: when the sample size decreases from super-
linear to linear in the alphabet size, the maximum-
likelihood estimator transforms from a good additive
entropy estimator to a good multiplicative estimator.
So good, in fact, that if the entropy is not very large
(H(P ) � Õ (log q)), it will be approximated within o(1)
additive error.

Replacing the alphabet size with an effective alpha-
bet size allows us to consider sample sizes which are
linear or even superlinear in the effective alphabet size
even if we wish to keep the costs sublinear in the al-
phabet size. An extremal example is a distribution on
an infinite alphabet with bounded first and the second
entropy moments. Taking the sample size n = qα

ef (P ),
and allowing α to grow to infinity, leads to the following
result.

5The only advantage of Ĥ is that it seems to be easier to
analyze.

Proposition 1.3.

|H(P ) − HMLE | ≤
H2(P )

2 logn − O(log log n)
+ O

(
log n√

n

)

with probability tending to 1 as n → ∞.

This recovers a known result of [13] with a better
constant. Replacing qef (P ) with k-th effective alphabet
size implies that for distributions with a bounded k-
th entropy moment the maximum likelihood estimator

has a convergence rate of O
(

1
k logk−1 n

)
. This, in turn,

implies polynomial convergence rate for distributions all
of whose moments are bounded and do not grow too
fast.

Returning to Theorem 1.2 we point out a difficulty
in using this theorem algorithmically. The definition
of the effective alphabet size depends on the unknown
parameters we actually want to estimate. This however
suggests a sequential approach.

Let the alphabet size q be given. The first step will
use an appropriate generalization of Theorem 1.1 with a
small approximation factor to obtain crude estimates of
the first two entropy moments of the distribution, and
thus a crude upper bound on its effective alphabet size.
If the distribution is properly concentrated even this
bound will be significantly smaller than q. The second
step uses Theorem 1.2 with this bound substituted for
qef (P ) and with a larger approximation factor. (Of
course the number of steps could be larger than two.)
Theorem 4.1 gives sustenance to this plan by upgrading
Theorem 2.1 to estimate higher entropy moments.

This discussion leads to the main results of the pa-
per. We present them in a special case matching Theo-
rem 1.2. They are easily generalized using Theorem 2.1
and Theorem 4.1 in full generality.

Theorem 1.3. Let 0 < β < α ≤ 1
2 . Let ā = a1...an

be a sample from a discrete memoryless source with
distribution P . Let q be the alphabet size, and qef the
effective alphabet size.

There is an efficient procedure that, given access to
α, β, and q only, computes a functional Ĥ of the sample

such that assuming n ≥ Ω̃

(
qβ + q

α
β3

ef

)

Ĥ ≤ H(P ) ≤ 1

α
Ĥ,

with high probability over the samples ā. (The Ω̃
notations hides polylogarithmic in q factors.)

Let us fix the value of α and view β as a variable. The
theorem holds for any constant β < α. In fact, it is
not hard to check that we can let β be a function of q.



A natural idea then is to optimize over β, using binary
search, say. 6 This leads to the following corollary.

Corollary 1.2. Let 0 < α ≤ 1
2 . Let ā = a1...an

be a sample from a discrete memoryless source with
distribution P . Let q be the alphabet size, and qef

the effective alphabet size. There is an efficiently
computable functional Ĥ of the sample, given ac-
cess to α and q only, such that assuming n ≥
Ω̃
(
exp

{
α1/4 · log3/4 q · log1/4 qef

})

Ĥ ≤ H(P ) ≤ 1

α
Ĥ,

with high probability over the samples ā.

In other words, given α, β, and q, but not qef , the
algorithm efficiently computes a sample size n not

bigger than Ω̃
(
exp

{
α1/4 · log3/4 q · log1/4 qef

})
. If the

distribution is concentrated, that is, qef is much smaller
then q, as in many natural scenarios, then n will be
sublinear in q and a tight entropy approximation will
be achieved using a sub-linear sample.

Example. Let P be a geometric distribution with a
parameter p. Turn P into a distribution Pq on q points
by retaining only the first q most frequent symbols,
and assigning the remaining probability mass to the
last symbol. Let q be chosen so that 1

log q ≤ p ≤
1 − 1

log q . Then H(Pq) ≥ 1, and the effective alphabet

size qef is bounded from above by log3 q. Therefore a 1
2 -

approximation of H(Pq) can be achieved using a sample

of size at most exp
{

Õ
(
(log q)3/4

)}
.

Taking α → 1 and using general versions of Theorem 1.3
and corollary 1.2 we obtain tighter multiplicative (and
in some cases even additive) estimates for the entropy

given sample of size n = exp
{

Ω̃
(
log3/4 q · log1/4 qef

)}
.

1.4 Discussion Consider a random source modeling
a certain complex (natural world) system. The alphabet
of this source describes a short-term behavior of the
system. It might be very large, since there are many
possible patterns of short-term behavior. However, one
would expect a certain typical behavior to emerge, in
the sense that a very small subset of the alphabet would
support most of the probability mass and in fact most
of the entropy of the source distribution. These would
be the patterns of short-term behavior following the
internal logic of the system. The huge majority of the
remaining symbols would be, in this simplistic view, a

6We are glossing over technical details.

noise stemming from external factors. If such is the
case, the size of this typical set rather than the size of
the entire alphabet should be the parameter of interest
for the sake of entropy approximation. The notion of
the effective alphabet size of a distribution attempts
to capture this point of view. We have argued for its
conceptual and algorithmic relevance.

2 Effective alphabet size and entropy

approximation

In this section we define a sequence of “effective alpha-

bet sizes” q
(k)
ef (P ) of a distribution P and prove our main

approximation result: it is possible to approximate the
entropy within a multiplicative factor 0 < α < k−1

k ,

given a sample of size n ≥ Õ (qα
e ), where qe = q

(k)
ef .

First we define higher entropy moments.

Definition 2.1. For an integer k ≥ 1 the k-th entropy
moment of P is Hk(P ) =

∑
a∈A pa logk 1

pa
.

Definition 2.2. For an integer k ≥ 2, the k-th effec-

tive alphabet size of P is q
(k)
ef (P ) = 2

k−1

√
Hk(P )

H(P ) .

The sequence q
(k)
ef is increasing. (This is a simple

consequence of Hölder’s inequality.)
For the rest of this section, whenever the value of k

is clear from the context, we set qe = q
(k)
ef (P ).

Theorem 2.1. Let α > 0, and let k ≥ 1 be an integer.
Let ā = a1...an be a sample from a discrete memoryless
source with distribution P . Let p̂ be the empirical
distribution defined by the sample. Set t = q−α

e . Define
an entropy estimator Ĥ =

∑
a:p̂a≥t p̂a log 1

p̂a
+ log 1

t ·
∑

a: p̂a<t p̂a. Then, assuming n ≥ Ω
(
qα
e log3 qα

e

)

1. If α < k−1
k

Ĥ ≤ H(P ) ≤ 1

α
· Ĥ.

2. If k−1
k ≤ α ≤ 1

Ĥ ≤ H(P ) ≤ k (−kα + 3k − 2)

2k2 − 3k + 1
· Ĥ. 7

3. If α > 1,

Ĥ ≤ H(P ) ≤
(

1 +
1

(2k − 1)αk−1

)
· Ĥ.

with high probability over the samples ā.

7The factor on the right hand side is the equation of a straight
line connecting the points

(
k−1

k
, k

k−1

)
and

(
1, 2k

2k−1

)
.



Remark 2.1. The theorem is presented in a slightly
imprecise form to gain clarity. In fact the stated
approximation factors should be increased by a factor
of 1 + δ

log qe
, where δ may be taken as small as desired

with an additional multiplicative cost factor of O
(

1
δ2

)
.

8 Furthermore, the number of samples has to satisfy an

additional constraint n ≥ Ω̃
(

H2

H2
1

)
. This constraint is

relevant (larger than qα
e ) only for uninteresting settings

of parameters, and we have chosen not to show it
here. A complete statement of the theorem can be easily
recovered from Propositions 2.1 and 2.2 below.

Proof. The theorem is proved in two steps. In the first
step we define a functional H̃ of the distribution which
is conveniently thought of as a deterministic version of
Ĥ . We show this functional to provide a good estimate
of the entropy. Then we show that with high probability
either Ĥ is very close to H̃ or Ĥ is very close to H(P )
itself.

Definition 2.3. For a parameter 0 < t < 1 let H̃ =∑
a: pa≥t pa log 1

pa
+ log 1

t ·∑a: pa<t pa.

Proposition 2.1. If t ≤ q−α
e then the three claims of

Theorem 2.1 hold with H̃ replacing Ĥ.

The proof is given in the Appendix.
This is the first (deterministic) step in the proof

of Theorem 2.1. Now for the probabilistic part. Let ε
be a small positive number, whose precise value will be
chosen later. Set t = q−α

e . Let Ĥ =
∑

a: p̂a≥t p̂a log 1
p̂a

+

log 1
t ·
∑

a: p̂a<t p̂a, and H̃ =
∑

a: pa≥(1−ε)t pa log 1
pa

+

log 1
t ·∑a: pa<(1−ε)t pa. Let r =

∑
a: pa<(1−ε)t pa.

Proposition 2.2. Let the number of samples n be at

least Ω
(
max

{
1
ε2 qα

e log qα
e , H2

ε2H2
1

log qα
e

})
. Then, for

a sufficiently large constant implicit in the asymptotic
notation 9

• If r ≥ ε2H2
1

H2
then with high probability

(1 − ε)2 · Ĥ ≤ H̃ ≤ (1 + ε)2 · Ĥ.

• If r <
ε2H2

1

H2
then with high probability

(1 + 2
√

ε)−1 · Ĥ ≤ H(P ) ≤ (1 − ε)−2 · Ĥ.

8This overhead stems from the stipulation to approximate a
deterministic quantity by a probabilistic one, and thus we need
to pay the cost of ensuring typical behavior of the approximator.

9All the hidden constants in this paper are easy to compute
explicitly. None of them exceeds 10.

The proof is given in the Appendix [14].
Theorem 2.1 follows by combining Propositions 2.1

and 2.2, and taking ε = 1
log qe

.
The efficiency of entropy approximation provided

by the theorem depends on the rate of growth of the
sequence of effective alphabet sizes. It turns out that
this sequence does not grow too fast.

Proposition 2.3. The k-th effective alphabet size of a
distribution is essentially bounded by its alphabet size.
Specifically, let q be the alphabet size. Then for k ≤
ln q − ln ln q

log q
(k)
ef = k−1

√
Hk(P )

H(P )
≤ log q + 2 log log q.

Due to lack of space the proof is omitted and is given
in the longer version [14].

Theorem 1.1 is a corollary of Theorem 2.1 and the
proposition. In fact we obtain a stronger claim. (Recall
that in Theorem 1.1 the approximation factor α has to
be bounded away from 1.)

Corollary 2.1. Theorem 1.1 is true for all 0 < α <

1 − O
(

1
log q

)
. The only assumption is that the entropy

of the source is bounded from below by a constant.

3 The maximum-likelihood estimator

HMLE is better than Ĥ
Clearly the maximum-likelihood estimator HMLE

is always at least as large as the estimator Ĥ defined in
Theorems 1.2 and 2.1.

Next, we quote known properties of HMLE . This
random variable is strongly concentrated around its
expectation, which is smaller than the entropy. The
following is true for both finite and infinite alphabets
[1]: let n be the size of the sample, then

E(HMLE) ≤ H and V ar(HMLE) ≤ log2(n)

n
.

This means that with high probability Ĥ ≤ HMLE ≤
H(P ), 10 and HMLE is the better estimator among the
two.
Proof of Proposition 1.2

It suffices to prove the proposition for Ĥ . This
new claim follows immediately from corollary 2.1 with

α = 1 − O
(

log log q
log q

)
.

An infinite alphabet

The problem of entropy estimation for memoryless
sources on a countable alphabet with bounded entropy

10Up to a lower order error of O

(
log n
√

n

)
.



moments was raised in [1]. In particular the question of
convergence rate for the maximum-likelihood estimator
is raised, and dealt with for specific examples. This
question (among other things) is fully resolved in [13].
Assuming the first and the second entropy moments to
be bounded, it is shown that

|H(P ) − HMLE | ≤
4H2(P )

log n
+ O

(
1√
n

)

with probability tending to 1 as n → ∞. The lower

order second term of O
(

1√
n

)
appears as a result of an

application of the Central Limit Theorem.
We now prove Proposition 1.3 and show this result

with better constants to be a simple consequence of
Theorem 2.1 (and known properties of HMLE). Our
result has an additional advantage of not relying on
CLT. Consequently it is somewhat less asymptotic.

By the preceding discussion, it is enough to prove
the proposition with Ĥ instead of HMLE . This, in
turn, is a direct consequence of the third claim of
Theorem 2.1, in the special case k = 2.

For a general k Theorem 2.1 implies that for distri-
butions with bounded k-th entropy moments the max-
imum likelihood estimator has a convergence rate of

Hk

k(logk−1 n − O(log log n))
+ O

(
log n√

n

)
. From this, if all the

moments of the distribution are finite and do not grow
too fast, a faster convergence rate can be attained. For
instance, if Hk ≤ kO(k), then HMLE converges to H(P )
polynomially fast in n.

We remark that the main result of [13] is a matching

lower bound of Ω
(

1
log n

)
on the convergence rate of

any sequence of universal entropy estimators over the
class of distributions with bounded first and second
moments. In particular, the rate of convergence of
HMLE is essentially optimal. This argument can be
extended to show that this is true for distributions with
bounded k-th entropy moments as well.

4 Sequential entropy approximation

The goal of this section is to prove Theorem 1.3. We
start with a generalization of Theorem 2.1 for higher
entropy moments.

Recall that for an integer m ≥ 1 the m-th
entropy moment of a distribution P is Hm(P ) =∑

a∈A pa logm 1
pa

. For k, m ≥ 1 define the (k, m)-th

effective alphabet size q
(k,m)
ef (P ) = 2

(k−1)m

√
Hkm(P )

Hm(P )
. Let

qe = q
(k,m)
ef (P ).

Theorem 4.1. Let α > 0, and let k, m ≥ 1 be integers.
Let ā = a1...an be a sample from a discrete memoryless

source with distribution P . Let p̂ be the empirical distri-

bution defined by the sample. Set t = 2−α1/m log qe . De-
fine an entropy estimator Ĥm =

∑
x:p̂a≥t p̂a logm 1

p̂a
+

logm 1
t ·
∑

a: p̂a<t p̂a. Assume n ≥ Ω
(

1
t log2m+1

(
1
t

))
.

Then the three claims of Theorem 2.1 hold with Hm(P )
replacing H(P ) and Ĥm replacing Ĥ.

The theorem is true for any fixed moment m
(independent of the alphabet size q), and we can even let
m be a slowly (sub-logarithmically) growing function of
q. The proof is very similar to the proof of Theorem 2.1
and will be given in the full version of the paper.

We use the theorem with m = 2. We will also need
an upper bound on the new effective alphabet size. The
following proposition generalizes Proposition 2.3.

Proposition 4.1. Let P be a distribution on alphabet
of size q. Then for k ≤ ln q − m ln ln q

log q
(k,m)
ef (P ) = (k−1)m

√
Hkm(P )

Hm(P )
≤ log q + 2m log log q.

The proof is similar to that of Proposition 2.3 and will
be given in the full version of the paper.
Proof of Theorem 1.3

Let α and β be given. We describe a quasi-
algorithm to approximate the entropy of a distribution
P within factor α given a sufficiently large sample
from this distribution. Use proposition 1.1 to upper
bound the size of qef by q log2 q. Use Theorem 1.2
with approximation factor set to β and Theorem 4.1
with β and k = m = 2 to retrieve a value for

t1 = Ω
(
(q log2 q)−β

)
and for an integer n1 = Ω̃

(
1
t1

)
.

Define functionals Ĥ and Ĥ2 with the parameter t set
to t1. Theorem 1.2 and Theorem 4.1 guarantee that
for a typical sample of size n1 holds Ĥ ≤ H(P ) ≤
1
β · Ĥ and Ĥ2 ≤ H2(P ) ≤ 1

β2 · Ĥ2.
Split the sample into two, such that one is of size

n1. Compute Ĥ and Ĥ2 on this sub-sample.

Set q̂ef = Ĥ2

β2Ĥ
. Then, assuming the above inequal-

ities, qef ≤ q̂ef ≤ qef

β3 . Set t2 = q̂−α
ef . Define a new func-

tional Ĥ ′ = Ĥ with a parameter t set to t2. Theorem 1.2

implies that for a typical sample of size n2 ≥ Ω̃
(

1
t2

)

holds Ĥ ′ ≤ H(P ) ≤ 1
α Ĥ ′.

Compute Ĥ ′ on the remaining sub-sample. This
is an efficiently computable functional of the original
sample. By the above discussion if the size of the

sample is at least Ω̃

(
qβ + q

α

β3

ef

)
this functional gives an

α-approximation of the entropy with high probability.
The theorem is proved.



5 Lower bounds and further research

Our main result is that the entropy of a memoryless
source could be estimated up to a factor α with qα

ef

samples. What should a corresponding lower bound
look like?
A complementing result would say that at least qβ

ef

samples are needed for such approximation, for some
function β = β(α), β ≤ α. Now there are two possible
statements.

The first (and weaker) option states that there is

no universal α-estimator for entropy using less than qβ
ef

queries. Such a statement is proved in [2] with alphabet
size q replacing effective alphabet size qef , and with
β = α/2 (Theorem 7). A proof of such a statement
requires a pair of distributions that have very different
entropies, but small statistical distance on small (< qβ)
samples. It turns out that two appropriate families of
distributions are two families of uniform distributions on
subsets of the alphabet. For such distributions qef = q
and our claim is a direct consequence.

A much stronger statement would be to say that
for any non-trivial distribution at least qβ

ef queries are
needed to allow entropy estimation up to factor α.
Clearly such a statement requires an appropriate restric-
tion on algorithms used. For instance an algorithm that
always return 1, without looking at the sample, would
give an exact answer for distributions with entropy 1.
However, we conjecture that an appropriately modified
statement holds. This is a topic for future research.
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6 Appendix

6.1 Proof of Proposition 2.1 First, the entropy
contribution s =

∑
pa≤t pa log 1

pa
of small elements is

bounded from above by a function of their probability
mass r =

∑
pa≤t pa and the k-th entropy moment.

Lemma 6.1.

s ≤ k
√

rk−1 · sk ≤ k
√

rk−1 · Hk.

Proof.

sk =
∑

pi≤t

pi logk 1

pi
= r ·

∑

pi≤t

pi

r
logk 1

pi

≥ r ·




∑

pi≤t

pi

r
log

1

pi




k

=
sk

rk−1
.

The inequality follows from the covexity of xk.

Now, clearly H̃ ≤ H , for any choice of t. For the
second direction,

H̃ ≥ min
0≤s≤H

{
(H − s) + r log

1

t

}
,

where log 1
t ≥ α log qe, and r ≥

(
sk

Hk

)1/(k−1)

. These

two inequalities imply

H̃ ≥ min
0≤s≤H

{
(H − s) +

αsk/k−1

H1/(k−1)

}
.

Let f(s) = (H − s) + αsk/k−1

H1/(k−1) . At the endpoints of
the interval f(0) = H and f(H) = αH . Differentiating



over s, df
ds = 0 for s = s0 =

(
k−1

k

)k−1 · α−(k−1) · H . In

particular, if α < k−1
k , the minimum of f in the interval

is attained at s = H , and therefore H̃ ≥ αH , proving
the first part of the proposition.

If α ≥ k−1
k , the minimum is at s = s0. Substituting,

H̃ ≥ f(s0) =

(
1 − (k − 1)k−1

kk
· α−(k−1)

)
· H.

This, with some easy algebra, gives the third part of the
proposition. For k−1

k ≤ α ≤ 1 we have

H ≤ 1(
1 − (k−1)k−1

kk · α−(k−1)
) · Ĥ.

The factor on the right hand side is decreasing and
convex in α. It is k

k−1 for α = k−1
k and is at most 2k

2k−1
for α = 1. Therefore a straight line passing through the

points
(

k−1
k , k

k−1

)
and

(
1, 2k

2k−1

)
can be used an upper

bound for this factor. This completes the proof.

6.2 Proof of Proposition 2.2 The proof will be
based on several lemmas. First, we will state the lem-
mas, and prove the proposition assuming the lemmas.
After that we will prove the lemmas.

It is convenient to introduce notation for sets of
frequent symbols for the distribution and its empirical
counterpart. Let Fp = {a : pa ≥ (1 − ε)t} and Fq =
{a : p̂a ≥ t}. Recall r stands for the sum of the rare
probabilities r =

∑
A\Fp

pa. Let also r̃ =
∑

A\Fp
p̂a,

and r̂ =
∑

A\Fq
p̂a. Recall Ĥ =

∑
Fq

p̂a log 1
p̂a

+ r̂ log 1
t ,

and H̃ =
∑

Fp
pa log 1

pa
+ r log 1

t .

Lemma 6.2. The following two events hold with high
probability: Fq ⊆ Fp and, for all a ∈ Fp,

∣∣p̂a−pa

∣∣ ≤ εpa.

Lemma 6.3. If r ≥ ε2H2

H2
then with high probability

∣∣r − r̃
∣∣ ≤ ε · r̃.

Lemma 6.4. If r < ε2H2

H2
then

∑

a6∈Fp

pa log
1

pa
≤ εH

Lemma 6.5. Let 0 < x, y ≤ 1
e , and assume |x−y| ≤ εx,

for some 0 < ε < 1. Then

(1 − ε)y log
1

y
≤ x log

1

x
≤ (1 + ε)y log

1

y
.

Now we prove the proposition. Let us assume the state
of affairs described by Lemma 6.2. We will also make a

couple of technical assumptions to streamline the proof.
First, we assume that no element of A has probability
mass greater than 1

e . (Briefly, if such a heavy element a
exists, we can learn its weight with a desired degree

of precision in O
(

1
1−α

)
number of steps, and then

condition on the event ¬a.) Next, we assume t is small
enough so that log 1

(1−2ε)t ≤ (1 + ε) log 1
t .
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The first claim. Let r ≥ ε2H2

H2
. By Lemma 6.3 we

may and will assume
∣∣r − r̃

∣∣ ≤ ε · r̃. Now,

H̃ =
∑

Fp

pa log
1

pa
+ r log

1

t

≤ (1 + ε) ·




∑

Fp

p̂a log
1

p̂a
+ r̃ log

1

t



 =

(1 + ε) ·




∑

Fq

p̂a log
1

p̂a
+
∑

Fp\Fq

p̂a log
1

p̂a
+ r̃ log

1

t



 ≤

(1+ε)




∑

Fq

p̂a log
1

p̂a
+ (1 + ε)

∑

Fp\Fq

p̂a log
1

t
+ r̃ log

1

t





≤ (1 + ε)2 ·




∑

Fq

p̂a log
1

p̂a
+ r̂ log

1

t



 = (1 + ε)2Ĥ.

The first inequality follows from Lemmas 6.3, 6.5, and
the assumption there are no heavy elements in A.
The second inequality follows from assuming t is small
enough.

Replacing (1 + ε) with (1 − ε) and reversing the
inequalities everywhere we obtain

H̃ ≥ (1 − ε)2Ĥ.

This completes the proof of the first claim.

The second claim. Let r < ε2H2

H2
. Then by

Lemmas 6.2 and 6.4

Ĥ ≥ (1 − ε) ·
∑

Fp

pa log
1

pa
≥ (1 − ε)2H.

On the other hand, r̃ is a random variable with expec-
tation r. By Markov’s inequality, with probability at
least 1 −√

ε holds r̃ ≤ 1√
ε
r. Therefore

Ĥ =
∑

Fq

p̂a log
1

p̂a
+ r̂ log

1

t
≤

11It is sufficient to assume t ≤ 1/30. This is a reasonable
assumption for the interesting choice of parameters, in which
t = q−α

e , the alphabet size q is very large, and 0 < α < 1 is
a non-negligible fraction.



∑

Fq

p̂a log
1

p̂a
+
∑

Fp\Fq

p̂a log
1

p̂a
+ r̃ log

1

t
≤

(1 + ε)
∑

Fp

pa log
1

pa
+

1√
ε
r log

1

t
≤

(1 + ε)
∑

Fp

pa log
1

pa
+

1√
ε

∑

A\Fp

pa log
1

pa
≤

(
1 +

√
ε + ε

)
H < (1 + 2

√
ε)H.

Proof of Lemma 6.2 We start with the second claim of
the lemma. For any a ∈ A the empirical probability
p̂a counts the average number of appearances of a in a
sample of size n. Therefore p̂a is an empirical mean of a
binomial random variable with probability pa of success,
and we can apply Chernoff’s bound [7] to measure its
probability of deviating from its mean pa. (Recall that
for all a ∈ Fp holds pa ≥ (1 − ε)t.)

There are at most 1
(1−ε)t symbols in Fp. The

probability that there is one for which
∣∣p̂a − pa

∣∣ > εpa

is at most

2

(1 − ε)t
· exp

{
−1

3
ε2(1 − ε)tn

}

We have used the union bound to account for all
the symbols in Fp and Chernoff’s bound to bound

individual deviations. Since n ≥ Ω
(

1
t log 1

t

ε2

)
, choosing

the constant implicit in the asymptotic notation to be
sufficiently large will make this probability as small as
O (t), say, which is sufficiently good for our purposes.

The first part of the lemma is harder. The comple-
mentary event is that there is a symbol in Fq but not
in Fp. Let I be the (countable) set of all such symbols.
Let I1 = {a ∈ I, pa ≥ t/2}, and let I2 = I \ I1.

The cardinality of I1 is at most 2
t , and we can use

the union bound and the Chernoff bound as before, to
bound its probability by

4

t
· exp

{
−1

6
ε2tn

}
.

As to I2, we use the large deviation inequality for the
binomial random variable [7] to obtain

Pr (a ∈ I2) ≤
((

pa

p̂a

)p̂a
(

1 − pa

1 − p̂a

)1−p̂a
)n

.

Therefore

Pr (I2) ≤
∑

a: pa≤ t
2

((
pa

p̂a

)p̂a
(

1 − pa

1 − p̂a

)1−p̂a
)n

.

Consider the function f(x) =
(

pa

x

)x ( 1−pa

1−x

)1−x

, for a

fixed a. For x larger than pa, this function is easily seen
to be decreasing. Therefore f(x) ≤ f(t) for all x ≥ t.
Since qa ≥ t for all a ∈ I2,

Pr (I2) ≤
∑

a: pa≤ t
2

((pa

t

)t
(

1 − pa

1 − t

)1−t
)n

.

Now consider the function g(x) =
(
xt(1 − x)1−t

)n
. It is

not hard to see that if n ≥ 5
t (which we may assume)

the second derivative of g is nonnegative for 0 ≤ x ≤ t
2 ,

and therefore g is convex in this interval.
It follows that the bound is maximized when all the

pa are as large as possible. Recall that pa ≤ t
2 and∑

a pa ≤ 1. Assuming that there are 2
t symbols a in I2

with probability t
2 each leads to the bound

Pr (I2) ≤
2

t
·
((

1

2

)t(
2 − t

2 − 2t

)1−t
)n

≤ 2

t
·
(

1

2

)tn

.

Summing up,

Pr (I) ≤ 4

t
· e− 1

6 ε2tn +
2

t
·
(

1

2

)tn

.

This probability can be made as small as O (t), by an
appropriate choice of constant in the definition of n.

Proof. (of Lemma 6.3) The random variable r̃ counts
the average number of appearances of symbols not in
Fp in the sample. Therefore r̃ is an empirical mean of a
binomial random variable with probability r of success,
and by Chernoff’s bound

Pr
(∣∣r − r̃

∣∣ > ε · r
)
≤ 2 · exp

{
−1

3
ε2rn

}
.

This probability can be made as small as as O (t) by an
appropriate choice of constant in the definition of n.

Proof. (of Lemma 6.4)

H2 =
∑

A
pa log2 1

pa
≥
∑

a6∈Fp

pa log2 1

pa
=

r ·
∑

a6∈Fp

pa

r
log2 1

pa
≥ r ·



∑

a6∈Fp

pa

r
log

1

pa




2

=

1

r
·




∑

a6∈Fp

pa log
1

pa




2

.

The second inequality uses convexity of the function x2.
∑

a6∈Fp

pa log
1

pa
≤
√

rH2.

Proof of Lemma 6.5 is immediate thus ommited.


