
The Zero-Undetected-Error Capacity of the
Low-Noise Cyclic Triangle Channel

Christoph Bunte
ETH Zurich
Switzerland

Email: bunte@isi.ee.ethz.ch

Amos Lapidoth
ETH Zurich
Switzerland

Email: lapidoth@isi.ee.ethz.ch

Alex Samorodnitsky
The Hebrew University of Jerusalem

Israel
Email: salex@cs.huji.ac.il

2
1− ε

2

1
1− ε

1

0
1− ε

0

ε

εε

(a) The bipartite channel graph

1 ε

ε

0

ε

2

(b) The directed channel graph

Fig. 1. The cyclic triangle channel

Abstract—We study the zero-undetected-error capacity of the
discrete memoryless channel whose directed channel graph is the
cyclic triangle. We show that this capacity is upper-bounded by
log 2 and approaches log 2 as the crossover probabilities tend to
zero.

I. INTRODUCTION

The zero-undetected-error capacity C0u is the largest rate
at which communication is possible over a channel when the
decoder must produce either the correct message or declare
an erasure (with small probability); it should never produce
an incorrect message. This notion of channel capacity was
first studied by Forney [1], who noticed that positive rates are
achievable on a discrete memoryless channel (DMC) whenever
there is an output that is reachable from some but not from
all inputs. He also derived a lower bound on C0u using IID
random coding, but the bound is not always tight.

More than 40 years after Forney’s paper, determining C0u
for arbitrary DMCs is still an open problem. In fact, even
for seemingly simple (and symmetric) channels, like those
considered in this paper, C0u is unknown. The main contribu-
tions after Forney’s paper include improved lower bounds [2],
[3], sufficient conditions for C0u to equal the (ordinary)
capacity C [4], [5], a single-letter expression for channels with
binary inputs [6], and a single-letter expression when there is
a feedback link from the channel output to the encoder [7].

The biggest challenge, it seems, is finding nontrivial upper
bounds, i.e., upper bounds better than C. In this paper, we
derive such an upper bound for the channel whose bipartite

(undirected) channel graph is shown in Figure 1(a).1 We refer
to this channel as the cyclic triangle channel because it can be
represented by the directed graph in Figure 1(b).2 Specifically,
we show that for this channel C0u is upper-bounded by log 2 if
0 < ε < 1. By providing a lower bound, we conclude that C0u
approaches log 2 as ε tends to zero.

There are a number of reasons for considering the cyclic tri-
angle channel. It is one of the simplest channels for which C0u
is not known and apparently hard to compute. A numerical
analysis in [3] suggests that the best known single-letter
lower bound for C0u (see (35) ahead) is not tight for this
channel. Moreover, the channel illustrates nicely how different,
in general, the zero-error capacity (zero when 0 < ε < 1), the
capacity (approaches log 3 as ε→ 0), and the zero-undetected-
error capacity are. Another reason is that the channel belongs
to the class of low-noise channels as defined in [3], where it is
conjectured that for such channels C0u approaches the Sperner
capacity (as defined, e.g., in [8, page 194]) of the directed
channel graph as the crossover probabilities tend to zero. The
Sperner capacity of the graph in Figure 1(b) is log 2 [9], [10].

It is instructive to compare the cyclic triangle channel to the
acyclic triangle channel, whose bipartite and directed channel
graphs are depicted in Figure 2. This channel too belongs to
the class of low-noise channels. Unlike its cyclic counterpart,
its zero-undetected-error capacity approaches log 3 as ε tends
to zero. Here the converse is trivial because C0u is upper-
bounded by C. Achievability can be demonstrated by noting
that the Sperner capacity of the directed channel graph is a
lower bound to the limiting value of C0u [3, Theorem 2], and
the Sperner capacity of the graph in Figure 2(b) is log 3 [9].
An alternative proof is provided in Section IV.

The rest of the paper is organized as follows. In Section II
we briefly discuss notation; in Section III we state and

1The two disjoint independent vertex sets of the bipartite channel graph of a
DMC are the input and output alphabets. There is an edge between an input x
and an output y if sending x can produce y at the output. It is customary to
draw the inputs on the left and the outputs on the right. The edges are labeled
with the transition probabilities.

2Every DMC with identical input and output alphabets has a natural
representation as a directed graph in which the vertices are the inputs/outputs
and there is an edge from x to y if y is not equal to x and if sending x can
produce y at the output. The edges are labeled with the transition probabilities.
It is implicitly assumed that a given channel input can produce an identical
output if the labels of the edges emanating from the vertex do not sum to
one.



prove the main result about the cyclic triangle channel; and
Section IV contains the analysis of the acyclic triangle channel.

II. NOTATION

We use W,X ,Y to denote the channel law and the input
and output alphabets (both finite) of a generic DMC. For a
PMF Q on X , we write QW for the induced PMF on Y

(QW )(y) =
∑
x∈X

Q(x)W (y|x), y ∈ Y. (1)

We write Wn for the n-fold product of W

Wn(y|x) =

n∏
j=1

W (yj |xj), x ∈ Xn, y ∈ Yn, (2)

where xj and yj denote the j-th coordinates of x and y. We
often use the shorthand

Xn(y) =
{
x ∈ Xn : Wn(y|x) > 0

}
, y ∈ Yn, (3)

and, for a PMF Q on Xn,

Q
(
Xn(y)

)
=

∑
x∈Xn(y)

Q(x). (4)

The support supp(P ) of a PMF P on a set X is defined as

supp(P ) =
{
x ∈ X : P (x) > 0

}
. (5)

The cardinality of a set X is denoted by |X |. For the usual
information theoretic quantities, we follow the notation in [8].
All logarithms are natural logarithms.

III. THE CYCLIC TRIANGLE CHANNEL

The following theorem is the main result of this paper.

Theorem III.1. Let C0u(ε) denote the zero-undetected-error
capacity of the cyclic triangle channel with crossover proba-
bility ε (Figure 1). Then

C0u(ε) ≤ log 2, 0 < ε < 1, (6)

and
lim
ε→0

C0u(ε) = log 2. (7)

Proof. We begin with the direct part. If we restrict the channel
to the inputs 0 and 1, say, then the resulting bipartite channel
graph is acyclic. A result by Pinsker and Sheverdyaev [4]
asserts that C0u equals C for all DMCs with acyclic bipar-
tite channel graphs. Noting that C of the restricted channel
approaches log 2 as ε tends to zero completes the direct part.

For the converse, we use the following multi-letter charac-
terization of C0u. For any DMC W ,

C0u = lim
n→∞

1

n
max
Q∈Qn

∑
y

(QWn)(y) log
1

Q(Xn(y))
, (8)

where Qn is the family of PMFs on Xn that are uniform
over a subset of Xn, and where the sum extends over the
support of QWn. The limit on the RHS of (8) exists (and is
equal to the supremum) because the sequence without the 1/n

factor is superadditive.3 The achievability of the RHS of (8)
follows immediately from Forney’s lower bound [1] applied
to Wn. The converse part of (8) seems to be well-known, but
we include it in the appendix for completeness. Using Jensen’s
inequality, we can upper bound the sum on the RHS of (8) as∑

y

(QWn)(y) log
1

Q(Xn(y))
≤ log

∑
y

(QWn)(y)

Q(Xn(y))
, (9)

where both sums extend over the support of QWn. For the
rest of the proof, let W denote the channel law of the cyclic
triangle channel with crossover probability 0 < ε < 1.
Note that Wn(y|x) > 0 if, and only if, x can be obtained
from y by adding 1 in mod 3 arithmetic to a subset (perhaps
empty) of the coordinates of y. For example, if n = 2, then
y = (0, 2) can be reached from (0, 2), (0, 0), (1, 2), (1, 0). For
every y ∈ {0, 1, 2}n and U ⊆ {1, . . . , n}, define α(y,U) to
be the element of {0, 1, 2}n obtained from y by adding 1 (in
mod 3 arithmetic) to the coordinates of y enumerated in U .
With this notation, we can write the sum inside the logarithm
on the RHS of (9) as∑

y∈supp(QWn)

∑
U⊆{1,...,n}

Wn(y|α(y,U))Q(α(y,U))

Q(Xn(y))
. (10)

Since
Wn(y|α(y,U)) = ε|U|(1− ε)n−|U|, (11)

we can rewrite (10) as∑
U⊆{1,...,n}

ε|U|(1− ε)n−|U|
∑

y∈supp(QWn)

Q(α(y,U))

Q(Xn(y))
. (12)

Since (QWn)(y) > 0 whenever Q(α(y,U)) > 0, we
can restrict the inner summation in (12) to all y such that
Q(α(y,U)) > 0. Moreover, for Q ∈ Qn and y such that
Q(α(y,U)) > 0, we have

Q(α(y,U))

Q(Xn(y))
=

1

|{x : Q(x)Wn(y|x) > 0}|
, (13)

so the inner sum in (12) can be written as∑
y:Q(α(y,U))>0

1

|{x : Q(x)Wn(y|x) > 0}|
. (14)

For every x ∈ {0, 1, 2}n and U ⊆ {1, . . . , n}, define β(x,U)
to be the element of {0, 1, 2}n obtained from x by chang-
ing 0’s into 2’s and vice versa in all coordinates of x
enumerated in U . Define the permutation QU of Q by

QU (x) = Q(β(x,U)), x ∈ {0, 1, 2}n. (15)

Observe that for every U ⊆ {1, . . . , n},

Wn(y|x) > 0 ⇐⇒ Wn
(
β(α(y,U),U)

∣∣β(x,U)
)
> 0.

3A sequence {an} of real numbers is superadditive if am+n ≥ am + an
for all positive integers m and n.



This equivalence is straightforward to verify for n = 1
and easily extends to general n on account of (2). Since
QU (β(x,U)) = Q(x), we thus have{

x : Q(x)Wn(y|x) > 0
}

=
{
x : QU

(
β(x,U)

)
Wn

(
β(α(y,U),U)

∣∣β(x,U)
)
> 0
}
.

And since β(·,U) is bijective, it follows that∣∣{x : Q(x)Wn(y|x) > 0
}∣∣

=
∣∣∣{x : QU (x)Wn

(
β(α(y,U),U)

∣∣x) > 0
}∣∣∣. (16)

Substituting (16) into (14), the inner sum in (12) becomes∑
y

1∣∣{x : QU (x)Wn
(
β(α(y,U),U)

∣∣x) > 0
}∣∣ , (17)

where the sum extends over y such that Q(α(y,U)) > 0.
Since summing over y such that Q(α(y,U)) > 0 is the same
as summing over y such that QU (β(α(y,U),U)) > 0, and
since β(·,U) and α(·,U) are both bijective, (17) is equal to∑

y∈supp(QU )

1

|{x : QU (x)Wn(y|x) > 0}|
. (18)

Consequently, if we define

ϑn(Q) =
∑

y∈supp(Q)

1

|{x : Q(x)Wn(y|x) > 0}|
, (19)

then it follows from (10), (12), (17), and (18) that the sum
inside the logarithm on the RHS of (9) is equal to∑

U⊆{1,...,n}

ε|U|(1− ε)n−|U| ϑn(QU ). (20)

The maximum of (20) taken over all Q ∈ Qn can be upper
bounded as

max
Q∈Qn

∑
U⊆{1,...,n}

ε|U|(1− ε)n−|U| ϑn(QU )

≤
∑

U⊆{1,...,n}

ε|U|(1− ε)n−|U| max
Q∈Qn

ϑn(QU )

= max
Q∈Qn

ϑn(Q)
∑

U⊆{1,...,n}

ε|U|(1− ε)n−|U|

= max
Q∈Qn

ϑn(Q), (21)

where the first equality follows because if Q is in Qn, then so
is every permutation of Q. Combing (21), (20), (9), and (8)
shows that

C0u(ε) ≤ lim
n→∞

1

n
log
(

max
Q∈Qn

ϑn(Q)
)
, 0 < ε < 1. (22)

Note that the RHS of (22) does not depend on ε. The proof
will be completed by showing that ϑn(Q) ≤ 2n for all n
and Q ∈ Qn. To this end, we will formulate the problem in
the language of graph theory. For positive integers n, consider

the directed graph Gn = (V (Gn), E(Gn)) with vertex set
V (Gn) = {0, 1, 2}n and edge set

E(Gn) =
{

(x,y) : x 6= y, Wn(y|x) > 0
}
. (23)

In other words, there is an edge from x to y if, and only
if, x is not equal to y and Wn(y|x) > 0. For every subset
F ⊆ {0, 1, 2}n and x ∈ F let d(F,x) denote the in-degree (the
number of incoming edges) of the vertex x in the subgraph
of Gn induced by F , i.e., the graph with vertex set F and edge
set E(Gn) ∩ (F × F ). Using this notation, we see from (19)
that

max
Q∈Qn

ϑn(Q) = max
F⊆{0,1,2}n

∑
x∈F

1

1 + d(F,x)
. (24)

To upper bound the RHS of (24), we use a technique similar
to that in [11, page 95]. Fix a positive integer n, and fix a
nonempty F ⊆ {0, 1, 2}n. A bijective map OF of the form

OF : F → {1, . . . , |F |}, (25)

is called an ordering of F . Let OF be an ordering of F and
consider the set

I(OF ) =
{
x : OF (x′) < OF (x) if (x′,x) ∈ E(Gn)

}
. (26)

In other words, I(OF ) ⊆ F , and I(OF ) contains the vertex
x ∈ F if, and only if, for every x′ ∈ F such that there is an
edge from x′ to x, the vertex x′ is lower in the ordering OF
than x. If OF is drawn uniformly at random among all possible
orderings of F , then the probability that a particular x ∈ F
is in I(OF ) is 1/(1 +d(F,x)). Thus, the expected cardinality
of I(OF ) can be computed as

E
[
|I(OF )|

]
=
∑
x∈F

Pr
(
x ∈ I(OF )

)
=
∑
x∈F

1

1 + d(F,x)
. (27)

Since the average is upper-bounded by the maximum,∑
x∈F

1

1 + d(F,x)
≤ max

OF

|I(OF )|. (28)

For every ordering OF of F , the subgraph of Gn induced by
the vertices in I(OF ) is acyclic. Consequently, if Γn denotes
the maximum cardinality of a subset of {0, 1, 2}n that induces
an acyclic subgraph of Gn, then (28) implies

max
F⊆{0,1,2}n

∑
x∈F

1

1 + d(F,x)
≤ Γn, n ≥ 1. (29)

It thus suffices to show that Γn ≤ 2n. We use an argument
similar to that in [10]. Let J ⊆ {0, 1, 2}n be a subset
of cardinality Γn that induces an acyclic subgraph of Gn,
and consider the set of multivariate polynomials {py}y∈J
over GF(3) defined as

py(x) =

n∏
j=1

(yj − xj − 1), x ∈ {0, 1, 2}n. (30)

Then py(y) 6= 0 for every y ∈ J and py(x) = 0 if
Wn(y|x) = 0. We show that the polynomials {py}y∈J are
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Fig. 2. The acyclic triangle channel

linearly independent. Assume that for some m ≥ 2, the m
elements y1, . . . ,ym in J are distinct and that a1, . . . , am are
nonzero coefficients such that for all x ∈ {0, 1, 2}n,

a1py1
(x) + a2py2

(x) + . . .+ ampym
(x) = 0. (31)

Since the subgraph of Gn induced by J is acyclic, so is the
subgraph induced by y1, . . . ,ym. Consequently, there must be
some k ∈ {1, . . . ,m} such that there is no edge from yk to yj
for all j 6= k, and hence pyj

(yk) = 0 for all j 6= k. In view
of (31) this implies

akpyk
(yk) = 0, (32)

which is a contradiction because ak is assumed to be nonzero
and pyk

(yk) 6= 0. We conclude that the set {py}y∈J is linearly
independent. Since these polynomials are contained in the span
of the polynomials{

x 7→
∏
`∈L

x` : L ⊆ {1, . . . , n}
}
, (33)

and since this set has 2n elements, it follows that Γn ≤ 2n.
Combining this with (29), (24) and (22) completes the proof.

IV. THE ACYCLIC TRIANGLE CHANNEL

As pointed out in Section I, the following proposition is
an immediate consequence of [3, Theorem 2] and the fact
that the Sperner capacity of the acyclic triangle (Figure 2(b))
is log 3 [9].

Proposition IV.1. Let C0u(ε) denote the zero-undetected-error
capacity of the acyclic triangle channel (Figure 2). Then

lim
ε→0

C0u(ε) = log 3. (34)

We give an alternative proof based on the following lower
bound [2], [3]. For any DMC W ,

C0u ≥ max
Q

min
V�W

QV=QW

I(Q,V ), (35)

where the maximum is over all PMFs Q on X , and where
the minimum is over all auxiliary channels V such that
V (y|x) = 0 whenever W (y|x) = 0 (in short V � W ) and
such that QV = QW . We use the following lemma; the proof
is in the appendix.

Lemma IV.2. Let V(Q,W ) denote the set of auxiliary chan-
nels V � W satisfying QV = QW . If V ? ∈ V(Q,W ) and
there exist functions A : X → (0,∞) and B : Y → (0,∞)
such that

V ?(y|x) = A(x)B(y), whenever Q(x)W (y|x) > 0, (36)

then

I(Q,V ?) ≤ I(Q,V ), for all V ∈ V(Q,W ), (37)

with equality if, and only if, V (y|x) = V ?(y|x) for all y ∈ Y
and x ∈ supp(Q).

It should be noted that if V ? = W and Q is capacity
achieving in Lemma IV.2, then (35) implies that C0u = C.
This was observed in [5].

Proof of Proposition IV.1. Let W denote the channel law of
the acyclic triangle channel with 0 < ε < 1, and let U be the
uniform PMF on {0, 1, 2}. Choose

(
A(0), A(1), A(2)

)
=

(
2(1 + ε)

3ε2
,

1

ε
, 1

)
(38)

and(
B(0), B(1), B(2)

)
=

(
3ε2

2(1 + ε)
,
ε(2− ε)
2(1 + ε)

, 1− ε

)
. (39)

It is straightforward to verify that

V ?(y|x) =

{
A(x)B(y) W (y|x) > 0,

0 otherwise,
(40)

defines a channel V ? � W that satisfies UV ? = UW .
From (35) and Lemma IV.2, it thus follows that

C0u(ε) ≥ I(U, V ?), 0 < ε < 1. (41)

But V ? approaches the identity matrix as ε tends to zero, so
by the continuity of mutual information

lim
ε→0

I(U, V ?) = log 3. (42)

This completes the proof because clearly C0u(ε) is upper-
bounded by log 3 for every 0 < ε < 1.

APPENDIX

Converse Proof of (8). We first recall the precise definition
of C0u. Let R be a positive number and n a positive integer.
An injective mapping

fn :
{

1, . . . , denRe
}
→ Xn, (43)

is called a rate-R blocklength-n encoder. The domain of fn is
called the message set. The number of messages compatible
with a received sequence y ∈ Yn is

Ln(y) =
∣∣{m : Wn

(
y|fn(m)

)
> 0
}∣∣. (44)



A zero-undetected-error decoder declares an erasure whenever
Ln(y) > 1; otherwise it produces the only compatible mes-
sage. A rate R is said to be achievable if there exists a se-
quence {fn} of rate-R blocklength-n encoders with maximum
probability of erasure tending to zero:

ηn = max
m

∑
y:Ln(y)>1

Wn
(
y|fn(m)

)
→ 0, n→∞. (45)

We define C0u as the supremum of all achievable rates. (The
definition does not depend on whether we use an average or
maximal probability of erasure criterion.)

To prove the converse, suppose {fn} is a sequence of rate-R
blocklength-n encoders with ηn → 0 as n → ∞. Let Qn be
the uniform PMF on the range of fn. Then Qn ∈ Qn, and

Qn
(
Xn(y)

)
=
Ln(y)

denRe
. (46)

Consequently,∑
y∈supp(QnWn)

(QnW
n)(y) log

1

Qn(Xn(y))

= logdenRe −
∑

y:Ln(y)>1

(QnW
n)(y) logLn(y)

≥ logdenRe(1− ηn)

≥ nR(1− ηn), (47)

where the first inequality follows because Ln(y) ≤ denRe.
Dividing by n(1 − ηn), taking the maximum over Qn, and
letting n → ∞ shows that R cannot exceed the RHS of (8).

Proof of Lemma IV.2. Suppose V ? satisfies the hypothesis of
the lemma and V ∈ V(Q,W ). Since QV ? = QV = QW ,
we have I(Q,V ?) = H(QW ) − H(V ?|Q) and I(Q,V ) =
H(QW )−H(V |Q). Thus, it suffices to show that H(V ?|Q) ≥
H(V |Q). To this end, observe that

H(V ?|Q) =
∑

x,y:Q(x)W (y|x)>0

Q(x)V ?(y|x) log
1

A(x)

+
∑

x,y:Q(x)W (y|x)>0

Q(x)V ?(y|x) log
1

B(y)
.

The first sum on the RHS is the expectation of − logA(X)
when X has PMF Q, and the second sum is the expectation of
− logB(Y ) when Y has PMF QV ?. Since QV ? = QV and
V �W , we may replace V ? with V in both sums to obtain

H(V ?|Q) =
∑

x,y:Q(x)W (y|x)>0

Q(x)V (y|x) log
1

V ?(y|x)

=
∑

x,y:Q(x)V (y|x)>0

Q(x)V (y|x) log
V (y|x)

V ?(y|x)

+H(V |Q)

≥ H(V |Q), (48)

where we used Jensen’s inequality in the last line. Equality
holds in (48) if, and only if, V ?(y|x) = V (y|x) for all y ∈ Y
and x ∈ supp(Q).
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